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On the cover: Pascal’s triangle, mod 2. The figure represents 256 rows of Pascal’s triangle:

each odd entry is denoted by a dot, and each even entry is left blank. The resulting self-similar

pattern of dots is closely related to the Sierpinski triangle fractal.
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Part I

Computers and Computing:

Numbers, Circuits, and Logic
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C h a p t e r 1

Number Representations

Everything on computers is represented using 0s and 1s, positive integers, negative integers,

real numbers, text, all sorts of symbols, images, music, even videos and games. To understand

how we can do everything with just 0s and 1s, we’ll start by seeing how nonnegative integers

(0, 1, 2, and so on) can be represented this way.

We usually use ten digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent numbers. If we do not

allow leading zeros, every non-negative integer has a unique representation as a finite sequence

of digits. This way of representing numbers is called the decimal or base 10 system. This

system seems natural to us, partly because we have grown up with it and partly because we

have ten fingers. The word “digits” comes from the Latin word for finger, digitus. Computers

don’t usually have fingers; they have bits (0, 1) from the words “Binary” and “digIT.” Numbers

on computers are represented with just 0 and 1, using the binary or base 2 system.

Before we look at the binary system let’s remember and formalize how the decimal system

works. If d0, d1, · · · , dn−1, dn are digits, then

dndn−1 · · · d2d1d0 = dn · 10n + dn−1 · 10n−1 + · · ·+ d1 · 101 + d0 · 100

=
n∑
k=0

dk · 10k

For example, 60325 = 6 · 104 + 0 · 103 + 3 · 102 + 2 · 101 + 5 · 100 = 60000 + 0000 + 300 + 20 + 5.

The following theorem tells us that we can use any integer b as a base for a number

representation system.

Theorem 1 Let b be an integer greater than 1. Then if n is a positive integer, n can be

3
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expressed uniquely in the form

n = ak · bk + ak−1 · bk−1 + · · ·+ a1 · b1 + a0 · b0

where k is a nonnegative integer, a0, a1, · · · , ak are nonnegative integers less than b and ak 6= 0.

We say b is the base of expansion of n and we write n = (akak−1 · · · a1a0)b. For “short” numbers,

typically those with three digits or less, we often eliminate the parentheses (e.g., 1012). When

the base is understood, we do not write it as a subscript.

Example 1.1

2013 = 2 · 32 + 0 · 31 + 1 · 30

= 2 · 9 + 0 · 3 + 1 · 1

= 1910

2015 = 2 · 52 + 0 · 51 + 1 · 50

= 2 · 25 + 0 · 5 + 1 · 1

= 5110

We use the decimal (base 10) representation of integers in our everyday lives but as computer

scientists, we will also use binary (base 2) and hexadecimal (base 16) representations. The octal

(base 8) representation is rarely used these days but is included below for historical reasons.

1.1 Binary Representation

In the binary representation, the base is 2 and the integers, ak, ak−1, . . . , a1, a0 must be non-

negative and less than 2. The only choices are 0 and 1 but we are still able to express any

positive integer as indicated in the theorem.

Example 1.2
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(100101)2 = 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 1 · 32 + 0 · 16 + 0 · 8 + 1 · 4 + 0 · 2 + 1 · 1

= 3710

(11010111)2 = 1 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

= 1 · 128 + 1 · 64 + 0 · 32 + 1 · 16 + 0 · 8 + 1 · 4 + 1 · 2 + 1 · 1

= 21510

The decimal numbers 0 through 15 written in their binary or base 2 representation are:

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

1.1.1 Simple Binary Arithmetic

Binary Addition

When you add two positive decimal integers by hand, you probably use the addition algorithm

you learned in elementary school. You write the numbers one under the other, right adjusted,

then, starting on the right-hand side, you add the two digits in the ones column. If the sum

is 9 or less, i.e. a single digit, you write the digit and go on to the tens place. If the sum is

10 or greater, you write the ones place digit and carry the tens place digit by writing it above

the tens column. You then add the digits in the tens column as you did with the ones column,

carrying to the hundreds column and so one, until you have no digits left to add.

Example 1.3

1 1 1

3 8 0 8 5 3

+ 5 4 3 2 9

4 3 5 1 8 2

The same algorithm applies to adding binary integers but when you add the bits in a column,

you either get a sum less than two and you write the single bit, 0 or 1, in that place, or you get
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a sum of 2 or 3 and you write the ones bit of the sum in that place and carry the two’s bit to

the next place.

Example 1.4

1 1 1 1 1

1 1 0 1 0 1

+ 1 0 1 1 1

1 0 0 1 1 0 0

⇐⇒
5 3

+ 2 3

7 6

Binary Subtraction

The subtraction algorithm you learned in elementary school can also be applied to subtracting

binary numbers. Let’s first look at the following example of decimal (base 10) subtraction. We

start on the right-hand side, in the ones place. Since 3 is less than 9, we borrow 1 from the tens

place to make 13. To do this, we replace the 5 in the tens place with a 4. We than subtract 9

from 13 and write down the resulting 4 in the answer’s ones place. We subtract 2 from 4 in the

tens place to get 2. In the hundreds place, we have to borrow again but this time we have to

do a double borrow as there is a 0 in the top number’s thousands place. We borrowed 1 from

the 8 in the ten-thousands place to make 10 in the thousands place and then borrowed 1 from

that ten to make 12 in the hundreds place.

Example 1.5

7 9 4

3 8 10 12 5 13

− 5 4 3 2 9

3 2 5 9 2 4

The following example shows a subtraction of one binary number from another. In the ones

place, 1 take-away 1 results in 0. In the twos place, we have to borrow 1 from the fours place.

Then 102 = 210 take-away 1 results in 1. We now have to subtract 1 from 0 in the fours place

so we have to borrow again and this time it is a double borrow similar to the situation in the

decimal example above.

Example 1.6
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10 1 10

1 1 10 1 10 1

− 1 0 1 1 1

1 1 1 1 0

⇐⇒
5 3

− 2 3

3 0

Binary Multiplication

Once again, let’s start by looking at an example of the multiplication algorithm in standard

decimal (base 10) notation. Below, we compute the product 312 × 2013. We multiply 312 by

each of the digits of 2013, starting at the right and writing the results below the line. Each

successive product is placed one space to the left of the previous product to account for the

extra power of 10 implicit in the computation. When a digit of the multiplier is 0, we usually

just write a single 0 for the product and then place the next product on the same line, as shown

below. Finally, we add the results of our multiplies by one digit to get the desired result.

Example 1.7

3 1 2

× 2 0 1 3

9 3 6

3 1 2

6 2 4 0

6 2 8 0 5 6

Binary multiplication works the same way but it is much easier to do. Since there are only

0s and 1s to work with. Each little computation is a multiply by 1 where you just copy the

multiplicand or a multiply by 0 where you just write 0 and go on to the next bit. With binary

arithmetic, you are writing each little result one place further to the left to account for an extra

power of 2. Here is an example of binary multiplication.

Example 1.8

1 1 0

× 1 0 1 1

1 1 0

1 1 0

1 1 0 0

1 0 0 0 0 1 0
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Multiplication and Division by 2

When we multiply an integer by ten all we have to do is add a zero to the right side of the

integer’s decimal representation.

10× 3257 = 32570

This follows from the meaning of the decimal representation.

3257 = 3 · 103 + 2 · 102 + 5 · 101 + 7 · 100

10× 3257 = 3 · 104 + 2 · 103 + 5 · 102 + 7 · 101 = 32570

Inversely, if a decimal integer ends in a zero, we can easily divide the integer by ten by simply

removing the zero. If the integer does not end in a zero then removing the right-most digit

gives the integer part of the result of dividing by ten.

Similarly, in binary, we can multiply an integer by two by adding a zero to the right hand side

of its binary representation.

210 × 110101 = 102 × 1101012 = 11010102

This follows from the meaning of the binary representation.

1101012 = 1 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20

210 × 1101012 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 = 11010102

Division by two in binary works just like division by 10 in decimal. If the binary representation

ends in a zero, just remove the zero to divide by two. If the binary representation ends in

one, the integer is odd and removing the one on the right, give the integer part of the result of

dividing by two.

1.2 Bytes

Essentially all digital data is stored in binary. A byte is an 8-bit binary number with leading

zeros allowed. There are 256 different bytes and they represent the integers from 0 (00000000)

to 255 (11111111). A word is a basic unit of storage whose size depends on the particular

computer. Words are commonly composed of four or eight bytes, 32 or 64 bits respectively.
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Bytes are commonly used to represent characters. ASCII uses the lower 7-bits of a byte, 0

to 127, to represent letters and special characters; ISO Latin-1 and Mac-Roman (now obsolete)

use values above 127 for accented letters and additional special characters. Unicode is an

international standard intended to encode all characters in all languages as well as mathematical

and other specialized characters. UTF-32 , also called UCS-4, uses four bytes to encode Unicode

characters.

1.3 Hexadecimal Representation

The word hexadecimal combines the Greek hexa for six with the English word decimal [fr. L.

decimus tenth]. “Hexadecimal” is too long to say all the time so we usually just say hex . We

need 16 hex-digits to represent integers in base 16. We use the ordinary decimal digits 0, . . . , 9

and the letters A, B, C, D, E, and F (or a, b, c, d, e, and f) to represent 10, 11, 12, 13, 14, and

15 respectively.

Example 1.9

A216 = 10 · 161 + 2 · 160

= 16210

(30AC92)16 = 3 · 165 + 0 · 164 + 10 · 163 + 12 · 162 + 9 · 161 + 2 · 160

= 3 · 1048576 + 0 · 65536 + 10 · 4096 + 12 · 256 + 9 · 16 + 2 · 1 = (3189906)10

The binary representations of numbers can be quite long and difficult for humans to read.

Hexadecimal numbers are particularly useful for representing patterns of binary values (bit-

masks), machine addresses, or any particular bytes or words. Each hex-digit corresponds to

four bits which is half a byte or a nibble.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

A byte can be represented by two hex-digits instead of 8 bits, and a 32-bit word can be

written with only 8 hex-digits. It is easier for a human to correctly copy 8 hex-digits than 32

bits. To convert a binary integer to hex, each four-bit cluster corresponds to a single hex-digit.

If the number of bits in the binary integer is not a multiple of four, add zeros to the left, e.g.,

11011 = 00011011.

http://en.wikipedia.org/wiki/ASCII
http://www.htmlhelp.com/reference/charset/
http://en.wikipedia.org/wiki/MacRoman
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UCS-4
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Example 1.10

There are spaces between the nibbles in the numbers below so you can see the correspondence

with the hex-digits.

(1101 0011)2 = D316

(0101 1110 1001 1111)2 = (5E9F)16

(1100 0001 0000 1010 0111 1110 1011 0101)2 = (C10A7EB5)16

Example 1.11

The pattern �������� can be represented in binary by 0 0 1 1 0 0 1 1
�������� 0 0 1 1 0 0 1 1
�������� 1 1 0 0 1 1 0 0
�������� 1 1 0 0 1 1 0 0
�������� 0 0 1 1 0 0 1 1
�������� 0 0 1 1 0 0 1 1
�������� 1 1 0 0 1 1 0 0
�������� 1 1 0 0 1 1 0 0

or by 33, 33, CC, CC, 33, 33, CC, CC in hex.

1.4 Octal Representation

(The) Octal system used to be widespread back when many computers used 6-

bit bytes, as a 6-bit byte can be conveniently written as a two-digit octal number.

Since nowadays a byte is almost always 8-bits long the octal system lost most of

its appeal to the hexadecimal system. The Free On-line Dictionary of Computing

(2003-OCT-10)

Octal effectively represents numbers in base 8.

Example 1.12

7238 = 7 · 82 + 2 · 81 + 3 · 80

= 7 · 64 + 2 · 8 + 3 = 448 + 16 + 3

= 46710

(2045)8 = 2 · 83 + 0 · 82 + 4 · 81 + 5 · 80 = 2 · 512 + 0 · 64 + 4 · 8 + 5

= 1024 + 0 + 32 + 5

= (1061)10

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=octal
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=octal
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To convert a binary integer to octal, each three-bit cluster corresponds to a single octal-

digit. If the number of bits in the binary integer is not a multiple of three, add zeros to the

left, e.g., 11011 = 011011. There are spaces between to separate the three-bit clusters in the

numbers below so you can see the correspondence with the octal-digits.

Example 1.13

(010 011)2 = 238

(111 010 011 111)2 = (7237)8

(100 000 100 001 010 111 111 010 110 101)2 = (4041277265)8

1.5 Converting Between Decimal and Binary

In the examples above, we converted numbers given in binary, hex, and octal representations

to their decimal equivalents by multiplying each bit, digit, hex-digit, or octal-digit by the

appropriate power of the base, using base-10 arithmetic, and adding up the pieces. We were

really just evaluating a polynomial at the base 2, 16, or 8. Recall that:

n = (akak−1 · · · a1a0)b
= ak · bk + ak−1 · bk−1 + · · ·+ a1 · b1 + a0 · b0

(1101)2 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 8 + 4 + 0 + 1

= 1310

(1101)8 = 1 · 83 + 1 · 82 + 0 · 81 + 1 · 80

= 512 + 64 + 0 + 1

= 57710

(1101)16 = 1 · 163 + 1 · 162 + 0 · 161 + 1 · 160

= 4096 + 256 + 0 + 1

= (4353)10
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How do you convert a decimal integer to its binary equivalent? For small integers N , you

can easily do this by finding the largest power of 2 less than or equal to N , say 2k, and then

finding the binary representation of N − 2k. Just remember to use “place-keeper” zeros for

missing powers of 2. For example, 39 = 32 + 7 so we need a 1 in the 25 = 32 place. The

remaining 7 is too small for any 16s or 8s so we put a 0 in each of those places and then 1s in

the 4, 2, and 1 places.

3910 = (100111)2

The division algorithm provides a way to convert an integer to any base: just divide n by b.

There are integers q0 and r0 such that n = q0 · b + r0 where 0 ≤ r0 < b. The remainder r0 is

the base-b digit that goes in the 1s place, the rightmost digit. Now divide q0 by b. We have

q0 = q1 · b+ r1 where 0 ≤ r1 < b. The remainder r1 is the base-b digit that is second from the

right, and so on.

