;; The first three lines of this file were inserted by DrRacket. They record metadata ;; about the language level of this file in a form that our tools can easily process. #reader(lib "htdp-intermediate-lambda-reader.ss" "lang")((modname 07-3-defs) (read-case-sensitive #t) (teachpacks ()) (htdp-settings #(#t constructor repeating-decimal #f #t none #f () #f))) (require rackunit) (require "extras.rkt") (require "sets.rkt") ;; This problem concerns a tiny language, which we call GarterSnake. ;; The information: ;; A Program is a sequence of function definitions. The function ;; defined in each definition is available for use in all of the ;; following definitions. ;; A Definition looks like def f(x1,..,xn):exp . ;; This defines a function named f with arguments x1, x2, etc., and ;; body exp. The arguments of the function are available in the body ;; of the function. The function f itself is also available in the ;; body of the function. It is legal for a function to take no arguments. ;; An Exp is either a variable v or a function call ;; f(e1,..,en). v is a reference to the variable or function named v. ;; f(e1,e2,...) is an application of f to the arguments e1, e2, etc. ;; It is legal for a function to be applied to no arguments. ;; There is no distinction between function names and variable names: ;; a named function may be passed as an argument to another function, ;; and an argument may be called as a function. ;; Examples: #| def f1(x):f1(x) ; f1 is defined in the body of f1 def f2 (x, y):f1(y) ; f1 is defined in the body of f2 def f3 (x,z): f1(f2(z,f1)) ; f1 and f2 are defined in the body of f3 ; spaces are ignored ; you can pass a function as an argument def f4 (x, z):x(z,z) ; you can call an argument as a function |# ;; If we use a variable in a place where it is not available, we say ;; it is _undefined_ there. ;; Bad Examples #| def f1(x):f2(y) ; f2 is undefined, and y is undefined def f2(x,y): f3(y,x) ; f3 is undefined in the body of f2 def f3 (x,z):f1(f2(z,y),z) ; y is undefined |# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; The problem: ;;; Given a GarterSnake program p, determine whether there are any ;;; undefined variables in p. ;; program-all-defined? : Program -> Bool ;; GIVEN: A GarterSnake program p ;; RETURNS: true iff there every variable occurring in p is available at ;; the place it occurs. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; INFORMATION ANALYSIS ;; The information does not specify the external representation ;; (information) in complete detail, so we have some freedom in designing ;; the internal representation (data). ;; IMPORTANT: We are NOT writing functions to convert from an external ;; representation to this internal representation (or vice versa). ;; That will come next week. ;; We will try a simple representation ;;;;;;;;;;;;;;;; ;; A Program is represented as a DefinitionList. ;;;;;;;;;;;;;;;; ;; A Definition is a represented as a struct ;; (make-def name args body) ;; INTERPRETATION: ;; name : Variable is the name of the function being defined ;; args : VariableList is the list of arguments of the function ;; body : Exp is the body of the function. ;; IMPLEMENTATION: (define-struct def (name args body)) ;; CONSTRUCTOR TEMPLATE ;; (make-def Variable VariableList Exp) ;;;;;;;;;;;;;;;; ;; An Exp is represented as one of the following structs: ;; -- (make-varexp name) ;; -- (make-appexp fn args) ;; INTERPRETATION ;; (make-varexp v) represents a use of the variable v ;; (make-appexp f (list e1 ... en)) represents a call to the function ;; named f, with arguments e1,..,en ;; CONSTRUCTOR TEMPLATES ;; -- (make-varexp Variable) ;; -- (make-appexp Variable ExpList) ;; IMPLEMENTATION (define-struct varexp (name)) (define-struct appexp (fn args)) ;;;;;;;;;;;;;;;; ;; A Variable is represented as a Symbol ;; We could have represented variables using strings instead of ;; symbols, but using symbols makes it a little easier to build ;; examples. ;;;;;;;;;;;;;;;; ;; OBSERVER TEMPLATES: ;; We group these because def-fn and exp-fn are mutually recursive. ;; pgm-fn : Program -> ?? #; (define (pgm-fn p) (deflist-fn p)) ;; def-fn : Definition -> ?? #; (define (def-fn d) (... (def-name d) (def-args d) (def-body d))) ;; exp-fn : Exp -> ?? #; (define (exp-fn e) (cond [(varexp? e) (... (varexp-name e))] [(appexp? e) (... (appexp-fn e) (explist-fn (appexp-args e)))])) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; SYSTEM DESIGN ;; We'll need to recur on the list structure of programs. When we ;; analyze a definition, what information do we need to carry forward? ;; Let's look at an example. We'll annotate each definition with a ;; list of the variables available in its body. #| def f1(x):f1(x) ; f1 and x are available in the body. def f2(u,y):f1(y) ; f1, f2, u, and y, are available in the body. def f3(x,z):f1(f2(z,f1)) ; f1, f2, f3, x, and z are available in the body. def f4(x,z):x(z,z) ; f1, f2, f3, f4, x, and