
How to use an Observer
Template

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 1.4

© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 1

http://creativecommons.org/licenses/by-nc/4.0/

Learning Objectives

• By the end of this lesson, you should be able
to use an observer template to write a
function definition that examines a piece of
data.

2

What does it mean to “examine” a
piece of data?

• If the data is compound data, this means
extracting its fields.

• If the data is itemization data, this means
determining which alternative the data is.
– If the alternative is compound data, this means

extracting its fields as well.

• Every data definition includes a template that
shows how this examination process can be
organized.

3

Recipe for Using an Observer Template

1. Make a copy of the template and uncomment it, if
necessary

2. Fill in the function name and add more arguments if
needed

3. For design strategy, write: “Use observer template for
<data def> on <vble>,” where <data def> is the kind of
data you are taking apart, and <vble> is the variable
whose value you are looking at.

4. Use the template as a pattern for your function, using
the items in the inventory.

From Observer Template to Function
Definition

4
See Lesson 1.3, Slide 17

Example: book-receipts

;; book-receipts : Book NonNegInt -> NonNegInt
;; GIVEN: a Book and the number of copies sold
;; RETURNS: the total receipts from the sales of the
;; given book. Ignores the number of copies on hand.
;; EXAMPLE:
;; (book-receipts
;; (make-book "Felleisen" "HtdP2" 13 2795) 100)
;; = 279500

5

To do this, we’ll need to
look inside the Book to see

its price, so we’ll use the
Book template

1. Make a copy of the template and
uncomment it

(define (book-fn b)
(...
(book-author b)
(book-title b)
(book-on-hand b)
(book-price b)))

6

2. Fill in the function name and add
more arguments if needed

(define (book-receipts b sales)
(...
(book-author b)
(book-title b)
(book-on-hand b)
(book-price b)))

7

3. Write down the strategy

;; STRATEGY: Use observer template for
;; Book on b.
(define (book-receipts b sales)
(...
(book-author b)
(book-title b)
(book-on-hand b)
(book-price b)))

8

This is what you’ll write
for the Design Strategy

Remember, the observer
template gives us an inventory of
quantities we can use to
construct the answer.

4. Fill in the blanks in the template

;; STRATEGY: Use template for Book on b.
(define (book-receipts b sales)
(* (book-price b) sales))

Things we didn’t use:
(book-author b)
(book-title b)
(book-on-hand b)

That’s OK!

9

We said:
The observer template (or just
the template, for short) gives a
skeleton for functions that
examine or use the data. We can
fill in the ... with any expression,
using any or all of the
expressions in the inventory.

The template is a starting point for your function
definition; you don’t have to follow it rigidly. But
the closer you stay to the template, the less
trouble you can get into.

Example: next state of traffic light

;; DATA DEFINITION:
;; a TrafficLightState (TLState) is represented as one of
;; the following strings:
;; -- "red"
;; -- "yellow"
;; -- "green"
;; INTERPRETATION: self-evident

10

Contract, Purpose Statement, and
Examples

;; next-state : TLState -> TLState
;; GIVEN: a TLState
;; RETURNS: the TLState that follows the given TLState
;; EXAMPLES:
;; (next-state "red") = "green"
;; (next-state "yellow") = "red"
;; (next-state "green") = "yellow"

11

1. Make a copy of the template and
uncomment it

(define (tls-fn state)
(cond

[(string=? state "red") ...]
[(string=? state "yellow") ...]
[(string=? state "green") ...]))

12

2. Fill in the function name and add
more arguments if needed

(define (next-state state)
(cond

[(string=? state "red") ...]
[(string=? state "yellow") ...]
[(string=? state "green") ...]))

13

3. Fill in the strategy

;; STRATEGY: Use template for TLState on state

(define (next-state state)
(cond

[(string=? state "red") ...]
[(string=? state "yellow") ...]
[(string=? state "green") ...]))

14

4. Fill in the blanks

;; STRATEGY: Use template for TLState on state

(define (next-state state)
(cond

[(string=? state "red") ...]
[(string=? state "yellow") ...]
[(string=? state "green") ...]))

15

What is the answer for
“red”?

4. Fill in the blanks

;; STRATEGY: Use template for TLState on state

(define (next-state state)
(cond

[(string=? state "red") "green"]
[(string=? state "yellow") ...]
[(string=? state "green") ...]))

16

What is the answer for
“red”?

Answer (from
examples): “green”

4. Fill in the blanks

;; STRATEGY: Use template for TLState on state

(define (next-state state)
(cond

[(string=? state "red") "green"]
[(string=? state "yellow") "red"]
[(string=? state "green") ...]))

17

What is the answer for
“yellow”?

Answer (from
examples): “red”

4. Fill in the blanks

;; STRATEGY: Use template for TLState on state

(define (next-state state)
(cond

[(string=? state "red") "green"]
[(string=? state "yellow") "red"]
[(string=? state "green") "yellow"]))

18

What is the answer for
“green”?

Answer (from
examples): “yellow”

Working with other kinds of data

• We've seen how to use templates for
compound data and itemization data

• More complex data (such as BarOrder in
Lesson 1.3, Slide 30) works the same way.

• Copy the template, uncomment it, and fill in
the missing pieces. That's it!

• If you've thought hard enough about your
function, filling in the blanks is easy.

19

What can you put in the blanks?

• We said: Fill in the blanks in the template by
combining the arguments and the values of
the fields using simpler functions.

• This means :

– You don't have to use all of the fields

– You can use a field twice

– You don't have to use the fields "in order"

• But it has to be simple.

20

BarOrder

CoffeeOrder WineOrder TeaOrder

Remember: The Shape of the Program
Follows the Shape of the Data

21

CoffeeOrder
function

BarOrder
function

WineOrder
function

TeaOrder
function

Data Hierarchy (the
open triangle means
“OR”)

Call Tree (the arrow
goes from caller to
callee)

Next Steps

• Study 01-4-1-book-receipts.rkt and 01-4-2-
traffic-light.rkt in the Examples folder.

– Be sure to finish the previous-state example in 01-
4-2-traffic-light.rkt

• If you have questions or comments about this
lesson, post them on the discussion board.

• Do the Guided Practices

• Go on to the next lesson.

22