39 = 19 · 2 + 1

19 = 9 · 2 + 1

9 = 4 · 2 + 1

4 = 2 · 2 + 0

2 = 1 · 2 + 0

1 = 0 · 2 + 1

Therefore, once again, we see that 3910 = (100111)2.

Though we mostly use this method to convert from base 10 to base 2, we can use it to

convert to other bases too. In this example, we convert 14310 to base 8.

143 = 17 · 8 + 7

17 = 2 · 8 + 1

2 = 0 · 8 + 2

So 14310 = 2178.

1.6 Representing Negative Numbers: Two’s Complement

We have discussed binary representations of the non-negative integers {0, 1, 2, . . .}. However,

one must often deal with negative numbers; how can they be represented as well? One obvious

solution would be to use a single bit to represent the sign of the number (+ or −) and the
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remaining bits to represent the magnitude of the number (how positive or negative it is). In

such a signed magnitude representation, a most-significant bit of 0 represents “+” while a most-

significant bit of 1 represents “−”; the remaining bits give the magnitude of the number. For

example, an 8-bit signed magnitude representation of 13 is 00001101 while −13 is 10001101.

Note that using 8-bit signed magnitude, one can represent integers in the range −127 (11111111)

to 127 (01111111). Signed magnitude has one peculiarity, however. The integer 0 can be

represented in two ways: 00000000 = +0 and 10000000 = −0.

By far, the most common representation of positive and negative integers is two’s comple-

ment. In two’s complement, positive integers are represented in standard binary, as in signed

magnitude. However, the representation of a negative number is determined as follows: (1)

compute a binary representation of the magnitude of the number, (2) flip all the bits, and (3)

add 1. For example, the 8-bit two’s complement representation of 13 is 00001101 (as before)

while −13 is represented as follows (using the steps given above):

−13
(1)

=⇒ 00001101
(2)

=⇒ 11110010
(3)

=⇒ 11110011

Note that a most-significant bit of 1 again signifies a negative number, but the remaining bits

do not encode the magnitude in the usual way. Here are a few more examples of converting

integers to 8-bit two’s complement form (remember that non-negative integers are represented

in standard binary):

15 =⇒ 00001111

−15
(1)

=⇒ 00001111
(2)

=⇒ 11110000
(3)

=⇒ 11110001

28 =⇒ 00011100

−28
(1)

=⇒ 00011100
(2)

=⇒ 11100011
(3)

=⇒ 11100100

To convert a negative two’s complement number back to decimal, follow these steps: (1) flip

all the bits, (2) add 1, and (3) interpret the result as a binary representation of the magnitude

and add a negative sign. For example,

11110011
(1)

=⇒ 00001100
(2)

=⇒ 00001101
(3)

=⇒ −13

Here are a few more examples of converting 8-bit two’s complement back to decimal (remember

that if the number begins with a 0, it’s a non-negative integer represented in standard binary):
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00010110 =⇒ 22

10010110
(1)

=⇒ 01101001
(2)

=⇒ 01101010
(3)

=⇒ −106

01001001 =⇒ 73

11001001
(1)

=⇒ 00110110
(2)

=⇒ 00110111
(3)

=⇒ −55

Using 8-bit two’s complement, one can represent integers in the range −128 (10000000) to 127

(01111111), and 0 is represented in only one way (00000000). Finally, the real utility and power

of two’s complement is that one can add pairs of two’s complement numbers (whether positive

or negative) in the usual way, and the result will be the correct answer, in two’s complement!

In the following examples, superscripts in the binary addition represent carries.

13

+ 15

28

⇐⇒
0 0 0 01 11 11 01 1

+ 0 0 0 0 1 1 1 1

0 0 0 1 1 1 0 0

Note that this is just standard binary addition. Now, however, let’s consider subtracting 15

from 28; this is equivalent to adding −15 to 28.

28

− 15

13

⇐⇒
28

+ −15

13

⇐⇒
01 01 01 1 1 1 0 0

+ 1 1 1 1 0 0 0 1

0 0 0 0 1 1 0 1

Note that we ignore the carry out of the last column.1 Now consider subtracting 28 from 15.

15

− 28

−13

⇐⇒
15

+ −28

−13

⇐⇒
0 0 0 01 11 1 1 1

+ 1 1 1 0 0 1 0 0

1 1 1 1 0 0 1 1

Note that the answer obtained is the proper two’s complement representation of −13. Finally,

consider adding −13 and −15.

−13

+ −15

−28

⇐⇒
11 11 11 1 0 01 11 1

+ 1 1 1 1 0 0 0 1

1 1 1 0 0 1 0 0

1In general, carries into or out of the most significant bit must be carefully considered as this may result from
an overflow condition, i.e., obtaining a result which is too large (> 127) or too small (< −128) to be represented
in 8-bit two’s complement. In this brief note, however, we assume that all results can be properly represented in
8-bit two’s complement.
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Note that we again ignore the carry out of the last column, and we obtain the proper two’s

complement representation of −28.

More examples of two’s complement may be found at:

http://en.wikipedia.org/wiki/Two’s_complement

Exercises

Changing Bases: 2, 8, 10, 16

Exercise 1.1

Convert the following binary numbers (base 2) to their decimal (base 10) equivalents. You

should not need a calculator.
a. 1010 b. 10100 c. 10101 d. 10110

e. 11101110 f. 10101011 g. 11111 h. 10000

i. 11100111 j. 11111111 k. 10000001 l. 10111111

Exercise 1.2

Convert the following decimal numbers (base 10) to their binary (base 2) equivalents. You

should not need a calculator.
a. 17 b. 19 c. 24 d. 29

e. 35 f. 42 g. 56 h. 61

i. 73 j. 99 k. 115 l. 143

Exercise 1.3

Use the Division Algorithm method 1.5 to convert these decimal number to binary.

a. 34092

b. 4997

c. 20507

Exercise 1.4

Convert each of the binary numbers in exercise 1.1 to

a. their octal equivalents.

b. their hexadecimal equivalents.

http://en.wikipedia.org/wiki/Two's_complement
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Exercise 1.5

Convert each of the following hexadecimal numbers to their binary equivalents.

a. 17 b. 19 c. 24 d. 29

e. 3A f. B2 g. CF h. 60

i. F3 j. 99 k. DD l. A3

Multiplication

Exercise 1.6

Perform the following multiplications in binary. For each problem part, you must (1) convert

each decimal number to binary, (2) perform the multiplication in binary, and (3) convert the

binary result back to decimal. You must show your work.

Note: For consistency, place the binary representation of the left multiplicand in the top

row of your multiplication and place the binary representation of the right multiplicand on the

bottom row of your multiplication. Thus, “4× 7” would be

1 0 0

× 1 1 1

while “7× 4” would be

1 1 1

× 1 0 0

by this convention.

a. 27× 6

b. 23× 11

c. 11× 23

d. 46× 7

Patterns

Exercise 1.7

Patterns, like the ones below, are available in most drawing programs for filling regions. A

pattern is defined by an 8 × 8 array of bits. In each of the following two examples, the 8 × 8

array of bits on the left corresponds to the pattern on the right.

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

  

  

  

  

  

  

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0
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The 0s represent white, and the 1s represent black. Each row is an 8-bit binary number. As we

know, a 4-bit binary number can be expressed as a single hex-digit, so an 8-bit binary number

can be expressed with two hex-digits. Designers specify a pattern by giving eight 2-hex-digit

numbers, one 2-hex-digit number per row. The two patterns given above are encoded as “11,

11, 11, 11, 11, 11, 11, 11” and “33, 33, CC, CC, 33, 33, CC, CC.”

a. For each of the following patterns, give the eight 2-hex-digit encoding.

 

 

 
 

 

 

 

 

 

 

 

 

 

b. Use graph paper to show the pattern described by each of the following sequences of eight

2-hex-digit numbers. (See written Homework 01 for a link to printable graph paper.)

39, 7B, 42, 88, 88, 24, B7, 93 BD, A3, DB, 3A, BD, A3, DB, 3A

Two’s Complement

Exercise 1.8

Negative numbers and two’s complement. You must show your work to obtain full credit.

a. Give the 8-bit two’s complement representations of the following integers: 34, 66, −71,

−27.

b. Give the integer (in standard base-10 notation) which is represented by each of the fol-

lowing 8-bit two’s complement numbers: 01100110, 10011001, 01010101, 11011101.

c. Compute the following sums and differences using 8-bit two’s complement representations:

66− 27, −71− 27. Verify that your answers are correct by converting the results back to

standard base-10 notation.

Note: Use the two’s complement representations from part a above.





C h a p t e r 2

Circuits

Chapter 1 describes how numbers are represented and manipulated by computers, but how are

these representations physically realized, and how are these manipulations actually effected? At

a high level, computer components (such as central processing units or CPUs) are constructed

from digital circuits which are constructed from logic gates which are in turn ultimately con-

structed from transistors. In this chapter, we examine digital circuits and how they are con-

structed from logic gates (and ultimately transistors), and in the next chapter we will examine

the mathematics which underpins these components at a logical level, Boolean algebra.

2.1 Transistors and Switches

A transistor is effectively a digital switch which is used to either establish or break an electrical

connection, in much the same way that a light switch can either connect or disconnect a light

bulb to or from household current. Diagrammatically,1 switches are shown below. Note that the

Figure 2.1: Diagrammatic representation of a digital switches. The left switch is “normally
open” while the right switch is “normally closed.”

1The switching, logic gate, and circuit diagrams in this chapter are courtesy of the Wikipedia: http://en.

wikipedia.org/wiki/Logic_gate and https://en.wikipedia.org/wiki/Adder_(electronics).

19
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left switch is “normally open” and “pushing” the switch establishes the electrical connection,

while the right switch is “normally closed” and “pushing” the switch breaks the electrical

connection.

2.2 Basic Logic Gates: AND, OR, NOT

Switches can be wired together to form basic logic gates which are used to construct circuits

which can manipulate numbers. The basic logic gates are the AND, OR, and NOT gates.

2.2.1 AND Gate

An AND gate takes two inputs (switches) and is “on” (switched) so long as both switches have

been “pushed”. In terms of switches, an AND gate is represented diagrammatically as follows.

In this diagram, A and B represent the two input switches, and a connection is established

Figure 2.2: Switch diagram of an AND gate.

only if both switches are “pushed.” Logic gates arise so frequently that they have their own

diagrammatic representations; the diagram corresponding to an AND gate is given below.

Actual CPUs constructed from circuits, logic gates, and ultimately transistors do not function

Figure 2.3: Logic diagram of an AND gate.

physically like switches in that no transistor is actually ever “pushed.” Instead, a “high” voltage

(typically +5V) given as input to a transistor causes it to “close” and supply a “high” voltage

to its output; similarly, a “low” voltage (typically 0V) given as input to a transistor causes

it to remain “open” and supply no voltage (i.e., 0V) to its output. Physically and logically,

binary 1s and 0s are represented by these “high” and “low” voltages, respectively. Given this

representation, we can describe the action of an AND gate using a truth table. For example,

the truth table corresponding to the possible actions of an AND gate are given below. Given

two inputs (A and B) which can each take on two values (0 or 1), there are four possible input
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A B A AND B

0 0 0
0 1 0
1 0 0
1 1 1

Figure 2.4: Truth table corresponding to an AND gate.

pairs to the AND gate. Each row in the truth table corresponds to one such input pair, and

the corresponding output of the AND gate is also given. Note that the “A AND B” is 1 if and

only if both A and B are 1; this corresponds to the logical idea that for a connection to be

established, both switches must be “pushed.”

2.2.2 OR Gate

An OR gate takes two inputs and is “on” so long as at least one of the inputs is “on.” The

switch diagram, logic gate representation, and truth table for an OR gate is given below. Note

A B A OR B

0 0 0
0 1 1
1 0 1
1 1 1

Figure 2.5: OR: switch diagram, logic gate, and truth table.

that an OR gate is 1 (“on”) if and only if at least one of its inputs is 1, and note how this is

realized physically with switches.

2.2.3 NOT Gate

The final basic logic gate is the NOT gate. Unlike the AND and OR gates, the NOT gate

has only one input, and its output is simply the opposite of its input. The switch diagram,

logic gate representation, and truth table for a NOT gate is given below. Note that in the

switch diagram, the switch is of the “normally closed” variety; pushing the switch breaks the

connection in this case.
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A NOT A

0 1
1 0

Figure 2.6: NOT: switch diagram, logic gate, and truth table.

2.3 Other Logic Gates: NAND, NOR, XOR, XNOR

As we shall learn in the next chapter, every conceivable truth table and its corresponding logic

gate can be realized using combinations of AND, OR, and NOT gates. However, some truth

tables are so common that they have their own dedicated logic gate representations; four such

logic gates are described below.

2.3.1 NAND Gate

The NAND gate is the opposite of an AND gate: it is 1 (on) if and only if it is not the case

that both of its inputs are 1. A NAND gate can be constructed from an AND gate whose

output is attached to a NOT gate. The switch diagram, logic gate representation, and truth

table for a NAND gate is given below. The NAND gate has two interesting properties: (1) It is

A B A NAND B

0 0 1
0 1 1
1 0 1
1 1 0

Figure 2.7: NAND: switch diagram, logic gate, and truth table. Note the use of normally
closed switches.

the simplest logic gate to construct from common electrical components (transistors, resistors,

wires, etc.) or to fabricate as part of an integrated circuit. (2) The NAND gate is “logically

complete” in that every conceivable truth table, logic gate, or circuit can be constructed solely

from NAND gates.

2.3.2 NOR Gate

The NOR gate is the opposite of an OR gate: it is 1 (on) if and only if it is not the case that

at least one of its inputs 1. A NOR gate can be constructed from an OR gate whose output is
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attached to a NOT gate. The switch diagram, logic gate representation, and truth table for a

NOR gate is given below.

A B A NOR B

0 0 1
0 1 0
1 0 0
1 1 0

Figure 2.8: NOR: switch diagram, logic gate, and truth table. Note the use of normally closed
switches.

2.3.3 XOR Gate

The XOR gate is the “exclusive OR” gate; it is 1 (on) if and only if one input is 1, but not both.

