
The Data Design Recipe

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 1.3

1
© Mitchell Wand, 2012-2014
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Learning Objectives for this Lesson

• By the time you finish this lesson, you should
be able to:

– list the steps in the data design recipe

– list the pieces of a data definition

– explain what define-struct does

– write a constructor template and interpretation
for simple data

2

The Data Design Recipe

1. Information Analysis

2. Representation and Interpretation

3. Implementation

4. Constructor Template

5. Observer Template

6. Examples

7. Review

3

Brief Explanation of the Data Design
Recipe

1. Information Analysis: What kind of information needs to be
represented in your program? What kind of information is it?

2. Representation and Interpretation: how is the information
represented as data? What is the meaning of each possible value
of the data?

3. Implementation: definitions of needed structs.

4. Constructor template: tells how to construct a value of this type

5. Observer template: tells how to inspect a value of this type

6. Examples: samples to make clear to the reader what is intended

7. Review: How can your design be improved?

4

DDR Step 1. What information needs
to be represented?

• In general, you are representing information
about one of many objects in the world

• Your goal is represent enough information
about that object to distinguish it from all the
other similar objects

• You may need to represent more information
as well, depending on the application.

5

Example: representing a car

• What cars are we trying to represent? How does one car in the set
differ from the others? What information about that car do I need
to know?

• In a traffic simulation, I might only need to keep track of each car's
position and velocity.

• For TV coverage of an auto race, I might need to keep track of
enough information to distinguish it from all the others in the race.
– The car’s number would be enough, but I might want to display the

name of the driver as well.

• For an auto dealer, I might need to keep track of enough
information to distinguish this car from all the others in the world.
– The VIN (“Vehicle Identification Number”) would be enough, but I

might want to have its model, color, etc. available for display.

6

Output of DDR Step 1

• At the end of step 1, you should know what
kind of data you need (scalar, compound,
itemization, etc.)

• Where you go from here depends on the kind
of data.

• In the lesson, we’ll see how to execute the
Data Design Recipe for compound data.

• Then we’ll go back and see how it works for
the other kinds of data.

7

DDR Step 2. Representation and
Interpetation

• In Racket, we represent compound data as a
struct

– This is like a struct or record in other languages.

• For the interpretation, we need to give an
interpretation to each of the fields.

8

Example:

;; A Book in a bookstore

;; REPRESENTATION:
;; a Book is represented as a struct
;; (make-book author title on-hand price)
;; with the following fields:
;; author : String is the author's name
;; title : String is the title of the book
;; on-hand : NonNegInt is the number of copies
;; on hand
;; price : NonNegInt is the price of the book
;; in USD*100
;; (e.g. $7.95 => 795)

9

Another example: a Rocket

;; An Altitude is represented as a Real, measured in meters

;; A Velocity is represented as a Real, measured in meters/sec
;; upward

;; We have a single rocket, which is at some altitude and is
;; travelling vertically at some velocity.

;; REPRESENTATION:
;; A Rocket is represented as a struct
;; (make-rocket altitude velocity)
;; with the following fields:
;; altitude : Altitude is the rocket's altitude
;; velocity : Velocity is the rocket's velocity

10

DDR Step 3. Implementation

• In Racket, we define new kinds of structs or
records with define-struct.

• We saw these in Lesson 0.4. Here’s a review:

11

Example of a structure definition in
Racket

(define-struct book (author title on-hand price))

Executing this define-struct defines the following functions:

make-book

book-author
book-title
book-on-hand
book-price

book?

A constructor– GIVEN 4 arguments, RETURNS a
book with the given fields

Selectors: GIVEN: a book, RETURNS: the value of
the indicated field.

A Predicate: GIVEN: any value, RETURNS: true iff it
is a book

12

DDR Step 4. Constructor Template

• Tells how to construct a value of this type.

• Example:

;; CONSTRUCTOR TEMPLATE FOR Book:

;; (make-book String String NonNegInt NonNegInt)

13

The kind of data in each field

• Example: a ring

Sometimes this format isn't enough

inner

inner radius

outer radius

14

This only makes sense if
inner < outer .

