
The Function Design Recipe

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 1.1

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Module 01

2

Basic Principles

Designing
Data

Designing
Functions

Designing
Systems

Tools and
Techniques

Computing
with Lists

Computing
with Trees

and Graphs

Designing
with

Invariants

Thinking
about

Efficiency

Object-Oriented
Programming

Interfaces
and Classes

Inheritance

Objects with
Mutable

State

Efficiency,
Part 2

Learning Objectives

• By the time you complete this lesson, you
should be able to:

– list the 6 steps of the Function Design Recipe

– briefly explain what each step is.

– explain the difference between information and
data, and explain the role of representation and
interpretation.

3

The function design recipe

• The function design recipe is the most important
thing in this course. It is the basis for everything
we do.

• It will give you a framework for attacking any
programming problem, in any language. Indeed,
students have reported that they have found it
useful in other courses, and even in their
everyday life.

• With the recipe, you need never stare at an
empty sheet of paper again.

• Here it is:

4

The Function Design Recipe

The Function Design Recipe

1. Data Design

2. Contract and Purpose Statement

3. Examples and Tests

4. Design Strategy

5. Function Definition

6. Program Review This is important. Write it down, in your own
handwriting. Keep it with you at all times. Put
it on your mirror. Put it under your pillow. I’m
not kidding!

Brief Explanation of the Recipe

• Data Design: what kind of data does your system deal with, and
what does each possible value of the data mean?

• Contract: what kinds of values does your function take as its
arguments, and what kind of values does it return?

• Purpose Statement: given a particular input, which value should
the function return?

• Examples/Tests: what is a typical call of your function? How can
somebody tell whether your function is returning a correct value?

• Strategy: how does your function compute the desired value?
Describe the way it works in a tweet.

• Function Definition: the code of the function.
• Program Review: now that you have a working function, how can it

or its explanation be improved to make it clearer to a reader?

6

A Function Designed According to the
Recipe

;; DATA DEFINITIONS:
;; A FahrenTemp is represented as a Real.
;; A CelsiusTemp is represented as a Real.

;; f2c: FahrenTemp -> CelsiusTemp
;; GIVEN: a temperature in Fahrenheit,
;; RETURNS: the equivalent temperature in Celsius.

;; EXAMPLES:
;; (f2c 32) = 0
;; (f2c 212) = 100
;; DESIGN STRATEGY: Transcribe Formula

(define (f2c x)
(+ (* 5/9 x) -160/9))

;; TESTS
(begin-for-test
(check-equal? (f2c 32) 0
"32 Fahrenheit should be 0 Celsius")

(check-equal? (f2c 212) 100
"212 Fahrenheit should be 100 Celsius"))

7

Data Definitions: What real-world we are
representing, and how they are
represented.

Contract (or signature): what kinds of
values the function takes as arguments,
and what kind of value it returns

Design Strategy: Brief description of how
the function gets the answer.

Examples (for the reader)

Purpose Statement: given a particular
input, what is the value that the function
should return?

Tests (executable)

Function Definition

The recipe is a recipe

• It’s not just a list of components

• It tells you the order in which you should do
them.

• Each step depends on the preceding ones.

• If you do them out of order, you will get in
trouble (trust me!)

8

In the rest of this lesson, we will discuss
each step in turn.

Step 1: Information Analysis and Data
Design

• Information is what lives in the real world. To
do this step, you need to do 3 things:

1. You need to decide what part of that
information needs to be represented as data.

2. You need to decide how that information will be
represented as data.

3. You need to document how to interpret the data
as information.

9

The relation between information and
data

Information Data

representation

interpretation

10

stuff in the real world bits in a computer

Information and Data: Example

My shirt is
red

c = "rouge"

representation

interpretation

11

How do we know that these are connected?

Answer: we have to write down the interpretation.

Information and Data: Example

My shirt is
red

c = "rouge"

representation

interpretation

12

Interpretation:
c = the color of my shirt, as a string, in French

This is part of the program design process.

Deliverables for Step 1 (Information
Analysis and Data Design)

1. Description of the real-world information to be
represented.

2. Structure Definitions: declarations of new data
structures if any.

3. Constructor Template: a recipe for building values of
this data type.

4. Interpretation: what each value of the type
represents.

5. Observer Template: a template for functions that look
at values of this data type.

6. Examples (if needed so reader will understand).

13

That first step was a big one!