The logic gate representation and truth table for a XOR gate is given below. The XOR gate

A B A XOR B

0 0 0
0 1 1
1 0 1
1 1 0

Figure 2.9: XOR: logic gate and truth table.

is very useful in implementing binary arithmetic. Consider adding two binary digits: if both

bits are 0, the sum is 0; if one of the bits is 0 and the other bit is 1, the sum is 1; and if both

bits are 1, the sum is 2, or in binary, 10. Note that the XOR gate gives the proper output of

the least significant bit in adding two bits, and further note that an AND gate gives the proper

output of the most significant bit (or carry) in adding two bits. Such a simple circuit is called

a half adder ; see the figure below. In later sections, we will see how logic gates can be used to

A B S C

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 2.10: Half adder circuit and truth table.

perform arithmetic on arbitrarily long binary numbers.
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2.3.4 XNOR Gate

The XNOR gate is the “exclusive NOR” gate; it is the opposite of the XOR gate, and can be

constructed by an XOR gate whose output is attached to a NOT gate. The XNOR gate is 1

(on) if and only if both of its inputs are identical (i.e., both 1 or both 0). The XNOR gate

is used to test if its inputs are identical, and as a consequence, it is often referred to as the

“equivalence gate.”

A B A XNOR B

0 0 1
0 1 0
1 0 0
1 1 1

Figure 2.11: XNOR: logic gate and truth table.

2.4 Binary Arithmetic: Ripple Carry Adders

As we saw in the previous chapter, in order to perform the addition of two binary numbers, one

must in each column sum the corresponding bits from each input number together with any

input carry bit, producing an output bit and possibly a carry bit. Letting A, B, and Ci denote

the first and second input bits and the input carry bit, and letting S and Co denote the output

sum and carry bit, the following truth table shown in Figure 2.12 represents the required action

for a circuit dealing with one column of binary addition; a circuit implementing this truth table

is shown in Figure 2.13

Stringing together a series of full adders, one for each column binary addition, yields a ripple

carry adder as shown in Figure 2.14.

A B Ci S Co
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 2.12: Full truth table.
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Figure 2.13: Circuit implementing a full adder

0FA3

A3 B3

S3

FA2

A2 B2

S2

C3
FA1

A1 B1

S1

C2

A0 B0

C1

S0

FA0
C4

Figure 2.14: Ripple carry adder for four-bit addition. Here, FAi represents a full adder for
column i, and note the use of a 0 for the initial “carry in” to column 0.
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Exercises

Exercise 2.1

Converting circuits to truth tables.

a. Convert the following circuit to its equivalent truth table.

B Out

A

b. What logical operation does this circuit compute?

Exercise 2.2

Convert the following truth table to an equivalent circuit.

A B C Out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1



C h a p t e r 3

Logic

In the previous chapter, we saw how digital switches (typically implemented with transistors in

integrated circuits) can be used to construct logic gates and that these logic gates can be used

to construct circuits such as ripple carry adders. The mathematics underlying such constructs

is variously referred to as Boolean algebra1, symbolic logic, or simply logic for short. In this

chapter, we shall overview the basic principles of logic.

3.1 Truth Values

As we have seen, switches may be “on” or “off,” a terminal in an integrated circuit may read

“+5 Volts” or “0 Volts,” and a bit may be 1 or 0. Since switches, voltages in integrated

circuits, and bits each represent two distinct states (on vs. off, +5V vs. 0V, and 1 vs. 0), each

may represent the other. In logic, the mathematics which underlies switching, circuits, and

implementations of binary arithmetic, these two states correspond to truth values which may

be true or false, denoted by T and F , respectively. The truth value “true” typically corresponds

to “on,” “+5V,” and “1,” while the truth value “false” typically corresponds to “off,” “0V,”

and “0” as shown in the Table 3.1. By far, the most common representations of these two states

used in computer science are the logical T and F and the corresponding bits 1 and 0; these

representations will be used somewhat interchangeably throughout this text.

1Boolean algebra was largely invented by the mathematician George Boole in the 19th century, and hence
the term “Boolean” is always capitalized.

27
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Logic Switching Integrated Circuits Bits

T on +5V 1

F off 0V 0

Table 3.1: Equivalent representations of truth values.

3.2 Basic Operators

The basic operators of Boolean algebra correspond to the Basic logic gates (AND, OR, NOT)

that we saw in the last chapter. They are defined in Table 3.2.

Operation Representations Definition

AND (conjunction) x ∧ y x AND y x ∧ y = 1 if x = y = 1 and
x ∧ y = 0 otherwise.

OR (disjunction) x ∨ y x OR y x ∨ y = 1 if x = 1 or y = 1
and x ∨ y = 0 otherwise.

NOT (negation) ¬x NOT x ¬x = 0 if x = 1 and ¬x = 1 if
x = 0.

Table 3.2: Boolean Algebra: Basic Operations

The formulae or propositions of Boolean algebra are expressions such as (A ∨ (B ∧ C)) or

(x ∧ y) ∨ ¬(y ∨ z). To create formulae, you start with a set V of propositional variables, e.g.

V = {A,B,C} or V = {u, v, x, y, z}. You use these variables along with the basic operators

and parentheses “(” and “)” to form well-formed formulae or wffs.

The well-formed formulae or wffs are defined inductively as follows:

Each propositional variable is a formula, e.g. A or B.

If φ is a formula, then ¬φ is a formula, e.g. ¬A
If φ and ψ are formulae then φ ∧ ψ and φ ∨ ψ are formulae, e.g. A ∨B or A ∧B.

If φ is a formula, then (φ) is a formula, e.g (A ∧B).

We can build long formulae by applying these rules repeatedly, e.g.

(A ∨B ∧ (C ∨B)) ∧ ¬((C ∧B) ∨ (A ∨ C)).

There is an order of precedence on these operations ¬, then ∧, then ∨. This corresponds to

that of unary minus, times, and plus in arithmetic and algebra. So ¬A ∧ B ∨ C ∧ ¬A is the

same as ((¬A) ∧B) ∨ (C ∧ (¬A)).

Sometimes, two formulae are the same for all values of their variables. The following sections

are about ways to tell when two formulae are really the same.



3.3 Truth Tables 29

3.3 Truth Tables

In logic, variables may take on one of two truth values (T or F ), and these variables are

manipulated and combined by various logical operators. The actions of these logical operators

are typically defined using truth tables, in a manner identical to the use of these truth tables in

defining the actions of logic gates in the previous chapter. The basic circuits AND, OR, and

NOT correspond to the basic logical operators conjunction, disjunction, and negation, typically

represented by the symbols ∧, ∨, and ¬, respectively. The truth tables for these operators are

shown in Figure 3.1—compare these to the corresponding logic gate truth tables given in the

previous chapter.

p q p ∧ q
F F F
F T F
T F F
T T T

p q p ∨ q
F F F
F T T
T F T
T T T

p ¬p
F T
T F

Figure 3.1: Truth tables for the basic logical operators.

While logic is defined with respect to the basic operators ∧, ∨, and ¬ (corresponding to

conjunction, disjunction, and negation), other logical operators exist, including exclusive-OR

(represented by the ⊕ symbol) and equivalence (represented by the ≡ symbol) which correspond

to the XOR and XNOR logic gates discussed in the previous chapter.

Truth tables can be used to represent much more than just the actions of primitive logical

operators. Truth tables can represent the arbitrary input/output behavior of Boolean (logical)

formulae or circuits. One goal of logic design is to find efficient implementations of truth tables

and their corresponding Boolean formulae using logic gates. For example, Figure 2.10 gives the

truth table for a two-input, two-output half adder together with an implementation using logic

gates. Table 3.3 shows the truth table for the Boolean formula ¬p ∧ (q ∨ ¬r) which is true if

and only if p is false and either q is true or r is false (or both).

3.4 Logical Equivalence

Two Boolean formulae are said to be logically equivalent if they have the same truth table, i.e.,

they perform the same actions on their inputs. For example, ¬(¬p) is logically equivalent to p,

and this is typically written ¬(¬p) ≡ p, This is shown in Figure 3.2 as well as the equivalence

of ¬(p ∨ q) and ¬p ∧ ¬q.
As mentioned above, one of the goals of logic design is to find the simplest circuit which
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p q r ¬p ∧ (q ∨ ¬r)
F F F T
F F T F
F T F T
F T T T
T F F F
T F T F
T T F F
T T T F

Table 3.3: Truth table for the Boolean formula ¬p ∧ (q ∨ ¬r).
.

p ¬p ¬¬p
0 1 0
1 0 1

p q ¬(p ∨ q) ¬p ∧ ¬q
F F T T
F T F F
T F F F
T T F F

Figure 3.2: Equivalent formulae: ¬(¬p) ≡ p and ¬(p ∨ q) ≡ ¬p ∧ ¬q

is logically equivalent to any given Boolean formula. Two Boolean formulae can be proven

logically equivalent by constructing their truth tables or through the repeated application of

various laws of logic. Repeated application of these laws can also lead to a simpler formula or

to a formula in a special form, e.g. the normal forms, discussed below 3.5.

The laws of Boolean algebra (Table 3.4) we give here are identities that say two wff’s are

equivalent, such as (p∧ q)∧ r ≡ p∧ (q∧ r). We’ll see in Chapter 7 that with somewhat different

notation, the same laws apply to sets.

In general, a Boolean algebra is a a set A of elements, with two binary operations defined on

them ∧ (AND), ∨ (OR), and a unary operation ¬ (NOT) (The ∧ (AND) of any two elements

in A is in A, the ∨ (OR) of any two elements in A is in A, and the ¬ (NOT) of any element in

A is in A.) and such that the laws in Table 3.4 hold. Given an alphabet like A = {A,B,C} or

A = {u, v, w, x, y, z}, the set of WWFs over that alphabet forms a Boolean algebra with ∧, ∨,

and ¬ as defined in Figure 3.1.

Some of these laws, e.g. the commutative, associative, and distributive correspond to laws

of arithmetic or algebra if we replace ∨ by +, ∧ by ×, T by 1 and F by 0. De Morgan’s laws,

as shown in Table 3.4 is quite useful when reasoning about sets, as we shall discover in Chapter

7. Not all of these laws are necessary as some of them can be proved form the others.
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Commutative laws p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

Associative laws (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributive laws p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

Identity laws p ∧ T ≡ p
p ∨ F ≡ p

Complement laws p ∧ ¬p ≡ F
p ∨ ¬p ≡ T

Annihilator laws p ∧ F ≡ F
p ∨ T ≡ T

Idempotence laws p ∧ p ≡ p
p ∨ p ≡ p

Absorption laws p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

Double negation law ¬(¬p) ≡ p
De Morgan’s laws ¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

Table 3.4: Laws of Boolean Algebra for WFFs

Example 3.1

Prove (¬a ∧ ¬b) ∨ (¬a ∧ b) ∨ (a ∧ b) ≡ ¬a ∨ b using the laws in Table 3.4.

(¬a ∧ ¬b) ∨ (¬a ∧ b) ∨ (a ∧ b)
≡ (¬a ∧ ¬b) ∨ [(¬a ∧ b) ∨ (a ∧ b)] associative

≡ (¬a ∧ ¬b) ∨ [(¬a ∨ a) ∧ b] dist.andcomm.

≡ (¬a ∧ ¬b) ∨ [T ∧ b] complement

≡ (¬a ∧ ¬b) ∨ b identity

≡ (¬a ∨ b) ∧ (¬b ∨ b) distributive

≡ (¬a ∨ b) ∧ T complement

≡ ¬a ∨ b identity

3.5 Normal Forms

When we try to analyze Boolean formulae, it often helps to write the formulae in a standard or

normal form. These forms are particularly useful for counting-based arguments, automatic

theorem proving and for showing that certain problems are NP-hard [11].
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3.5.1 Conjunctive Normal Form

A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction (∧) of clauses,

where each clause is a disjunction (∨) of variables, e.g. A or NOTs of a variables, ¬B. Every

Boolean formula can be converted into an equivalent formula that is in CNF by using the rules

about logical equivalences above [9].

These formulae are in conjunctive normal form (CNF).

formula clauses

A ∧ ¬B ∧ (B ∨ C) A, ¬B, B ∨ C
(A ∨B ∨ ¬C) ∧ (¬B ∨A ∨D) ∧ (F ∨ ¬E) A ∨B ∨ ¬C, ¬B ∨A ∨D, F ∨ ¬E

A ∧B A, B

A ∨B A ∨B

These formula are not in conjunctive normal form (CNF).

formula reason

A ∧ ¬B ∧ ¬(B ∨ C) ¬ outside (B ∨ C)

(A ∧B) ∨ ¬C This is a disjunction ond one clause, A ∧B is a conjunction

3.5.2 Disjunctive Normal Form

A Boolean formula is in disjunctive normal form (DNF) if it is a disjunction (∨) of clauses,

where each clause is a conjunction (∧) of variables, e.g. A or NOTs of a variables, ¬B. The

disjunctive normal form is dual to the conjunctive normal form (ORs of ANDs instead of ANDs

of ORs) and every Boolean formula can be converted into an equivalent formula that is in DNF

by using the rules about logical equivalences above.

These formulae are in disjunctive normal form (DNF).

formula clauses

¬B ∨ (A ∧ C) ¬B, A ∧ C
(A ∧B ∧ ¬C) ∨ (¬B ∧A ∧D) ∨ (F ∧ ¬E) A ∧B ∧ ¬C, ¬B ∧A ∧D, F ∧ ¬E

A ∧B A ∧B
A ∨B A, B

These formula are not in disjunctive normal form (DNF).

formula reason

A ∧ ¬B ∧ (B ∨ C) This is in conjunctive normal form and (B ∨ C) is a disjunction

(A ∧B ∨ C) ∨ ¬C (A ∧B ∨ C) is not a proper clause
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3.5.3 Truth Tables, Formulae, and Circuits

Let’s return to our goal of finding the simplest circuit which is logically equivalent to a given

Boolean formula. We have seen that it may be possible to simplify a complex Boolean formula

using the laws of logic but this may be difficult.