We need to document this,
so anybody who builds a ring
will know that he or she has
to satisfy this condition

This condition is called a precondition
or an invariant. Remember those
words! Conditions like this will come
up over and over again as we go along.

We document this in the
representation

;; REPRESENTATION
;; A Ring is represented as a struct
;; (make-ring inner outer)
;; with the following fields:
;; inner : PosReal is the ring's inner radius
;; outer : PosReal is the ring's outer radius
;; WHERE (< inner outer) is true

;; IMPLEMENTATION
(define-struct ring (inner outer))

;; CONSTRUCTOR TEMPLATE:
;; (make-ring PosReal PosReal)

15

DDR Step 5: Observer Template

• The observer template (or just the template,
for short) gives a skeleton for functions that
examine or use the data.

• For compound data, this is easy:

16

Observer template for compound data

;; OBSERVER TEMPLATE

;; book-fn : Book -> ??

(define (book-fn b)

(...

(book-author b)

(book-title b)

(book-on-hand b)

(book-price b)))

17

We can fill in the ... with any
expression, using any or all of
the expressions in the inventory.

This is an inventory of the
quantities we can use to
construct the answer.

Putting it all together

;; A Book in a bookstore

;; REPRESENTATION:
;; a Book is represented as a struct (make-book author title on-hand price)
;; with the following fields:
;; author : String is the author's name
;; title : String is the title of the book
;; on-hand : NonNegInt is the number of copies on hand
;; price : NonNegInt is the price of the book in USD*100
;; (e.g. $7.95 => 795)

;; IMPLEMENTATION
(define-struct book (author title on-hand price))

;; CONSTRUCTOR TEMPLATE
;; (make-book String String NonNegInt NonNegInt)

;; OBSERVER TEMPLATE
;; book-fn : Book -> ??
(define (book-fn b)

(...
(book-author b)
(book-title b)
(book-on-hand b)
(book-price b)))

18

The DDR for scalar data

• For scalar information, we need
representation and interpretation

• No need for implementation or
constructor/observer templates

19

;; An Altitude is represented as a Real,
;; measured in meters

;; A Velocity is represented as a Real, measured in
;; meters/sec upward

;; A BookPrice is represented as a NonNegInt,
;; in USD*100 (e.g. $7.95 => 795)

;; A Vineyard is represented as a String
;; (any string will do)
;; A Vintage is represented as a PosInt in [1800,2100]

Examples of data definitions for scalar
information

20

interpretation specifies units

interpretation specifies units and orientation

interpretation specifies units

When you say “String”, that always means that any string is a legal value!!
Any time your data definition says “String”, you should always write “Any
string will do”.

The DDR for itemization data

;; A Size is represented as one of the following integers:
;; -- 8, 12, 16, 20, 30
;; INTERP: a cup size, in fluid ounces

;; NOTE: it would be wrong to say "the cup", since there is no cup
;; here. Look at the definition of CoffeeOrder below

;; NOTE: Constructor template is not necessary for itemization data

;; OBSERVER TEMPLATE:

;; size-fn : Size -> ?
(define (size-fn s)

(cond
[(= s 8) ...]
[(= s 12) ...]
[(= s 16) ...]
[(= s 20) ...]
[(= s 30) ...]))

21

The observer template consists of a cond with as
many clauses as there are cases. The predicates in
the cond select the relevant case.

Another example

• Do we need an interpretation?

• NO: common sense is good enough

22

A TLState is represented as
one of the following strings:
-- "red"
-- "yellow"
-- "green"

Another example

• Do we need an interpretation?

• YES: the reader is unlikely to guess that 217
denotes green, 126 denotes yellow, and 43
denotes red.

23

A TLState is represented one
of the following integers:
-- 217
-- 126
-- 43

Remember: Not all integers are
created equal

24

https://www.flickr.com/photos/7-how-7/4139229048/in/pool-1996770@N25/ licensed under
Creative Commons License

The interpretation tells you the meaning of each number. It also tells you
that you shouldn't be adding these integers!

https://www.flickr.com/photos/7-how-7/4139229048/in/pool-1996770@N25/
https://creativecommons.org/licenses/by-nc-sa/2.0/

The DDR for more complicated data

• For example:
– compound data where one or more fields are

themselves compound or itemization data

– itemization data where one of more fields are
themselves compound or itemization data

• We build the data definition for this more
complicated data out of the definitions of the
pieces.

