
The Point of This Course

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 0.1

© Mitchell Wand, 2012-2015
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 1

http://creativecommons.org/licenses/by-nc/4.0/

Learning Objectives

• By the time you complete this lesson, you
should be able to :

– Explain the point of the course

– list the 7 principles for writing beautiful programs

– list the 6 steps of the design recipe

– recite some of the slogans that we will use
throughout the course.

2

The Point
1. It’s not calculus. Getting the right answer is not
enough.

2. The goal is to write beautiful programs.

3. A beautiful program is one that is readable,
understandable, and modifiable by people.

3

Your programs should look like this:

4

source

http://www.danapacificlandscape.com/blog/tree-trimming-tips-improve-pedestrian-safety/

Not like this

5

source

http://photorator.com/photos/images/a-very-overgrown-house-in-detroit--18355.jpg

Your programs should look like this

6
source

http://bigthink.com/endless-innovation/your-brain-looks-like-a-mondrian-grid-painting

Not like this

7
source

http://www.show-your-own-art-gallery.com/images/The_Feast_of_Venus535px.jpg

And never, ever like this

8
source

http://www.dreamstime.com/stock-images-spaghetti-noodles-close-up-image17566374

9

Seven Key Practices for Writing
Beautiful Programs

1. Write programs that people can read, understand,
and modify.

2. Represent information as data; interpret data as
information.

3. Use contracts and purpose statements to specify the
intended behavior of your functions and methods.

4. Use invariants to limit your functions’ responsibility.

5. Use functions and methods that communicate by
passing arguments and returning values

6. Use global side-effects only to share information
between distant parts of the program.

7. Use interfaces to limit dependencies between
different parts of your program.

The Key Practices in Action

• Everything we do can be traced back to one or
more of these key practices.

• We will expand on each of them as we go
along.

• Write these down, in your own handwriting.
Writing things down will help you remember
them.

10

The Function Design Recipe

• This recipe tells you the order in which to
attack a programming problem.

• You need to do these steps in order:

• If you haven’t specified your data, you won’t
know what your data looks like or what it
means.

• You can’t write a function that does its job
unless you know what its job is.

11

12

The Function Design Recipe

1. Data Design

2. Contract and Purpose Statement

3. Examples and Tests

4. Design Strategy

5. Function Definition

6. Program Review
This is important. Write it down, in your own
handwriting. Keep it with you at all times. Put
it on your mirror. Put it under your pillow. I’m
not kidding!

A Few of Our Slogans

• We are also big on slogans. We think they help
focus your mind.

• Here are our first few slogans. You should write
them down, too, in your own handwriting.

• In fact, whenever you see one of these blue
tables, you should assume that this is something
important, and you should probably write it
down in your own handwriting so you can
memorize it.

13

Some Slogans

1. Follow the recipe!

2. You don't understand it until you can give an
example.

3. One function, one task.

4. The Shape of the Data Determines the Shape
of the Program.

5. Practice makes perfect.

14

The Course Map

• The course is divided into 3 main units:

– Basic Principles

– Tools and Techniques

– Object-Oriented Programming

• The first unit is taught in Racket; the second in a
mixture of Racket and Java; and the third in Java.

• The map on the next slide, which we will show at
the beginning of every module, will help you see
where you are in the course content.

15

Course Map

16

Basic Principles

Designing
Data

Designing
Functions

Designing
Systems

Tools and
Techniques

Computing
with Lists

Computing
with Trees

and Graphs

Designing
with

Invariants

Thinking
about

Efficiency

Object-Oriented
Programming

Interfaces
and Classes

Inheritance

Objects with
Mutable

State

Efficiency,
Part 2

Next Steps

• If you have questions about this lesson, ask
them on Piazza

• Go on to the next lesson

17