We have seen that we can check whether two Boolean formula are equivalent by computing

their truth tables. We can also use truth tables to construct the CNF or DNF normal form

of a formula from which we can construct a circuit (though perhaps not the simplest circuit).

In fact, if there are N variables in a formula, the truth tabs will have 2N rows so the the

conversion will take exponential time in the number of variables. We’ll see in Chapter 14,

Growth of Functions, that this is a serious problem.

First, we’ll take a small table with just two inputs. We usually use 0s and 1s instead of Fs

and Ts when we have circuits in mind.

A B out

0 0 1

0 1 0

1 0 1

1 1 0

The output out is 1 on the first and third lines, i.e. when A and B are both 0 (¬A∧¬B is true

or 1) or when A is 1 and B is 0 (A∧¬B is true or 1). So out is equivalent to (¬A∧¬B)∨(A∧¬B).

You may have noticed that out for this little table is equivalent to ¬B but what we have just

done gives us a method that works in general. We call it the DBF Construction by 1s.

Given a truth table with one output:

• for each row where the output is 1, write a conjunction clause (AND or ∧) of all the

variables with ¬ (NOT) preceding each variable with a 0 in that row.

¬A ∧ ¬B

A ∧ ¬B

• take the disjunction (OR or ∨) of all those clauses.

(¬A ∧ ¬B) ∨ (A ∧ ¬B)

Going from a Boolean formula to circuit is pretty straight forward, just use AND, OR, and

NOT gates for ∧, ∨, and ¬, but it is likely to result in a pretty messy circuit if the formula is

not simplified.
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A"

B"

This process work with any number of variables. Here is an example with 3 variables.
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Example 3.2

p q r out

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

The three boldface rows have output 1. We create a conjunction clause for each of those rows.

¬p ∧ q ∧ ¬r
¬p ∧ q ∧ r
p ∧ q ∧ r

and take the disjunction of the three clauses to get a formula equivalent to out.

(¬p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ (p ∧ q ∧ r)

Example 3.3

If there are a lot of rows with output 1, the resulting DNF formula will be long. We can work

instead with the rows with output 0.

p q r out

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The output out is 1 if and only if it is not the case that p = 0 and q = 0 and r = 1 (row 2) or

p = 1 and q = 0 and r = 0 (row 5). So

out = ¬[(¬p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r)]

If out is 1 on four rows and 0 on four rows, it’s messy either way.
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Though we can construct circuit from all boolean formulae with just two-input AND, OR

and NOT gates, our circuit drawing can be made much simpler if we allow three-input AND

and OR gates. You can use these in your work for this course unless instructions say otherwise.

A"

B"

C"

A"

B"

C"

Figure 3.3: Three-input AND and OR gates

3.6 Further Reading

Boolean Algebra, Wikipedia [8]

The Laws of Classical Logic, Candle in the Dark [1]

Conjunctive Normal Form, Wikipedia [9]

Euclidean Geometry, Wikipedia [10]

P versus NP problem, Wikipedia [11]

Exercises

Logical Completeness

Exercise 3.1

Every truth table, Boolean formula, and circuit can be implemented using just AND, OR, and

NOT gates; hence, the collection {AND,OR,NOT} is logically complete. In this problem, you

will show that the NAND gate, by itself, is logically complete. To do so, you will show how to

construct the AND, OR, and NOT gates from NAND gates.

i. Fill in the following truth table:

X X NAND X

0 ?

1 ?

What logical operation does X NAND X correspond to?
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ii. Fill in the following truth table:

X Y ¬X NAND ¬Y
0 0 ?

0 1 ?

1 0 ?

1 1 ?

What logical operation does ¬X NAND ¬Y correspond to?

iii. Using only NAND gates, draw circuit diagrams corresponding to the AND, OR, and NOT

gates. Hint: The constructions for two of these circuits are essentially given in parts i

and ii above, and the construction of the third should be relatively straightforward given

what you’ve learned above.

Truth Tables, Boolean Formulae, and Circuits

Exercise 3.2

Fill in the following table with the missing truth tables, Boolean formulae, and circuits.
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C h a p t e r 4

Design of a Simple Processor

4.1 Architecture

The processor we will design will have the following components:

• 8 32-bit registers R0, R1, . . . , R7 for holding data.

• 256 16-bit registers P0, P1, . . . , P255 for holding a program.

• A 32-bit adder.

• An 8-bit register PC that will serve as a program counter.

It is useful to have the constant values 0 and 1 available for use. So we set registers R0 and

R1 to hold the values 0 and 1, respectively, permanently.

The processor will have four types of instructions: add, negate, load, and jump if zero. A

program consists of a sequence of instructions stored in the 256 program registers. Each of

these registers holds 16 bits. The 16 bits of an instruction specify the type of instruction and

its operands. We need two bits to specify the instruction; the two high bits (positions 14-15)

will specify the instruction type. The formats of the 4 instructions are as follows.

4.1.1 Addition

The add instruction adds the contents of two registers Ra and Rb and stores the result in register

Rc. The indices a, b, and c are specified in bit positions 11-13, 8-10, and 5-7, respectively. Bit

39
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positions 0-4 will be ignored. The add instruction also increments the program counter by 1.

The add instruction

add Ra, Rb → Rc

is encoded as follows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 a a a b b b c c c 0 0 0 0 0

4.1.2 Negation

The negate instruction replaces Ra with −Ra, using the two’s complement representation. The

index a is specified by bit positions 11-13. The negate instruction also increments the program

counter by 1. The negate instruction

neg Ra

is encoded as follows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 a a a 0 0 0 0 0 0 0 0 0 0 0

4.1.3 Loading

The load instruction loads an 8-bit number d into the 8 low-order bit positions of register Ra.

The index a is specified by bit positions 11-13. The value d is specified in binary by the 8

low-order positions of the instruction; that is, positions 0-7. The effect of the instruction is to

set the value in register Ra to d; note that the 24 high-order bits of Ra are set to 0. Also, the

program counter is incremented by 1. The load instruction

lod d→ Ra

is encoded as follows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 a a a 0 0 0 d d d d d d d d

4.1.4 Jump If Zero

The jump if zero instruction changes the program counter register to the value specified by an

8-bit number d, if register Ra is 0; otherwise the program counter PC is incremented by 1, as

usual. The jump if zero instruction

jiz Ra → d
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is encoded as follows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 a a a 0 0 0 d d d d d d d d

4.1.5 Programming the CPU

The four instructions, add, negate, load, and jump if zero are enough to do complex computation.

Here is a small program that computes the sum of the integers between 0 and 10.

PC Operation In Binary Explanation

0 lod 10 to R2 10 010 000 00001010 Load 10 (ten) into register 2

1 lod 0 to R3 10 011 000 00000000 Load 0 into register 3 as accumulator

2 lod -1 to R4 10 100 000 11111111 Load -1 into register 4

3 add R2, R3 into R3 00 010 011 01100000 Add number in R2 to accumulator R3

4 add R4, R2 into R2 00 010 100 01000000 Add R4(-1) to R2 and store it in R2s old spot

5 jiz R2 to 7 11 010 000 00000111 If R2 is 0, jump to command 7

6 jiz R0 to 3 11 010 000 00000011 R0 is always 0, so jump back to step 3

7 jiz R0 to 7 11 000 000 00000111 Ends the program

NOTE: R0 always holds 0, R1 always holds 1

How this works: Load ten into R2, zero into R3 and -1 into R4.

• R2: 1010 (10)

• R3: 0

• R4: 11111111 (-1)

The first time through, R2(10) is added to R3(0) and stored in R3’s spot. Then, R4(-1) is

added to R2 and stored in R2’s spot. After commands 3 and 4 we are left with:

• R2: 1001 (9)

• R3: 1010 (10)

• R4: 11111111

Command 5 checks is R2 is zero, which it isn’t, so it just moves onto the next command.

Command 6 checks is R0 is zero, which it always is, so it jumps the counter back to command

3. Commands 3 and 4 repeat the steps above giving us:
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• R2: 1000 (8)

• R3: 10011 (19)

• R4: 11111111

The program keeps adding R2 to the existing total in R3, and then decrements R2. Once

R2 is decremented to zero, and the program reaches command 5, R2 is zero so the program

skips to command 7, which terminates the program.

4.2 Multiplexers and demultiplexers

Digital circuits are designed in a modular fashion, building more and more complex components

out of basic building blocks. A key component of almost every digital circuit is a device that

selects any one of many inputs and sends that value to a single output, called a selector.

Consider a 2-way 1-bit multiplexer that has three inputs X0, X1, and Y , and a single output

Z. If Y (called the control) is 0, then the output Z is the same as X0; if Y is 1, then the output

Z is the same as X1. For example, if X0 is 0, X1 is 1, and Y is 1, then Z equals 1. The truth

table for the above multiplexer is as follows.

X0 X1 Y Z

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

We can now express the output Z as a Boolean formula in terms of the inputs X0, X1,

and Y . Simplifying the Boolean formula as much as you can, by applying the laws of logical

equivalence, we obtain the following.

Begin by reading off the disjunctive normal form (DNF) of Z from the truth table:

Z = (¬X0 ∧X1 ∧ Y ) ∨ (X0 ∧ ¬X1 ∧ ¬Y ) ∨ (X0 ∧X1 ∧ ¬Y ) ∨ (X0 ∧X1 ∧ Y )
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Then simplify using commutativity, distributivity, and the fact that A ∨ ¬A = T :

Z = (¬X0 ∧X1 ∧ Y ) ∨ (X0 ∧ ¬X1 ∧ ¬Y ) ∨ (X0 ∧X1 ∧ ¬Y ) ∨ (X0 ∧X1 ∧ Y )

= (¬X0 ∧X1 ∧ Y ) ∨ (X0 ∧X1 ∧ Y ) ∨ (X0 ∧X1 ∧ ¬Y ) ∨ (X0 ∧ ¬X1 ∧ ¬Y )

= ((¬X0 ∨X0) ∧X1 ∧ Y ) ∨ (X0 ∧ (X1 ∨ ¬X1) ∧ ¬Y )

= (X1 ∧ Y ) ∨ (X0 ∧ ¬Y )

We are now ready to design a circuit for the multiplexer.

AND

NOT

AND

OR

X0

Y

X1
Y

Z

As one can imagine, an equally important device is the demultiplexer, that essentially does

the opposite of what the multiplexer does: it sends a single input to one of many outputs,

depending on a control value. Consider a demultiplexer that has two inputs X and Y and two

outputs Z0 and Z1. If Y is 0, then Z0 takes the value of X, and Z1 is 0. On the other hand, if

Y is 1, then Z1 takes the value of X, and Z0 is 0.

We now design a circuit for the demultiplexer, proceeding as above. The DNF is particularly

simple for this truth table, so we don’t need to simplify the Boolean formulas.

X Y Z0 Z1

0 0 0 0

0 1 0 0

1 0 1 0

1 1 0 1

Z0 = X ∧ ¬Y
Z1 = X ∧ Y

AND

NOT

AND

X

Y

X
Y

Z0

Z1

4.3 Design of the processor

We will design the entire processor using the basic gates that we have studied, along with

clocks. We have already seen how to build adders from gates. We will next use gates (unclocked

and clocked) to build multiplexers, demultiplexers, and registers, and then move on to more

complex components. We will present the design in a modular fashion – building more complex

components from simpler components that we have already designed. Finally we assume that

the registers P0, . . . , P255 already contain the instructions to run, and their contents do not need

to be changed.

Our design will proceed in steps.
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1. We lay out the registers (giving names to the input bits, output bits, and registers for

convenience).

2. We design the circuits for extracting the next instruction and incrementing the PC.

3. We design the circuits for implementing the add, negate, load, and jump-if-zero operations.

4. We design the circuit that determines the input and the set bits for the data registers and

the PC based on the above circuits.

5. In each of the above circuits, we clearly label the inputs and outputs. These circuits can

be put together by matching the appropriate labeled inputs and outputs.
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4.3.1 Registers

Here is a layout of the registers. Note that the set bit for PC is always 1 and the set bit of

program registers is always 0. So the PC changes at every clock cycle and the program registers

never change. The set bits for the data registers will be determined by the instruction.

Input(PC)

PC

Output(PC)

Input(Pi)

Pi

Output(Pi)

Set(Ri)

Input(Ri)

Ri

Output(Ri)

0

1
A + B = C

A

B
C32-BIT ADDER
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4.3.2 Extracting the instruction and incrementing the PC

The following are the circuits for extracting the next instruction using the PC, and calculating

the increment of PC. Note that whether the PC will be actually incremented (or set to something

else) will be determined by the instruction, as we will see shortly.

16 16

16

16

8

8

8

16

16

8

16

16

16

8

I

Increment(PC)

Output(Pi)

Output(PC)

Output(PC)

Increment(PC)
00000001

8−BIT ADDER

I0
I1

I15

Output(P1)

Output(P0)

256−WAY
16−BIT
MULTIPLEXER

Output(PC)

Output(P254)

Output(P255)

INSTRUCTION EXTRACTOR

PC INCREMENTER
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4.3.3 The add instruction

Here is the circuit for implementing the add instruction.

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

8−WAY
32−BIT

MULTIPLEXER

8−WAY
32−BIT

MULTIPLEXER

I5−7

I5−732−BIT
ADDER

1

Set_A(R0)

Set_A(R7)

8−WAY
32−BIT

8−WAY

DEMULTIPLEXER

DEMULTIPLEXER
1−BIT

ADD INSTRUCTION

Input_A(Ri)

Set_A(Ri)

Input_A(R0)

Input_A(R7)

I11−13

I8−10

Output(R0)

Output(R7)

Output(R0)

Output(R7)

I5−13

Output(Ri)
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4.3.4 The negate instruction

Here is the circuit for implementing the negate instruction.

32

32

32

32

32

32

32

32

32 32
8−WAY
32−BIT

MULTIPLEXER

I11−13

I11−13

I11−13

Input_N(R0)

Input_N(R7)

8−WAY
32−BIT

DEMULTIPLEXER

32−BIT

NEGATER

Output(R0)

Output(R7)

1
8−WAY

DEMULTIPLEXER
1−BIT

Set_N(R0)

Set_N(R7)

NEGATE INSTRUCTION
Input_N(R7)

Input_N(R0)

Set_N(R0)

Set_N(R7)

Output(R7)

Output(R0)

I11−13
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4.3.5 The load instruction

Here is the circuit for implementing the load instruction.