• This is less scary than it sounds.

• Let’s do some examples

25

Case Study: BarOrder

In a wine bar, an order may be one of three things:
a cup of coffee, a glass of wine, or a cup of tea.

– For the coffee, we need to specify the size (small,
medium, or large) and type (this is a fancy bar, so it
carries many types of coffee). Also whether or not it
should be served with milk.

– For the wine, we need to specify which vineyard and
which year.

– For tea, we need the size of the cup and the type of
tea (this is a fancy bar, so it carries many types of tea).

26

;; Preliminaries:

;; A Size is represented as ...

;; A CoffeeType is represented as a string

;; (any string will do)

Case Study (part 2): CoffeeType

27

Any time you write String, you
MUST write "any string will
do".

In a more detailed representation, we might specify
CoffeeType further.

Case Study (part 3): CoffeeOrder

;; Definition of CoffeeOrder:

;; REPRESENTATION:
;; A CoffeeOrder is represented as a struct
;; (make-coffee-order size type milk)
;; with the following fields:
;; INTERP:
;; size : Size is the size of cup desired
;; type : CoffeeType is the kind of coffee order
;; milk : MilkType is the kind of milk ordered

;; IMPLEMENTATION:
(define-struct coffee-order (size type milk))

;; CONSTRUCTOR TEMPLATE
;; (make-coffee-order Size CoffeeType MilkType)

;; OBSERVER TEMPLATE
;; coffee-order-fn : CoffeeOrder -> ??
(define (coffee-order-fn co)

(...
(coffee-order-size co)
(coffee-order-type co)
(coffee-order-milk co)))

28

Case Study, completed: BarOrder

;; A WineOrder is represented as a ...

;; A TeaOrder is represented as a ...

;; A BarOrder is represented as one of

;; -- a CoffeeOrder

;; -- a WineOrder

;; -- a TeaOrder

;; CONSTRUCTOR TEMPLATE:

;; use the constructor templates for CoffeeOrder, WineOrder, or TeaOrder.

;; OBSERVER TEMPLATE:

;; bo-fn : BarOrder -> ??

;; STRATEGY: Cases on order : BarOrder

(define (bo-fn order)

(cond

[(coffee-order? order) ...]

[(wine-order? order) ...]

[(tea-order? order) ...]))

29

Using the BarOrder Observer Template

;; In the ... you can put a function on the order, or you
;; can expand the observer template for the compound
;; data, eg:

(define (my-bo-fn order)
(cond
[(coffee-order? order) (some-function

(coffee-order-size order)
(coffee-order-type order)
(coffee-order-milk order))]

[(wine-order? order) (some-other-function order)]
[(tea-order? order) (yet-another-function order)]))

30

Best practice is to expand all of them, as we’ve
done here for the coffee-order alternative.

The Shape of the Program Follows the
Shape of the Data

• A BarOrder is one of
– a CoffeeOrder

– a WineOrder, or

– a TeaOrder

• The observer template tells that a function on
BarOrders may call
– a function on CoffeeOrders

– a function on WineOrders, or

– a function on TeaOrders

31

BarOrder

CoffeeOrder WineOrder TeaOrder

The Shape of the Program Follows the
Shape of the Data

32

CoffeeOrder
function

BarOrder
function

WineOrder
function

TeaOrder
function

Data Hierarchy (the
open triangle means
“OR”)

Call Tree (the arrow
goes from caller to
callee)

We’ll see this principle over
and over again!

DDR Step 7: Review

• Nothing is done until you review it!

• Before you move on, look at your data
definition and ask the following questions

33

Reviewing a Data Design

Reviewing a Data Design

1. Is the interpretation clear and unambiguous?

2. Can you represent all the information you
need for your program?

3. Do you need all of the data in your
representation?

4. Does every combination of values make
sense? If not, document the meaningful
combinations with a WHERE clause.

34

Next Steps

• If you have questions about this lesson, ask
them on the Discussion Board

• Go on to the next lesson

35