z are available in the body. |# ;; In each case, the variables available in the body are the names of ;; the functions defined _before_ the current function, plus the names ;; of the current function and its arguments. ;; Let's look at the "middle" of the calculation. ;; When we analyze the definition of f3, we need to know that f1 and ;; f2 are defined. When we analyze the body of f3, we need to know ;; that f1, f2, x, and z are defined. ;; So we generalize our functions to take a second argument which is ;; the set of defined variables. ;; We'll have a family of functions that follow the data definitions; ;; program-all-defined : Program -> Boolean ;; deflist-all-defined? : DefinitionList SetOfVariable -> Boolean ;; def-all-defined? : Definition SetOfVariable -> Boolean ;; exp-all-defined? : Exp SetOfVariable -> Boolean ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; deflist-all-defined? : DefinitionList SetOfVariable -> Boolean ;; GIVEN: a list of definitions 'defs' from some program p and a set of ;; variables 'vars' ;; WHERE: vars is the set of variables available at the start of defs in ;; p. ;; RETURNS: true iff there are no undefined variables in defs. ;; EXAMPLES: See example above ;; STRATEGY: Use template for DefinitionList on defs. The names ;; available in (rest defs) are those in vars, plus the variable ;; defined in (first defs). (define (deflist-all-defined? defs vars) (cond [(null? defs) true] [else (and (def-all-defined? (first defs) vars) (deflist-all-defined? (rest defs) (set-cons (def-name (first defs)) vars)))])) ;; def-all-defined? : Definition SetOfVariable -> Boolean ;; GIVEN: A definition 'def' from some program p and a set of ;; variables 'vars' ;; WHERE: vars is the set of variables available at the start of def in ;; p. ;; RETURNS: true if there are no undefined variables in the body of ;; def. The available variables in the body are the ones in def, plus ;; the name and arguments of the definition. ;; EXAMPLES: See example above ;; STRATEGY: Use template for Definition on def (define (def-all-defined? def vars) (exp-all-defined? (def-body def) (set-cons (def-name def) (set-union (def-args def) vars)))) ;; exp-all-defined? : Exp SetOfVariable -> Boolean ;; GIVEN: A GarterSnake expression e from some program p and a set of ;; variables vars ;; WHERE: vars is the set of variables that are available at the ;; occurrence of e in p ;; RETURNS: true iff all the variable in exp are defined ;; STRATEGY: Use template for Exp on e (define (exp-all-defined? e vars) (cond [(varexp? e) (my-member? (varexp-name e) vars)] [(appexp? e) (and (my-member? (appexp-fn e) vars) (andmap (lambda (e1) (exp-all-defined? e1 vars)) (appexp-args e)))])) ;; program-all-defined? : Program -> Bool ;; GIVEN: A GarterSnake program p ;; RETURNS: true iff there every variable occurring in p is defined at ;; the place it occurs. ;; STRATEGY: Initialize the invariant of deflist-all-defined? (define (program-all-defined? p) (deflist-all-defined? p empty)) ;;; Let's turn our examples into tests ;; Examples: #| def f1 (x) (f1 x) ; f1 is defined in the body of f1 def f2 (x y) (f1 y) ; f1 is defined in the body of f2 def f3 (x z) (f1 (f2 z f1)) ; f1 and f2 are defined in the body of f3 ; you can pass a function as an argument def f4 (x z) (x z z) ; you can call an argument as a function |# ;; Bad Examples #| def f1 (x) (f2 y) ; f2 is undefined, and y is undefined def f2 (x y) (f3 y x) ; f3 is undefined in the body of f2 def f3 (x z) (f1 (f2 z y) z) ; y is undefined |# (begin-for-test (check-true (program-all-defined? (list (make-def 'f1 (list 'x) (make-appexp 'f1 (list (make-varexp 'x)))) (make-def 'f2 (list 'x 'y) (make-appexp 'f1 (list (make-varexp 'y)))) (make-def 'f3 (list 'x 'y 'z) (make-appexp 'f1 (list (make-appexp 'f2 (list (make-varexp 'z) (make-varexp 'y))) (make-varexp 'z))))))) (check-false (program-all-defined? (list (make-def 'f1 (list 'x) (make-appexp 'f2 (list (make-varexp 'x)))) (make-def 'f2 (list 'x 'y) (make-appexp 'f1 (list (make-varexp 'y)))) (make-def 'f3 (list 'x 'y 'z) (make-appexp 'f1 (list (make-appexp 'f2 (list (make-varexp 'z) (make-varexp 'y))) (make-varexp 'z)))))) "should find f2 undefined in body of f1") (check-false (program-all-defined? (list (make-def 'f1 (list 'x) (make-appexp 'f1 (list (make-varexp 'x)))) (make-def 'f2 (list 'x 'y) (make-appexp 'f3 (list (make-varexp 'y)))) (make-def 'f3 (list 'x 'y 'z) (make-appexp 'f1 (list (make-appexp 'f2 (list (make-varexp 'z) (make-varexp 'y))) (make-varexp 'z)))))) "should find f3 undefined in body of f2") (check-false (program-all-defined? (list (make-def 'f1 (list 'x) (make-appexp 'f1 (list (make-varexp 'x)))) (make-def 'f2 (list 'x 'y) (make-appexp 'f1 (list (make-varexp 'y)))) (make-def 'f3 (list 'x 'z) (make-appexp 'f1 (list (make-appexp 'f2 (list (make-varexp 'z) (make-varexp 'y))) (make-varexp 'z)))))) "should find y undefined in body of f3") )