32

32

32

32

I11−13 I11−13

8−WAY
32−BIT

DEMULTIPLEXER
1

8−WAY

DEMULTIPLEXER
1−BIT

Set_L(R0)

Set_L(R7)

LOAD INSTRUCTION

Input_L(Ri)

Set_L(Ri)

Input_L(R7)

Input_L(R0)I0

I7

I11−13

I0−7
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4.3.6 The jump-if-zero instruction

Here is the circuit for implementing the jump-if-zero instruction.

32

32

32

32

32

8

8

8

8

8−WAY
32−BIT

MULTIPLEXER

I0−7

I0−7

Increment(PC) 2−WAY

MULTIPLEXER

32−BIT

OR
NOT

JUMP INSTRUCTION

PC

Input_J(PC)

Input_J(PC)
8−BIT

I11−13

Output(R0..R7)

Output(R7)

Output(R0)

I11−13
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4.3.7 Storing the new values into the data registers and PC

The values computed by the add, negate, load, and jump-if-zero circuits give us potential values

that need to be stored in the data registers. Whether the registers need to be updated and

what their new values will be is determined by the particular instruction type. The following

circuit pushes in the correct value into the registers. It also determines the correct value of

the PC. The inputs to the program registers are the same as their outputs (since they are not

allowed to change).

32

32

32

32

32

8

8

8

8

8

4−WAY
32−BIT

MULTIPLEXER

4−WAY
32−BIT

MULTIPLEXER

Set_A(Ri)

Set_N(Ri)

Set_L(Ri)

0

Output(Ri)

Set(Ri)

4−WAY
32−BIT

MULTIPLEXER

Input_A(Ri)

Input_N(Ri)

Input_L(Ri)

Input(Ri)

Input(PC)

I15 I14

I15 I14

I14I15

Input_J(PC)

Increment(PC)

Increment(PC)

Increment(PC)
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Cryptography and Modular

Arithmetic

Cryptography has been important through the ages for sending secret military information. It

has also been used by secret societies like the Freemasons. Today, computers and the internet

have made cryptography a part of all our lives. Critical information like passwords, on-line

purchases, and ATM transactions all use cryptography. Many companies protect their industrial

secrets by encryptinging their files. Companies and individuals often encrypt their email to

protect themselves from third party snooping.

We will introduce some simple methods of encrypting that use algebraic methods, in partic-

ular modular arithmetic to encrypt messages. We refer to the original message as the plaintext

and the encrypted message as the ciphertext.

5.1 Simple Shift Ciphers

Julius Caesar was one of the first people known to use cryptography to protect messages of

military significance (http://en.wikipedia.org/wiki/Caesar_cipher). Suetonius describes

Julius Caesar’s simple cipher in his Life of Julius Caesar 56 (tr. J. C. Rolfe):

There are also letters of his to Cicero, as well as to his intimates on private affairs,

and in the latter, if he had anything confidential to say, he wrote it in cipher, that

is, by so changing the order of the letters of the alphabet, that not a word could be

made out. If anyone wishes to decipher these, and get at their meaning, he must

substitute the fourth letter of the alphabet, namely D, for A, and so with the others.

55
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(http://laudatortemporisacti.blogspot.com/2004/09/secret-writing.html)

We call this the Caesar Cipher . Every letter is shifted over by three. Using our modern

alphabet, look up a plaintext letter in the top row of this table and replace that letter with the

corresponding letter in the bottom row. To decrypt, look up a cipher text letter in the bottom

row and replace it with the corresponding letter in the upper row.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

DISCRETE MATH becomes GLVFUHWH PDWK.

Using this table, a letter is encrypted by replacing it with a letter three places further on

in the alphabet or shifting it forward by three places.

The quote from Suetonius tells us that the shift was actually in the other direction, a letter

was encrypted by replacing it with a letter three places further back in the alphabet or shifting

it back by three places. Decrypting was then done by replacing it with a letter three places

further on in the alphabet or shifting it forward by three places.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

DISCRETE MATH becomes AFPZOBQB JXQE

More generally, we could shift by any number from 1 to 25, for example, if we shift by 7,

DISCRETE MATH becomes KPZJYLAL THAO.

With a general shift cipher, the number you shift by, e.g. 7, is the key to the code. A

simple shift cipher rot13 from ”rotate alphabet 13 places”, is used on many newsgroups for

posting things that might offend some readers. One advantage of rot13 over other shifts is that

it deciphers itself. If you shift a letter 13 places and then shift the result 13 places, you are

back to the original letter.

5.1.1 Simple Shift Cipher Links

You can see demos of a number of simple encryption methods at

http://www.cs.usask.ca/resources/tutorials/csconcepts/1999_3/lessons/L3/SimpleEncryption.html

and a demo of shift ciphers in particular at

http://www.math.mtu.edu/mathlab/COURSES/holt/dnt/apps5.html.

http://laudatortemporisacti.blogspot.com/2004/09/secret-writing.html
http://www.cs.usask.ca/resources/tutorials/csconcepts/1999_3/lessons/L3/SimpleEncryption.html
http://www.math.mtu.edu/mathlab/COURSES/holt/dnt/apps5.html
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The Wikipedia has a good explanation of rot13 and its history, in addition to some nice examples

of shift ciphers in general:

http://en.wikipedia.org/wiki/ROT13

Make sure to look at the “Trivia” section.

A number of encryption toys are based on the simple shift cipher, for example, the Captain

Midnight Secret Decoder Badges

http://www.youtube.com/watch?v=WvKlqMjfk1Y

http://www.youtube.com/watch?v=zdA__2tKoIU

were popular in the mid-1950s and

Ovaltine Secret Decoder Rings

http://home.comcast.net/~jrolsen2/premiums/ovaltine.html

were a hit in 2000. These toys, however, replace plaintext letters with ciphertext numbers.

5.2 Encoding

Actually, using numbers instead of letters gives us the advantage that we can put math and

computers to work to encrypt and decrypt for us. So, the first thing we will do is encode our

plaintext, that is, replace the letters with numbers by an agreed upon, public method. There

are many ways we can do this. Computers mostly use ASCII (American Standard Code for

Information Interchange http://www.lookuptables.com/) to represent characters. We will just

use the numbers from 0 to 25 for the letters A to Z (or a to z).

A B C D E F G H I J K L M

00 01 02 03 04 05 06 07 08 09 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

We have added leading 0s to the single digit numbers so that all the codes are 2 digits long. If

we need punctuation, we will use 26 for a space, 27 for a period and 28 for a comma.

Encoding, going from letters to numbers, and decoding, going from numbers back to letters,

are different from encrypting (or enciphering) and decrypting (or deciphering). There is nothing

secret about encoding and decoding. MATH IS COOL becomes 12001907 0818 02141411 if we

leave the spaces or 120019072608182602141411 if we encode the spaces.

What is the original message that encodes to: 1804170413081924 ?

http://en.wikipedia.org/wiki/ROT13
http://www.youtube.com/watch?v=WvKlqMjfk1Y
http://www.youtube.com/watch?v=zdA__2tKoIU
http://home.comcast.net/~jrolsen2/premiums/ovaltine.html
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5.3 The mod Function

The mod function has many applications in computer science so we will study it in some

detail. It is used for simple and complex cryptography, calendars and clocks, random number

generators, and hash tables for a start. We will then use the mod function, to generate shift

ciphers and more general linear ciphers.

If n is an integer that is greater than 1, and a is any integer, then

a mod n

is the integer remainder when a is divided by n. In fact, a mod n is defined when n is negative

but we’ll restrict our attention to n > 1. In this case, a mod n is always an integer between 0

and n− 1. In Scheme the mod function is given by (modulo a n).

Example 5.1

17 mod 5 = 2 17 divided by 5 is 3; the remainder is 2.

8 mod 5 = 3 8 divided by 5 is 1; the remainder is 3.

55 mod 5 = 0 55 divided by 5 is 11; the remainder is 0.

4 mod 5 = 4 4 divided by 5 is 0; the remainder is 4.

37 mod 17 = 3 37 divided by 17 is 2; the remainder is 3.

How do we evaluate a mod n when a is negative? Remember that as long as n > 1, the

values of a mod n must be between 0 and n − 1. In general, a mod n is the unique integer

between 0 and n− 1 that satisfies a = q · n+ a mod n for some integer q.

Example 5.2

−17 mod 5 = 3 −17 = −4 · 5 + 3

−8 mod 5 = 2 −8 = −2 · 5 + 2

−55 mod 5 = 0 −55 = −11 · 5 + 0

−4 mod 5 = 1 −4 = −4 · 1 + 1

−37 mod 17 = 14 −37 = −3 · 17 + 14

5.3.1 Properties of mod

Let n be an integer greater than 1, and let a and b be any integers, then

1. If a mod n = b mod n then there is an integer k such that a− b = k · n.

2. (a+ b) mod n = ((a mod n) + (b mod n)) mod n
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3. (a · b) mod n = ((a mod n) · (b mod n)) mod n

4. −a mod n = n− (a mod n)

Example 5.3

19 mod 8 = 3 and 51 mod 8 = 3 51− 19 mod 8 = 32 mod 8 = 0 = 3− 3 mod 8

19 mod 5 = 4 and 7 mod 5 = 2 (19 + 7) mod 5 = 26 mod 5 = 1 = (4 + 2) mod 5

(19 · 7) mod 5 = 133 mod 5 = 3 = (4 · 2) mod 5

37 mod 17 = 3 and −37 mod 17 = 14 3 + 14 = 17, 17 mod 17 = 0

5.4 Simple Substitution Ciphers

A simple substitution cipher is a cryptographic system in which letters (or their codes), are

arbitrarily transposed or replaced with other letters (or their codes). The Ceasar Cipher and

general Shift Cipher are both simple substitution ciphers. Cryptograms that sometimes appear

as newspaper puzzles are also simple substitution ciphers. Each letter is replaced by another

letter. We will study some simple substitution ciphers that can be generated by using the mod

or modulo function.

5.4.1 Shift Cipher

Once we have encoded the letters A, ..., Z, a general shift cipher with shift k can be described

by:

n→ (n+ k) mod 26.

or by

n→ (n+ k) mod 29.

if we encode and encipher space, “.” and “,” as well as the letters A · · · Z. If we want our

encrypted message to look like letters, possibly with punctuation, we decode the shifted codes

to get our ciphertext. Here’s an example.

MATH IS COOL becomes 12001907 0818 02141411 if we just encode the letters. If we shift

by 15, we get

Plaintext M A T H I S C O O L

Coded 12 00 19 07 08 18 02 14 14 11

Shifted 1 15 8 22 23 7 17 3 3 00

Ciphertext B P I W X H R D D A
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If we receive the message “BPIWXHRDDA” and know that the shift key is 15, We just reverse

the procedure above to decrypt our message, code the letters, shift by −15 which is the same

as +11 mod 26, decode the result.

Ciphertext B P I W X H R D D A

Coded 01 15 08 22 23 07 17 3 03 00

Shifted 12 00 19 07 08 18 02 14 14 11

Plaintext M A T H I S C O O L

5.4.2 Linear Ciphers

We can create somewhat more complex simple substitution ciphers by using linear functions

along with mod instead of just adding a constant and then using mod. Let’s work again with

just the 26 letters. In general, we choose two constants m and k then generate a linear cipher

is given by

a→ (m · a+ k) mod 26.

Lets look at an example with m = 5 and k = 11.

Plaintext A B C D E F G H I J K L M

Coded 00 01 02 03 04 05 06 07 08 09 10 11 12

Moved 11 16 21 00 05 10 15 20 25 04 09 14 19

Ciphertext L Q V A F K P U Z E J O T

Plaintext N O P Q R S T U V W X Y Z

Coded 13 14 15 16 17 18 19 20 21 22 23 24 25

Moved 24 03 08 13 18 23 02 07 12 17 22 01 06

Ciphertext Y D I N S X C H M R W B G

This seems to make a pretty good simple substitution cipher. Two different letters always

have two different cipher letters so an enciphered message should be decipherable. No letter is

enciphered by itself so the message won’t be trivial to read. Given the table, it is pretty easy

to decipher a message. Can you decipher this message? QHKKBXOLBXMLTISFX

There are a few questions we should think about when we make a simple linear cipher.

1. What values of m and k make good linear ciphers if the alphabet has 26 characters?

2. What if the alphabet has 29 characters, e.g. with space, “.” and “,” included?

3. What if the alphabet has 128 ASCII characters?

4. Can we say anything in general for an alphabet of n characters?
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5. Can the person receiving our message decipher it without reconstructing the table, i.e.

with just knowing n, m, and k? This will be important if n is large.

To answer these questions, we need to understand more about mod and the arithmetic it

induces.

5.5 Modular Arithmetic

Once we fix an integer n greater than 1, the properties of mod , we cited above, allow us to talk

about arithmetic mod n on the set Zn of integers from 0 to n− 1. We define

a+ b = (a+ b) mod n

a× b = (a× b) mod n

Consider these + and × tables for arithmetic mod 3.

+ 0 1 2 × 0 1 2

0 0 1 2 0 0 0 0

1 1 2 0 1 0 1 2

2 2 0 1 2 0 2 1

Arithmetic mod 3 has some very nice properties. If a, b, and c are in Z3 (the set {0, 1, 2}) then

closure: a+ b and a× b are in Z3

commutativity: a+ b = b+ a and a× b = b× a

associativity: (a+ b) + c = a+ (b+ c) and (a× b)× c = a× (b× c)

identity +: 0 is an additive identity a+ 0 = a for all a ∈ Z3

identity ×: 1 is a multiplicative identity a× 1 = a for all a ∈ Z3

inverse +: Every a ∈ Z3 has an additive inverse b ∈ Z3 such that a+ b = 0

inverse ×: Every non-zero a ∈ Z3 has an multiplicative inverse b ∈ Z3 such that a× b = 1

distributive law: c× (a+ b) = (c× a) + (c× b)

Note: The symbol ∈ means “in” so a ∈ Z3 means “a in Z3.”

