More Recursive Data Types

CS 5010 Program Design Paradigms
Lesson 4.4
• There are other recursive data types besides lists
• Programming with these is no different:
 – write down the data definition, including interpretation and template
 – Follow the Recipe!
Learning Objectives

• At the end of this lesson you should be able to:
 – Explain what makes a recursive data definition sensible
 – Explain how the Natural Numbers definition works
 – write simple programs using the Natural Numbers template
What's interesting about lists?

• Our Lists data definitions are the first "interesting" data definitions:
• They are mixed data
• They are recursive

Question: Why did we say "data definitions" instead of data definition?"
Answer: Remember that we have a data definition \texttt{ListOfX} for each \texttt{X}
What makes a good definition for mixed data?

• The alternatives are *mutually-exclusive*
• It is easy to tell the alternatives apart
• There is one and only one way of building any value.
Example of a bad data definition

A Blue number is one of
• an integer that is a multiple of two
• an integer that is a multiple of three

These categories are not mutually exclusive
Example of a bad data definition

A Green number is one of
- an integer that is a product of exactly two prime numbers
- any other integer

These categories are mutually exclusive, but it is complicated to distinguish them.
Example of a bad data definition

A Purple number is one of

• the number 1
• a number of the form \((+ \ n1 \ n2)\)

Just knowing the value of a purple number, like \(56\), doesn't tell you how it was constructed as \((+ \ n1 \ n2)\). There are many choices of \(n1\) and \(n2\) that would build \(56\).
The Natural Numbers

• The natural numbers are the counting numbers:

 0, 1, 2, 3, 4, ...

• This is just another name for the non-negative integers
A data definition for the natural numbers

;; A Natural Number (Nat) is one of
;; -- 0
;; -- (add1 Nat)

Here we use the Racket function **add1**, which adds 1 to its argument. We'll also use **sub1**, which subtracts 1 from its argument.
Examples

0
1 (because 1 = (add1 0))
2 (because 2 = (add1 1))
3 (because 3 = (add1 2))
4 (because 4 = (add1 3))
Etc...
Is this a good data definition?

• Are the alternatives *mutually exclusive*?

 Answer: yes

• Is it easy to tell the alternatives apart?

 Answer: yes, with the predicate **zero**?
Is this a good data definition? (2)

• Is there one and only one way of building any value?

• Answer: Yes. There's only one way to build the number n:

$$\underbrace{(\text{add1} \ (\text{add1} \ (\text{add1} \ (\text{add1} \ \ldots \ \ 0))))}_{n \text{ times}}$$
Is this a good data definition? (3)

• If we have a natural number \(x \) of the form \((\text{add1} \ y) \), there's only one possible value of \(y \). Can we find it?
• Answer: sure. If \(x = (\text{add1} \ y) \), then \(y = (\text{sub1} \ x) \).
• So \text{add1} is like a constructor, and \text{sub1} is like an observer.
• This leads us to a template:
;; nat-fn : Nat -> ???
(define (nat-fn n)
 (cond
 [(zero? n) ...]
 [else (... n (nat-fn (sub1 n)))]))
double

;; double : Nat -> Nat
;; strategy: use template for
;; Nat on n
(define (double n)
 (cond
 [(zero? n) 0]
 [else (+ 2 (double (sub1 n)))]))
;;; sum : Nat Nat -> Nat
;;; strategy: use template for Nat on x
;;; Nat on x
(define (sum x y)
 (cond
 [(zero? x) y]
 [else (add1 (sum (sub1 x) y))])))
Example

\((\text{sum} \ 3 \ 2)\)

\(= (\text{add1} \ (\text{sum} \ 2 \ 2))\)

\(= (\text{add1} \ (\text{add1} \ (\text{sum} \ 1 \ 2)))\)

\(= (\text{add1} \ (\text{add1} \ (\text{add1} \ (\text{sum} \ 0 \ 2))))\)

\(= (\text{add1} \ (\text{add1} \ (\text{add1} \ 2)))\)

\(= 5\)
;; prod : Nat Nat -> Nat
;; strategy: use template for
;; Nat on y
(define (prod x y)
 (cond
 [(zero? y) 0]
 [else
 (sum x (prod x (sub1 y)))]))
Example

\[(\text{prod} \ 2 \ 3)\]

\[= \ (\text{sum} \ 2 \ (\text{prod} \ 2 \ 2))\]

\[= \ (\text{sum} \ 2 \ (\text{sum} \ 2 \ (\text{prod} \ 2 \ 1)))\]

\[= \ (\text{sum} \ 2 \ (\text{sum} \ 2 \ (\text{sum} \ 2 \ (\text{prod} \ 2 \ 0))))\]

\[= \ (+ \ 2 \ (+ \ 2 \ (+ \ 2 \ 0)))\]

\[= \ 6\]
Summary

• At the end of this lesson you should be able to:
 – write down the definition for non-negative integers as a data type
 – use the template to write simple functions on the non-negative integers and other simple recursive data types.

• The Guided Practices will give you some exercise in doing this.
Next Steps

• Study 04-3-nats.rkt in the Examples file
• If you have questions about this lesson, ask them on the Discussion Board
• Do Guided Practice 4.4
• Go on to the next lesson