• ... but important: the vast majority of errors
in student programs can be traced back to
errors in step 1!

• We’ll go through each of these steps in more
detail in Lessons 1.3-1.5

14

Step 2: Contract and Purpose
Statement

• Contract: specifies the kind of input data and the
kind of output data

• Purpose Statement: A set of short noun phrases
describing what the function is supposed to
return. These are typically phrased in terms of
information, not data.
– The generally take the form GIVEN/RETURNS, where

each of these keywords is followed by a short noun
phrase.

– When possible, they are phrased in terms of
information, not data.

15

Examples of Contract and Purpose
Statements

;; f2c: FahrenTemp -> CelsiusTemp

;; GIVEN: a temperature in Fahrenheit,

;; RETURNS: the equivalent temperature in
Celsius

;; f2mars : FahrenTemp -> CelsiusTemp

;; GIVEN: Any temperature in Fahrenheit

;; RETURNS: The mean temperature on the

;; surface of Mars, in Celsius

16

Examples of Contract and Purpose
Statements (2)

scene-with-cat : Cat Scene -> Scene

GIVEN: a Cat c and a Scene s

RETURNS: A Scene like s, except that the Cat c
has been painted on it.

17

Of course there are no cats in our computer. What this
means is:
c is the representation of some cat,
s is the representation of some scene,
and the function returns a representation of a scene like the
one s represents, except the new scene contains an image
of the cat.

Step 3: Examples and Tests

• Examples: some sample arguments and
results, to make clear to the reader what is
intended.

;; (f2c 32) = 0

;; (f2c 212) = 100

18

Tests

• Unlike examples, tests are meant to be
executable. Your tests will live in the file with your
code, so they will be run every time you load your
file. That way if you inadvertently break
something, you’ll find out about it quickly.

• Our testing framework is based on rackunit and
allows the tests to appear anywhere in the file;
they are executed at the end of the file. You
should try to put the tests near the function they
test– see the example files.

19

Tests (2)

Here are the tests we wrote for f2c. Since we know that f2c
must be a linear function, two tests suffice to guarantee that
we got the constants right.

(begin-for-test

(check-equal? (f2c 32) 0

"32 Fahrenheit should be 0 Celsius")

(check-equal? (f2c 212) 100

"212 Fahrenheit should be 100 Celsius"))

20

• A short description of how to get from the
purpose statement to the function definition

• We will have a menu of strategies.

• We'll cover this in more detail in Module 2

Step 4: Design Strategy

21

Here is our starting
list of strategies:

There will be more…

Design Strategies
1. Transcribe formula

2. Use template for <data def>

3. Divide into cases on
<condition>

Design Strategy for f2c

• For f2c, the strategy we used was “transcribe
formula”

– this is, we wrote down the mathematical function
and transcribed into Racket.

22

Step 5: Function Definition

To define our function, we apply some external knowledge. We
know that Fahrenheit and Celsius are related linearly, so the
solution must be of the form

𝑓2𝑐(𝑥) = 𝑎𝑥 + 𝑏.

So we take our two examples and get two simultaneous
equations:

𝑥 = 0: 32𝑎 + 𝑏 = 0
𝑥 = 212: 212𝑎 + 𝑏 = 100

We solve for a and b, getting

𝑎 =
5

9
, 𝑏 = −

160

9

23

Function Definition

• Now we can write the code.

– Our code is just a transcription of the formula into
Racket, using the fact that Racket has rational
numbers.

(define (f2c x)
(+ (* 5/9 x) -160/9))

24

Step 6: Program Review

• Did the tests pass?

• Are the contracts accurate?

• Are the purpose statements accurate?

• Can the code be improved?

25

Summary

• In this lesson, we have learned the steps of
the Function Design Recipe.

– 6 steps

– You need to do them in order.

– The Design Recipe gives you a plan for attacking
any programming problem

– It is the single most important thing in this
course!!

26

Next Steps

• Review 01-1-f2c.rkt in the Examples folder.

– Download and run it. Make some changes. What
happens when you change the file? What kinds of
error messages do you get?

• If you have questions about this lesson, post
them on Piazza.

• Go on to the next lesson.

27