These properties mean that the set Z3 with + and × mod 3 is a mathematical field . The

real numbers, rational numbers, and complex numbers are also mathematical fields with their

regular addition and multiplication.
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Now, let’s consider these + and × tables for arithmetic mod 4 on the set Z4 = {0, 1, 2, 3}..

+ 0 1 2 3 × 0 1 2 3

0 0 1 2 3 0 0 0 0 0

1 1 2 3 0 1 0 1 2 3

2 2 3 0 1 2 0 2 0 2

3 3 0 1 2 3 0 3 2 1

Addition mod 4 has similar properties to addition mod 3. There is an additive identity, 0, and

every a ∈ Z4 has an additive identity, 0 + 0 = 1 + 3 = 2 + 2 = 0. But Z4 is not a field. It does

have a multiplicative identity, a × 1 = a for all a ∈ Z4 but 2 does not have a multiplicative

inverse. We cannot solve 2 × b = 1 or 2 × b = 3 in Z4. In fact, 2 × 2 mod 4 = 0. We say 2 is

a zero-divisor mod 4. In general, We say a ∈ Zn is a zero-divisor mod n if there is a non-zero

b ∈ Zn such that a× b mod n = 0.

Can you now say what values of m will be bad for linear ciphers, a→ (m · a+ b) mod 26?

5.6 Powers mod n

We often have to compute powers of numbers mod n. The RSA Encryption Algorithm

(http://fringe.davesource.com/Fringe/Crypt/RSA/Algorithm.html)

which is widely used in electronic commerce protocols uses high powers of numbers mod n.

We can easily compute powers mod n when the exponent is itself a power of 2 by using the

property

(a · b) mod n = ((a mod n) · (b mod n)) mod n.

and the fact that

a(2
k) = a(2·2

k−1) = a(2
k−1+2k−1) =

(
a(2(k−1))

)
·
(
a(2(k−1))

)
=
(
a(2(k−1))

)2
.

The idea is to alternate evaluating mod n and squaring. This is probably best understood by

looking at some examples.

Example 5.4

372 mod 3 = (37 mod 3)2 = 12 = 1

1154 mod 7 = (115 mod 7)4 = (3 mod 7)4 = (32 mod 7)2 = (9 mod 7)2

= (2 mod 7)2 = (22 mod 7) = (4 mod 7) = 4

11532 mod 7 = (115 mod 7)32 = ((115 mod 7)4)8 = (4 mod 7)8

= (16 mod 7)4 = (2 mod 7)4 = (16 mod 7) = 2

http://fringe.davesource.com/Fringe/Crypt/RSA/Algorithm.html
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To compute ammod n when m is not a power of 2, we use the binary representation of m to

express m as a sum of powers of 2 and the rule (see C.1.1) for the product of two powers with

the same base. In general, m can be expressed as n = bk2
k + bk−12

k−1 + · · · + b12 + b0 where

bi = 0 or 1 for 0 ≤ i ≤ k. Then

am = abk2
k+bk−12

k−1+···+b12+b0 = abk2
k · abk−12

k−1 · · · ab12 · ab0

Each factor in this product where bi = 0 evaluates to 1. In the other factors, bi = 1 and

the factor is just a raised to a power that is a power of 2. To evaluate am mod n we apply

the repeated squaring and evaluating mod n described above to each of these factors and then

multiply the results mod n.

Example 5.5

40121 mod 7 = 4011110012 = 402
6
402

5
402

4
402

3
402

0
mod 7

= 40644032401640840 mod 7

40 mod 7 = 5

402 mod 7 = 52 mod 7 = 25 mod 7 = 3

404 mod 7 = 32 mod 7 = 9 mod 7 = 2

408 mod 7 = 22 mod 7 = 4 mod 7 = 4

4016 mod 7 = 42 mod 7 = 16 mod 7 = 2

4032 mod 7 = 22 mod 7 = 4 mod 7 = 4

4064 mod 7 = 42 mod 7 = 16 mod 7 = 2

12110 = 64 + 32 + 16 + 8 + 1 = 11110012 so

40121 mod 7 = (4064)(4032)(4016)(408)(401)

40121 mod 7 = 2 · 4 · 2 · 4 · 5 mod 7

= ((8 mod 7)(8 mod 7)(5 mod 7)) mod 7 = (1 · 1 · 5) mod 7 = 5

Exercises

Caesar Cipher and Encoding

Exercise 5.1

Apply the Caesar Cipher 5.1 to the following messages:

a. EXIT UNDER STAIRS

b. TEN PACES N BY NE

Encode these messages as in section 5.2.
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c. EXIT UNDER STAIRS

d. TEN PACES N BY NE

The mod Function

Exercise 5.2

Evaluate the following

a. 19 mod 7 b. 7 mod 19 c. 27 mod 7

d. 27 mod 19 e. 14 mod 7 f. 52 mod 13

g. 14 mod 24 h. 51 mod 11 i. 212 mod 3

Exercise 5.3

Evaluate the following

a. −19 mod 7 b. −7 mod 19 c. −27 mod 7

d. −27 mod 19 e. −14 mod 7 f. −52 mod 13

g. −14 mod 24 h. −51 mod 11 i. −212 mod 3

Exercise 5.4

Evaluate the following without using a calculator.

a.

337 mod 3 9962 mod 3

(9962 + 337) mod 3 (337× 9962) mod 3

−337 mod 3 (9962− 337) mod 3

b.

337 mod 5 9962 mod 5

(9962 + 337) mod 5 (337× 9962) mod 5

−337 mod 5 (9962− 337) mod 5

Simple Substitution Ciphers

Exercise 5.5

Use the methods of section 5.4 to encipher the following messages with the indicated shifts.

a. BEHIND BIG CLOCK, shift 11

b. L NINE R SEVEN L FOUR, shift 15

Exercise 5.6

Use the methods of section 5.4 to decipher the following messages. Each is given with the shift

used to encipher it. The spaces have been removed.

a. UBTFURNQGUERRCZBEQREOHGGREORRE, shift 13
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b. DRIBKNRZEYFLJVYRIKWFIUTKJLEURP, shift 17

Linear Encryption

Exercise 5.7

A spy has been captured, but all attempts to interrogate him have failed: he speaks a very

strange language, unintelligible to any translator. However, this spy was caught with a number

of documents. Linguists who have studied these documents believe that they were written in

the spy’s language, but that they have been encrypted. Decrypting these documents to obtain

valid text in the spy’s language would be incredibly helpful; your job is to decrypt the spy’s

documents and hopefully determine where he’s from and what language he speaks.

Linguists analyzing the spy’s documents have determined that the spy’s language consists

of 26 linguistic units (analogous to English letters), where each unit consists of one or more

case-sensitive English letters or punctuation marks. The units of the spy’s language, numbered

from 0 to 25, are given below.

0 1 2 3 4 5 6 7 8 9 10 11 12

a b ch D e gh H I j l m n ng

13 14 15 16 17 18 19 20 21 22 23 24 25

o p q Q r S t tlh u v w y ’

You suspect that the spy has used a linear encryption scheme with m = 15 and k = 3 since

symbols representing these values were found tattooed on the spy’s scalp. Finally, the linguists

and interrogators are particularly interested in following phrase, which was written on the top

of each document the spy possessed:

rebDng wDq lDghjDp

a. Parse the phrase above to obtain the individual linguistic units of the spy’s language, i.e.,

“r” followed by “e” followed by “b” and so on. Note the multi-letter combinations which

correspond to individual linguistic units.

b. Encode each linguistic unit with its corresponding number from the table given above,

e.g., r→ 17 and so on.

c. Since you suspect that these values were encrypted using the function

a→ (15 · a+ 3) mod 26
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you must subtract 3 and then multiply by the multiplicative inverse of 15 (mod 26) in

order to decrypt these values. Start by determining the multiplicative inverse of 15 ( mod

26).

d. Decrypt each value by inverting the linear encryption.

e. Decode these values using the table given above to obtain a phrase in the spy’s language.

(It will not be intelligible to most people.)

f. Conduct some research on the web to see if you can determine what this phrase means.

(Try typing the decrypted words or the entire phrase into Google.) What is the English

translation of this phrase? Where does our spy come from and what language does he

speak?

Modular Arithmetic

Exercise 5.8

Construct the addition and multiplication tables for mod 8, in a manner similar to those for

mod 3 and mod 4 given in section 5.5.

Exercise 5.9

Use the tables you created for exercise 5.8 to answer the following.

a. Give the additive inverse mod8 for each of 0, 1, 2, 3, 4, 5, 6, 7.

b. Give the multiplicative inverse mod8 for each of the numbers 0, 1, 2, 3, 4, 5, 6, 7 that

has a multiplicative inverses.

c. Which of the numbers 0, 1, 2, 3, 4, 5, 6, 7 are zero-divisors mod8. For each of these

zero-divisors, give a non-zero number you can multiply it by to yield 0 mod 8.

Powers mod n

Exercise 5.10

Compute the following by hand.

a. 48 mod 5 b. 482 mod 5 b. 484 mod 5

d. 488 mod 5 e. 4816 mod 5 f. 4832 mod 5

g. 4864 mod 5 h. 48128 mod 5 i. 48256 mod 5

j. 4879 mod 5 k. 48153 mod 5 l. 48222 mod 5

Exercise 5.11

Repeat exercise 5.10 mod 11 instead of mod 5.
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Integers and Division

Though you probably learned about integers and division back in fourth grade, we need formal

definitions and theorems to describe the algorithms we use and to verify that they are correct,

in general.

6.1 Divides

If a and b are integers and a 6= 0, we say that a divides b (or that a is a factor of b) if there is

an integer c such that b = ac.

a | b means a divides b.

a - b means a does not divide b.

Theorem 2 Let a, b, and c be integers, then

1. if a | b and a | c then a | (b+ c)

2. if a | b then a | bc for all integers, c

3. if a | b and b | c then a | c.

Proof: Here is a proof of (1); try to prove the others yourself.

Assume that a, b, and c be integers and that a | b and a | c. From the definition of divides,

there must be integers m and n such that:

b = ma (6.1)

c = na (6.2)

67
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Adding the left- and right-hand sides of Equations 6.1 and 6.2, we obtain

b+ c = ma+ na.

By the distributive law and commutativity,

b+ c = (m+ n)a.

By the closure of addition, m+ n is an integer so, by the definition of divides,

a|(b+ c). 2

Corollary 1 If a, b, and c are integers such that a | b and a | c then a|(mb+nc) for all integers

m and n.

6.2 Primes

A positive integer p > 1 is called prime if the only positive factors of p are 1 and p. Extremely

large prime numbers are used in RSA and other algorithms for public key cryptography. Primes

are also used for hash tables and pseudorandom number generators.

6.2.1 Finding Primes

How can you find prime numbers? The mathematician, Eratosthenes (276-194 BC) invented a

prime number sieve, the Sieve of Eratosthenes, which, in modified form, is still used in number

theory research. Here is how the sieve works if you want to find all the prime numbers less than

or equal to N .

1. Make a list-to-check of the numbers from 2 to N .

2. Make a list-of-primes that starts out empty.

3. Repeat the following until the first number in the list-to-check is >
√
N

(a) Put the first number in the list-to-check in the list-of-primes.

(b) Remove all multiples of that number from the list-to-check.

4. Put all the numbers still in list-to-check into list-of-primes.

Example 6.1

To find all the primes up to N = 25, we start with:

list-to-check = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

list-of-primes =

http://world.std.com/~franl/crypto/rsa-guts.html
http://en.wikipedia.org/wiki/Eratosthenes
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Then we put 2 in the list-of-primes and remove all multiples of 2 from the list-to-check. We

now have:

list-to-check = 3 5 7 9 11 13 15 17 19 21 23 25

list-of-primes = 2

Now put 3 in the list-of-primes and remove all multiples of 3 from the list-to-check. We now

have:

list-to-check = 5 7 11 13 17 19 23 25

list-of-primes = 2 3

Now put 5 in the list-of-primes and remove all multiples of 5 from the list-to-check. We now

have:

list-to-check = 7 11 13 17 19 23

list-of-primes = 2 3 5

Since
√

25 = 5, we put all the numbers remaining in the list-to-check into the list-of-primes.

list-of-primes (less than or equal to 25) = 2 3 5 7 11 13 17 19 23.

6.2.2 Prime Number Decomposition

A positive integer n > 1 that is not prime is call a composite. Composite integers can always

be expressed as products of primes.

Theorem 3 (Fundamental Theorem of Arithmetic) Every positive integer greater than

1 can be written uniquely as a prime or as the product of two or more primes where the prime

factors are written in order of non-decreasing size. This is the prime number decomposition of

the integer.

Example 6.2

a. 364 = 2 · 2 · 7 · 13 = 22 · 7 · 13

b. 7581 = 7 · 19 · 57

c. 32768 = 215

d. 31752 = 23 · 34 · 72

e. 31 = 311

f. 6! = 6 · 5 · 4 · 3 · 2 = 2 · 3 · 5 · 2 · 2 · 3 · 2 = 24 · 32 · 5
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6.2.3 More about Primes

Theorem 4 There are infinitely many primes.

Proof: Here is an elementary proof due to Euclid. Suppose, for the sake of contradiction,

that there are only a finite number of primes; let S = {p1, p2, . . . , pn} be the set of all prime

numbers. Now consider the number

P = p1 · p2 · · · pn + 1.

Now P must be either prime or composite. If P were composite, it must be divisible by a prime

in S; however, the remainder after the division of P by any pi is 1, by construction. Therefore,

P must be prime, contradicting the assumption that S is the set of all primes, since P is clearly

larger than any element of S. Thus, our assumption that there are a finite number of primes

must be false. 2

Want to listen to some primes? Try the Prime Number Listening Guide at

http://primes.utm.edu/programs/music/listen/.

6.3 Division

Back in elementary school, you probably wrote out division problems like this:

4

7
)

29 r = 1

In this equation, 29 is the dividend , 7 is the divisor , 4 is the quotient , and 1 is the remainder .

The following theorem tells us that we can always find a quotient and remainder in a division

problem.

Theorem 5 (The Division “Algorithm”) Let a be an integer and b a positive integer. Then

there are unique integers q and r, with 0 ≤ r < b, such that a = b · q + r.

