
A Simple Introduction to Git: a
distributed version-control system

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 0.5

© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 1

http://creativecommons.org/licenses/by-nc/4.0/

Learning Objectives

• At the end of this lesson you should be able
to explain:

– how git creates a mini-filesystem in your directory

– what pull, commit, and push do

– the elements of the basic git workflow

– how git allows you to work across multiple
computers

2

Git is a distributed version-control
system

• You keep your files in a repository on your local
machine.

• You synchronize your repository with a repository
on a server.

• If you move from one machine to another, you
can pick up the changes by synchronizing with
the server.

• If someone else on your team uploads some
changes to your files, you can pick those up by
synchronizing with the server.

3

Git is a distributed version-control
system

• Terminology: In git-speak, a “version” is called
a “commit.”

• Git keeps track of the history of your commits,
so you can go back and look at earlier
versions, or just give up on the current version
and go back some earlier version.

4

A simple model of git

• Most git documentation gets into details very
quickly.

• Here’s a very simple model of what’s going on
in git.

5

Your files

my-project docs manual.docx

user_docs.docx

src

main.rkt

module1.rkt

module2.rkt

module3.rkt

Here are your files, sitting
in a directory called my-

project

6

Your files in your git repository

my-project docs manual.docx

user_docs.docx

src

main.rkt

module1.rkt

module2.rkt

module3.rkt

.git

When you have a git repository, you have
an additional directory called .git, which
points at a mini-filesystem.

This file system keeps all your data, plus the
bells and whistles that git needs to do its
job.

All this sits on your local machine.

7

The git client

my-project docs manual.docx

user_docs.docx

src

main.rkt

module1.rkt

module2.rkt

module3.rkt

.git

This mini-filesystem is highly optimized and
very complicated. Don’t try to read it
directly.

The job of the git client is to manage this for
you.

8

Your workflow (part 1)

• You edit your local files directly.

– You can edit, add files, delete files, etc., using
whatever tools you like.

– This doesn’t change the mini-filesystem, so now
your mini-filesystem is behind.

9

A Commit

my-project docs manual.docx

user_docs.docx

src

main.rkt

module1.rkt

module2.rkt

module3.rkt

.git

commit

When you do a “commit”, you
record all your local changes into
the mini-filesystem.

The mini-filesystem is “append-
only”. Nothing is ever over-
written there, so everything you
ever commit can be recovered.

10

Synchronizing with the server (1)

my-project docs manual.docx

user_docs.docx

src

main.rkt

module1.rkt

module2.rkt

module3.rkt

.git push

At the end of each work session, you need
to save your changes on the server. This is
called a “push”.

Now all your data is backed up.
• You can retrieve it, on your machine or

some other machine.
• We can retrieve it (that’s how we collect

homework)

your local machine
a server, somewhere on the
internet, eg. github.com

11

Synchronizing with the server (2)

my-project docs manual.docx

user_docs.docx

src

main.rkt

module1.rkt

module2.rkt

module3.rkt

.git pull

To retrieve your data from the server, you
do a “pull”. A “pull” takes the data from the
server and puts it both in your local mini-fs
and in your ordinary files.

If your local file has changed, git will merge
the changes if possible. If it can’t figure out
how to the merge, you will get an error
message. We’ll talk about this some more
a little later in this lesson.

your local machine
a server, somewhere on the
internet, eg. github.com

p
u

ll

12

The whole picture

my-project docs manual.docx

user_docs.docx

src

main.rkt

module1.rkt

module2.rkt

module3.rkt

.git
pull

your local machine
a server, somewhere on the
internet, eg. github.ccs.neu.edu

p
u

ll

commit

push

13

Your workflow for a session

pull

edit

commit

edit

commit

edit

commit

push

Best practice: commit your
work whenever you’ve
gotten one part of your
problem working, or before
trying something that might
fail.

14

At the end of each session:
(1) Update your-ID-log.txt
(2) Commit
(3) push

Start by pulling the latest
version of your work from
the server

If you want to abandon your
changes, you can always go
back to your preceding
commit, using “git
checkout”. (Go read about
“git checkout”, which does
lots of useful things…)

Submitting a Work Session log

• At the end of your work
session, update a file called
your-ID-log.txt (replace
“your-ID” with your CCIS
login ☺)

• This file records the time
you spent in this work
session.

0 hours 0 minutes spent this session

2017-01-06

I hereby certify that all the work in this commit is my own except for

materials distributed as part of this class.

/* do not change the format of anything above this line */

After each work session, please update and commit this file (with

'yourID' replaced by your CCIS login name), updating the first two

lines with the amount of time you spent working and the date when you

stopped. You may also record any notes you wish to make about what

you did during the session.

Every commit of this file constitutes a work log entry. Each entry

should replace the previous one, so there will only be one session

recorded at any particular version of this file. Do *not* change the

format of the first four lines, as the course staff will use

automated tools to track the amount of time students spend on each

problem set.

15

pull

edit

commit

edit

commit

edit

commit

push

pull

edit

commit

edit

commit

edit

commit

push

pull

edit

commit

edit

commit

edit

commit

push

You You
You, maybe on
another computer

You push your work to
the server

server server

16

You pull the latest
version of your work

from the server

Your workflow
over multiple

sessions

You update your-ID-log.txt
at the end of each session

Oh no! I’ve got a git conflict

• If you update your work before you pull, git will
try to merge the changes when you do pull.

• If git can’t figure out how to do the merge, it will
go into a special mode in which it expects you to
resolve the conflicts.

• When you have the files the way you want them,
you can commit them and continue working.
Here’s a guide.

• Since you will not be working in pairs, this is
unlikely to happen too often.

17

https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/

Other ways to use git and github

• There are lots of possible ways to use git and
github.

• We only care about the “master” branch

• If you know git well, and you want to do
something fancier with multiple branches,
merges, and whatnot, feel free to do so.

• But you should be able to get by just fine with
just a single master branch.

18

We believe in the KISS principle:
“Keep It Simple, Stupid!”

Summary

• In this lesson you have learned

– that git creates a mini-filesystem in your directory

– what pull, commit, and push do

– the elements of the basic git workflow

– how git allows you to work across multiple
computers.

19

Next Steps

• There are many interactive git tutorials on the
web.

– Go find one and do it.

– If you find one you like, recommend it to your
classmates on the Discussion Board.

• If you have questions about this lesson, ask
them on the Discussion Board.

• Go on to the next lesson.

20