6.3.1 Scheme Functions Related to Division

These definitions and examples are taken from The Scheme Programming Language, Second

Edition by R. Kent Dybvig [2].

http://primes.utm.edu/programs/music/listen/
http://www.scheme.com/tspl2d/index.html
http://www.scheme.com/tspl2d/index.html
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procedure: (quotient int1 int2)

returns: the integer quotient of int1 and int2

(quotient 45 6)⇒ 7

(quotient 6.0 2.0)⇒ 3.0 The function remainder is similar to

(quotient 3.0 − 2)⇒ −1.0 but not quite the same as modulo.

procedure: (remainder int1 int2) procedure: (modulo int1 int2)

returns: the integer remainder of int1 and int2 returns: the integer modulus of int1 and int2

The result of remainder has the same sign as int1. The result of modulo has the same sign as int2.

(remainder 16 4)⇒ 0 (modulo 16 4)⇒ 0

(remainder 5 2)⇒ 1 (modulo 5 2)⇒ 0

(remainder − 45.0 7)⇒ −3.0 (modulo − 45.0 7)⇒ 4.0

(remainder 10.0 − 3.0)⇒ 1.0 (modulo 10.0 − 3.0)⇒ −2.0
(remainder − 17 − 9)⇒ −8 (modulo − 17 − 9)⇒ −8

In some computing languages, the functions quotient and modulo are called div and mod .

Mathematicians write “a mod b” instead of “(modulo a b).”

6.4 Greatest Common Divisor and Least Common Multiple

If a and b are integers, that are not both 0, the greatest common divisor of a and b, gcd(a, b) is

the largest integer d such that d | a and d | b. The least common multiple of a and b, lcm(a, b)

is the smallest integer divisible by both a and b.

Example 6.3

a. gcd(75, 21) = 3

b. gcd(52, 81) = 1

c. gcd(22 · 7 · 13, 23 · 34 · 72) = 22 · 30 · 7 · 130 = 22 · 7 What is the rule?1

d. gcd(49831, 825579) = ? We will soon learn a way to solve this efficiently.

e. lcm(75, 21) = 75 · 7 = 25 · 21 = 525

f. lcm(52, 81) = 52 · 81 = 4212

1gcd(a, b) divides both a and b so the exponent of each prime factor of gcd(a, b) must be the minimum of that
prime’s exponent in a and in b.
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g. lcm(22 · 7 · 13, 23 · 34 · 72) = 23 · 34 · 72 · 13 What is the rule?

Two integers m and n are said to be relatively prime or coprime if gcd(m,n) = 1. The integers

52 and 81 are relatively prime.

6.4.1 Applications of gcd and lcm

The most common applications of the gcd and lcm is in working with fractions. You put them

to use whenever you reduce or add fractions and you would use them in the same way if you

were implementing a class to represent fractions.

To reduce a fraction to lowest terms, we divide the numerator and denominator by their gcd.

84

36
=

12 · 7
12 · 3

=
7

3
gcd(84, 36) = 12

We use the lcm when we add fractions.

3
5 + 2

7 = 21+10
35 = 31

35 lcm(5, 7) = 35

2
15 + 10

21 = 14+50
105 = 64

105 lcm(15, 21) = 105

In both these sums of fractions we see that the denominator of the result is given by the lcm

of the denominators in the summands but where did the numbers 14 and 50 come from?

14 = 2 · 21

gcd(15, 21)
and 50 = 10 · 15

gcd(15, 21)

In general, if a, b, c, and d are positive integers then

a

b
+
c

d
=
a · d+ c · b

b · d
=

(a · d)/ gcd(b, d) + (c · b)/ gcd(b, d)

(b · d)/ gcd(b, d)
=
a · (d/ gcd(b, d)) + c · (b/ gcd(b, d))

lcm(b, d)

Will the resulting fractions always be reduced? The last equality comes from the following

theorem.

Theorem 6 Let a and b be positive integers. Then ab = gcd(a, b) · lcm(a, b).

We also use the gcd in cryptography. For example, to decrypt a linear cipher



6.5 Euclidean Algorithm 73

a→ (m · a+ b) mod n

we need a multiplicative inverse for m mod n. In fact, a multiplicative inverse for m mod n

exists if and only if gcd(m,n) = 1. If we are working with a large number of letters or blocks,

n, we need an efficient way calculate gcd(m,n) in order to check whether we are using a good

multiplier, m.

6.5 Euclidean Algorithm

How do you find gcd(49831, 825579) or gcd(8094702578291, 7403070229547) or the gcd of two

hundred-digit numbers? You could factor both numbers but that is a costly operation and

will not be feasible if the numbers are too large. The Euclidean Algorithm is a method

to compute the gcd of two non-zero integers, a and b. The method is based on the Division

Algorithm.

Theorem 7 (Euclidean Algorithm) If r is the remainder when a is divided by b, i.e. a =

q · b+ r, with 0 ≤ r < b, then, gcd(a, b) = gcd(b, r).

If a = q · b+ r, with 0 ≤ r < b then, by definition, r = a mod b. So another way of stating

the Euclidean algorithm is gcd(a, b) = gcd(b, a mod b). This still sounds like a theorem rather

than an algorithm that lays out the steps to find the gcd(a, b). This is how we use it as an

algorithm.

Euclidean algorithm

Input: Two positive integers, a and b.

Output: gcd(a, b)

• If a < b, swap a and b.

• If b divides a, return b .

• else return gcd(b, a mod b)

The correctness of the Euclidean Algorithm can be proven in many ways. Here, we make

use of the following lemma concerning divides and gcd.

Lemma 1 If x | y and x | z, then x | gcd(y, z).

Proof: Since x is a common divisor of both y and z, it must be a factor of the greatest common

divisor of y and z. 2



74 Integers and Division

We can now make use of this lemma to verify the correctness of the Euclidean Algorithm.

Proof: In what follows, we show that gcd(a, b) | gcd(b, r) and gcd(b, r) | gcd(a, b). Since n | m
and m | n if and only if n = m, we must have that gcd(a, b) = gcd(b, r).

gcd(a, b) | gcd(b, r):

gcd(a, b) | a and gcd(a, b) | b by definition

⇒ gcd(a, b) | (a− q · b) by algebra and definition of divides

⇒ gcd(a, b) | r since a = q · b+ r

But if gcd(a, b) | b and gcd(a, b) | r, then gcd(a, b) | gcd(b, r), by the Lemma 1.

Similarly, we have the following:

gcd(b, r) | gcd(a, b):

gcd(b, r) | b and gcd(b, r) | r by definition

⇒ gcd(b, r) | (q · b+ r) by algebra and definition of divides

⇒ gcd(b, r) | a since a = q · b+ r

But if gcd(b, r) | a and gcd(b, r) | b, then gcd(b, r) | gcd(a, b), by the Lemma 1. 2

6.5.1 Using the Euclidean Algorithm

Here is a Scheme implementation of the Euclidean Algorithm from Wikipedia, the free ency-

clopedia.

(define (gcd a b)

(if (= b 0)

a

(gcd b (modulo a b))))

Example 6.4

a. gcd(42, 35) = gcd(35, 7) = gcd(7, 0) = 7.

b. gcd(612, 1275) = gcd(1275, 612) = gcd(612, 51) = gcd(51, 0) = 51.

c. gcd(49831, 825579)

http://en.wikipedia.org/wiki/Euclidean_algorithm
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= gcd(825579, 49831) = gcd(49831, 28283) = gcd(28283, 21548)

= gcd(21548, 6735) = gcd(6735, 1343) = gcd(1343, 20)

= gcd(20, 3) = gcd(3, 2) = gcd(2, 1) = gcd(1, 0) = 1

Notice that it took only 10 applications of mod to compute gcd(49831, 825579).

6.5.2 Euclidean Algorithm Links

For further discussion of the Euclidean algorithm, see the Prime Pages glossary

http://primes.utm.edu/glossary.

The Visible Euclidean Algorithm

http://www.math.umn.edu/~garrett/crypto/a01/Euclid.html

is a tool that computes the gcd of two numbers and shows the steps using repeated applications

of the Division Algorithm, i.e., following the proof. (Remember that you are supposed to

understand the Euclidean Algorithm and will have to perform it by hand on exams.)

6.6 Extended Euclidean Algorithm

One of the uses of the Euclidean Algorithm is to find integer solutions to equations of the form

ax + by = c. Given integers a, b, and c, this is solvable (for x and y integers) whenever the

gcd(a, b) divides c. If you keep track of the quotients in the Euclidean Algorithm while finding

gcd(a, b), you can reverse the steps to find x and y. This method is called the Extended

Euclidean Algorithm. It is especially useful when a and b are relatively prime. Then we

can solve ax + by = 1 and x will be the multiplicative inverse of a mod b and y will be a

multiplicative inverse of b mod a. It will be easier to understand how this works by looking at

some examples.

Example 6.5

If we use the Division Algorithm repeatedly to compute gcd(6735, 1343), the steps look like

this.

1. 6735− 5 · 1343 = 20 = gcd(6735, 1343)

2. 1343− 67 · 20 = 3 = gcd(1343, 20)

3. 20− 6 · 3 = 2 = gcd(20, 3)

4. 3− 1 · 2 = 1 = gcd(3, 1)

http://primes.utm.edu/glossary/page.php?sort=EuclideanAlgorithm
http://www.math.umn.edu/~garrett/crypto/a01/Euclid.html
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5. 2− 2 · 1 = 0

So gcd(6735, 1343) = 1.

When we are just interested in computing the gcd, we usually just keep track of the successive

remainders (gcds) and write.

gcd(6735, 1343) = gcd(1343, 20) = gcd(20, 3) = gcd(3, 1) = 1

To find integers x and y such that x · a + y · b = 1, we will also make use of the successive

quotients. Here is one way to find x and y such that x · 6735 + y · 1343 = 1. Start with line 4

of the calculation above and work backwards:

3− 1 · 2 = 1

Use line 3 above to substitute for 2 in this expression then rearrange the result so it looks like

u · 20 + v · 3 = 1 where u and v are integers.

3− 1 · (20− 6 · 3) = 1

−1 · 20 + 7 · 3 = 1

Now use line 2 above to substitute for 3 in this expression then rearrange the result so it looks

like u · 1343 + v · 20 = 1 where u and v are integers.

−1 · 20 + 7 · (1343− 67 · 20) = 1

7 · 1343− (1 + 67 · 7) · 20 = 1

7 · 1343− 470 · 20 = 1

Finally, use line 1 above to substitute for 20 in this expression then rearrange the result so it

looks like u · 6735 + v · 1343 = 1 where u and v are integers.

7 · 1343− 470 · (6735− 5 · 1343 = 1

−470 · 6735 + 2357 · 1343 = 1

We have found a solution for x · 6735 + y · 1343 = 1, x = −470 and y = 2357.

We could turn this calculation into a general method but it is messy. You must be very careful

after each substitution not to just add everything up. You must keep the successive remainders

intact when you substitute and rearrange. It is easy to get lost in the arithmetic.
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Here is another method that is much easier to work by hand, it’s called the Table Method.

We show it first on the same example.

A = 6735 and B = 1343

Line Q R X Y X ·A+ Y ·B = R

1 6735 1 0 1 ·A+ 0 ·B = 6735 = A

2 1343 0 1 0 ·A+ 1 ·B = 1343 = B

3 5 20 1 −5 1 ·A− 5 ·B = 20 = mod(6735, 1343)

4 67 3 −67 336 −67 ·A+ 336 ·B = 3 = mod(1343, 20)

5 6 2 403 −2021 403 ·A− 2021 ·B = 2 = mod(20, 3)

6 1 1 −470 2357 −470 ·A+ 2357 ·B = 1 = mod(3, 2) = gcd(6735, 1343)

7 1 0

If you look down the R column of the table, you see that we have just done the same computation

we did above. We start with A and B and starting with line 3, the R value is the number two

lines above mod the number one line above. In the Q column, we keep track of the successive

quotients. So 5 = b6735/1343c and 20 = mod(6735, 1343), the remainder of the division.

Continuing, 67 = b1343/20c and 3 = mod(1343, 20), and so on. We stop at line 7 because

R = 0. By the Division Algorithm, the R in line 6 is gcd(A,B). The X and Y values on each

line also satisfy X ·A+Y ·B = R so the X and Y values in line 6 are satisfy X ·A+Y ·B = 1.

In general, the Table Method works like this.

Start with positive integers, A and B with A ≥ B. Enter the first two line of the table as

shown below, leaving the Q column empty. It is clear the these two lines satisfy the condition

X · A + Y · B = R. Once we have two successive lines line k and line k + 1 filled in, we fill in

the next line k + 2 as follows,

• Q[k + 2] = the integer quotient of R[k] divided by R[k + 1] = bR[k]/R[k + 1]c.

• R[k + 2] = R[k] − Q[k + 2] · R[k + 1] This is the remainder of the division and equals

mod(R[k], R[k + 1]).

• X[k + 2] = X[k]−Q[k + 2] ·X[k + 1] and Y [k + 2] = Y [k]−Q[k + 2] · Y [k + 1].

• When R = 0, STOP. The R on the previous line is gcd(A,B) and the X and Y on that

line satisfy X ·AY ·B = R = gcd(A,B).
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Line Q R X Y

1 A 1 0

2 B 0 1
...

...
...

...
...

k Q[k] R[k] X[k] Y [k]

k + 1 Q[k + 1] R[k + 1] x[k + 1] Y [k + 1]

k + 2 bR[k]/R[k + 1]c R[k]−Q[k + 2] ·R[k + 1] X[k]−Q[k + 2] ·X[k + 1] Y [k]−Q[k + 2] · Y [k + 1]
...

...
...

...
...

some q gcd(A,B) x y

another q 0

The x and y in the next to the last row are just what we were looking for. x · A + y ·
B = gcd(A,B). We can prove that this works using induction and we’ll get to that later in

this course. For now, just observe that if we believe that X[k] · A + Y [k] · B = R[k] and

X[k + 1] ·A+ Y [k + 1] ·B = R[k + 1] then

X[k + 2] ·A+ Y [k + 2] ·B
= (X[k]−Q[k + 2] ·X[k + 1]) ·A+ (Y [k]−Q[k + 2] · Y [k + 1]) ·B
= X[k] ·A+ Y [k] ·B −Q[k + 2] · (X[k + 1] ·A+ Y [k + 1] ·B)

= R[k]−Q[k + 2] ·R[k + 1] = R[k + 2].

You can see additional discussion and examples at

http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

6.7 Inverses mod n

We have already seen that we need to find multiplicative inverses modn to decipher cipher

text that was created using using linear ciphers 5.4.2 on page 60. Multiplicative inverses modn

are important in the decryption process in much more sophisticated encryption systems as we

will see in the next section, The RSA (Rivest-Shamir-Adelman) cryptosystem. Recall that the

multiplicative inverse of an integer a modulo n is an integer x such that x · a mod n = 1. An

integer a has a multiplicative inverse modn if and only gcd(a, n) = 1. That means we can

apply the Extended Euclidean Algorithm to solve x · a+ y · n = 1. This implies x · a = 1− y · n
which means x · a mod n = 1 so x is the multiplicative inverse of a mod n.

Above, we used the Extended Euclidean Algorithm to find that −470 ·6735 + 2357 ·1343 = 1.

http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
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This also tells us that −470 · 6735 mod 1343 = 1. So −470 is a multiplicative inverse for

6735 mod 1343. If you want a positive inverse, just use −470 mod 1343 = 1343− 470 = 873.

6.8 The RSA (Rivest-Shamir-Adelman) cryptosystem

6.8.1 Introduction

The RSA cryptosystem is a public-key cryptosystem, widely used for secure communication and

e-commerce applications. It is often used to encrypt messages sent between two communicating

parties so that an eavesdropper who overhears the conversation cannot decode them easily. It

also enables a party to append an unforgeable signature to the end of a message. This signature

cannot be ”easily” forged and can be checked by anyone.

6.8.2 How do public-key cryptosystems work?

Consider our protagonists Alice and Bob who want to communicate with each other securely.

Suppose Bob wants to send a message to Alice. In a typical public-key cryptosystem Alice has

two keys, a secret (or private) key that only Alice knows and a public key that Alice advertises

to the whole world. Each key yields a function that map a message to another message: the

public key yields a public encryption function – let us call it PA – and the secret key yields a

secret decryption function SA. A typical message exchange proceeds as follows.

Bob encrypts his message M using PA and sends the message PA(M) to Alice.

If Alice receives PA(M), she applies SA and obtains SA(PA(M)) = M .

So we want two functions SA and PA such that SA(PA(M)) = M , for all permissible

messages M . Furthermore, our selection of SA and PA should be such that any eavesdropper,

who can read message PA(M), cannot “efficiently” extract M from this; or, ideally, cannot

“efficiently” extract any reasonable information from this.

6.8.3 How does RSA work?

The basic RSA cryptosystem is completely specified by the following sequence of steps.

1. Alice selects at random two large primes p and q.

2. Alice computes n = pq.

3. Alice selects a small odd integer e that is relatively prime to (p− 1)(q − 1).

4. Alice sets d so that de mod (p− 1)(q − 1) equals 1.

5. Alice publishes the pair (e, n) as the public key, with PA(M) = M e mod n.
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6. Alice stores the pair (d, n) as the secret key, with SA(E) = Ed mod n.

In order to send message M in {0, 1, . . . , n − 1}, Bob sends PA(M) = M e mod n. On

receiving the encrypted message Alice computes SA(PA(M)) = Mde mod n. Our choices of d,

e, and n ensure that Mde mod n equals M .

To see the last step, we need to understand the mathematical underpinnings of RSA, which

we will do so in Section 6.8.4. But first, let us do a couple of examples. Take

p = 5, q = 3;n = 5 · 3 = 15; (p− 1)(q − 1) = 4 · 2 = 8; e = 3.

We need to find the multiplicative inverse of 3 mod 8. Well, 3 · 3 = 9 mod 8 = 1. So d = 3.

Here is another example. Suppose we take

p = 7, q = 11;n = 7 · 11 = 77; (p− 1)(q − 1) = 6 · 10 = 60; e = 13.

What is d? Note that d is the multiplicative inverse of e mod 60. We can calculate it using

the Extended Euclid algorithm to obtain 37; you can verify that 37 · 13 mod 60 = 1.

Suppose the message M = 2. Then the encrypted message is 213 mod 77. We calculate it

as follows:

22 mod 77 = 4

24 mod 77 = 16

28 mod 77 = 256 mod 77 = 25

213 mod 77 = (25 · 16 · 2) mod 77 = 800 mod 77 = 30.

To decrypt, Alice computes 3037 mod 77, which can be calculated as follows.

302 mod 77 = 900 mod 77 = 53

304 mod 77 = 532 mod 77 = 2809 mod 77 = 37

308 mod 77 = 372 mod 77 = 1369 mod 77 = 60

3016 mod 77 = 602 mod 77 = 3600 mod 77 = 58

3032 mod 77 = 582 mod 77 = 3364 mod 77 = 53

3037 mod 77 = (3032 · 304 · 30) mod 77 = (53 · 37 · 30) mod 77 = 2.
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6.8.4 Why does RSA work?

We can prove that RSA works by showing that for any M in {0, . . . , n − 1}, the following

equation holds.

Mde mod n = M (6.3)

We establish the above Equation using a nice theorem due to the French mathematician Pierre

Fermat, called Fermat’s Little Theorem.

Theorem 8 (Fermat’s Little Theorem) If p is prime, then for all 1 ≤ a < p, we have

ap−1 mod p = 1.

Proof: Consider a ·x and a · y for x 6= y, 1 ≤ x, y < p. We claim they are different modp since

otherwise, p divides a or x−y, both not possible. So, a·1 mod p, a·2 mod p, . . . , a·(p−1) mod p

are all different numbers in {1, 2, ..., p− 1}. Thus, we have

(a · 1) · (a · 2) · · · (a · (p− 1)) = ap−1 · (p− 1)! = (p− 1)! mod p.

Thus, p either divides ap−1−1 or divides (p−1)!. The latter is not possible, hence the claim. 2

We now establish Equation 6.3. Recall that de mod (p−1)(q−1) = 1. So de = k(p−1)(q−
1) + 1 for some integer k. We will show that M (p−1)(q−1) mod n is equal to 1. Note that this

immediately implies that Mde mod n = M .

We consider two cases. In the first case, M is relatively prime to both p and q; in the second,

M has a common factor with either p or q.

1. Let us consider the first case. By Fermat’s Little Theorem, we know that Mp−1 mod p = 1

and M q−1 mod q = 1. Therefore, we have M (p−1)(q−1) mod p and M (p−1)(q−1) mod q are

both 1. Thus, M (p−1)(q−1) is of the form k1p+ 1 as well as of the form k2q + 1 for some

integers k1 and k2. This implies that k1p = k2q; since p and q are different primes, this can

hold only if k1 is a multiple of q and k2 is a multiple of p. It thus follows that M (p−1)(q−1)

is of the form kpq + 1 = kn + 1 for some integer k. In other words, M (p−1)(q−1) mod n

equals 1. This completes the proof for the first case.

2. We now consider the case where M shares a common factor with either p and q. In this

case, M is a multiple of p or q. Suppose, without loss of generality M = kp for some

integer k. Let us consider what Mde mod p and Mde mod q are. Since M is a multiple of
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p, Mde mod p = 0. So Mde is a multiple of p. We now calculate Mde mod q as follows.

Since M < n, it follows that k < q; so M is relatively prime to q. By Fermat’s Little

Theorem, we then have M q−1 mod q = 1. Therefore, we also have M (p−1)(q−1) mod q = 1,

implying that Mde mod q = M mod q. We thus have

Mde mod p = 0;Mde mod q = M mod q.

Let M1 denote Mde mod pq. It follows that

M1 mod p = 0;M1 mod q = M mod q.

Thus M1 is of the form `p for some integer ` < q. But since q divides M −M1 = (k− `)p
for nonnegative integers k, ` < q, it follows that k = `, implying that M1 = M .

We have thus shown that the decryption function of RSA, when applied to an encrypted mes-

sage, yields the original unencrypted message as desired.

6.8.5 Is RSA secure and efficient?

What are the individual steps in RSA? Which of these can be executed efficiently? How secure

is RSA? Here is a brief discussion on the efficiency and security of RSA.

• Generating two large random primes: How do we perform this? Well, one way to do it is

to generate a random number and then test whether it is prime. How do we test whether

it is prime? Our naive scheme (that works in time proportional to the square root of the

number) is too slow and inefficient. Fortunately, there are faster, efficient, ways to do it.

• We need to raise a number to a (potentially) large power in modular arithmetic. We have

seen how to do this efficiently using the repeated squaring method.

• We also need to find a multiplicative inverse in modula arithmetic. This can be done

efficiently using the Extended Euclid Algorithm.

• We do not want the number n (used in the RSA private and public key) to be easily

factored into its prime factors p and q. A naive algorithm takes time proportional to the

square root of n. Fortunately, there is *no* efficient way known for this problem.

• As stated, RSA is a deterministic encryption system; i.e., a particular message is encrypted

the same way every time. This is prone to easy attacks, referred to as plaintext attacks,

where the attacker may be aware that the message being sent is one of a small number
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of possibilities, and can try the public encryption system with different possibilities. One

way to avoid this attack, is making the system randomized – for instance by adding a

fixed-size random pad to the plaintext message and encrypting the padded message. The

random pad is chosen independently at every step, thus making the above plaintext attack

more difficult.

Exercises

Prime Number Decomposition

Exercise 6.1

Give the prime number decomposition for each of the following. You should not need a

calculator.
a. 162 b. 640 c. 363 d. 1024 e. 1000 f. 8800

g. 102400 h. 8100 i. 29 j. 999 k. 256 · 81 l. 125 · 49 · 325

Exercise 6.2

Give the prime number decomposition for each of the following. You should not need a

calculator.
a. 8! b. 9! c. 10! d. 6!

24
e. 10!

24·33 f. (6!)3

g. 8!
4! h. 8!

4!4! i. 10!
3! j. 10!

7! k. 10!
3!7! l. 25·37·59·76

22·34·76

Greatest Common Divisor and Least Common Multiple

Exercise 6.3

Evaluate the following. You should not need a calculator.

a. gcd(60, 80)

b. lcm(60, 80)

c. gcd(256, 162)

d. gcd(512, 1024)

e. lcm(512, 1024)

f. gcd(6!, 8!)

g. lcm(6!, 8!)

h. gcd(23 · 35 · 54, 22 · 37 · 52)
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i. lcm(23 · 35 · 54, 22 · 37 · 52)

Exercise 6.4

Use the Euclidean Algorithm to find each of the following. Show your work.

a. gcd(612, 588)

b. gcd(488, 183)

c. gcd(217, 124)

Exercise 6.5

Use the Extended Euclidean method Algorithm to solve ax + by = gcd(a, b). If the gcd is 1,

also give the multiplicative inverse of a mod b as a number from 1 to b− 1.

a. a = 24, b = 119

b. a = 20, b = 151
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C h a p t e r 7

Sets

A set is an unordered collection of objects. The objects are called elements of the set. Many

of the sets we talk about in discrete structures are sets of numbers.

Some Sets of Numbers:

N = {0, 1, 2, 3, ...} natural numbers 1

Z = {...− 2,−1, 0, 1, 2, ...} integers

Z+ = {1, 2, 3, ...} positive integers

Q = {p/q|p in Z, q in Z, q 6= 0} rational numbers

R real numbers

S = {1, 2, 3} the set containing the three numbers: 1, 2, 3.

We use braces (also called curly brackets) to show the elements of a set. The elements of a set

do not have to be numbers. We can talk about the set of all CCIS freshmen or just the CCIS

freshmen who showed up for class today. Here are some other sets.

Some Other Sets:

Letters = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}

Vowels = {a, e, i, o, u}

Nibbles = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}

{George, textbook, a piece of chalk, 6} George is my son. This is a weird set.

87
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7.1 Set Basics

If x is an element of S, we write x ∈ S which may also be read as “x is in S.”

If x is not in S, we write, x /∈ X.

Two sets are equal if and only if they have the same elements.

{a, b, c} = {b, c, a} = {b, a, c, b}
We do not usually write a element twice, as in {b, a, c, b} but sometimes it just happens. We

might, for example, compute {2x, x2, x3− 4} for some values of x. Here’s what we get for a few

small values of x.

x = 1: {2x, x2, x3 − 4} = {2, 1,−3}
x = 3: {2x, x2, x3 − 4} = {6, 9, 23}
x = 0: {2x, x2, x3 − 4} = {0, 0,−4} = {0,−4}
x = 2: {2x, x2, x3 − 4} = {4, 4, 4} = {4}

If a set has a finite number of elements, we say it is a finite set and the cardinality or size of

the set is the number of elements it contains. We use the notation |S| to denote the cardinality

of S. If S = {1, 2, 5, 7}, then |S| = 4. Cardinality is also defined for infinite sets, i.e. sets with

infinitely many elements. Though and both R and Z have infinitely many elements, they do

not have the same cardinality. In fact, there are an infinite number of different infinities. You

will learn about this in Theory of Computation, if not sooner.

A set may also have no elements at all. We call a set with no elements the empty set and

denote it by ∅ or by {}. This may seem silly but the empty set is very important. In a way, it

is a place-keeper like the number zero. When you declare a set variable in computing, it is an

empty set until you put something in it. If we compute

S = {x ∈ R|x2 + 4x+ c = 0}
for various values of c, then when

c = 0, S = {−4, 0}
c = 4, S = {−2}
c = 6, S = {}.

7.2 Set-Builder Notation

Sometimes we define a set by listing all the elements of the set inside curly brackets as we

did above for S = {1, 2, 3}. We do this too for infinite sets as in Z+ = {1, 2, 3, . . .} or =

Z = {. . . − 2,−1, 0, 1, 2, . . .}. When we need to describe which elements are in the set instead
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of just leaving it to the reader to figure out how to continue a list, we use set-builder notation.

A set description in set-builder notation looks like

{v| condition on v} or {v ∈ S| condition on v}

where v is a variable and S is a set. The braces ‘{’ and ‘}’ tell us to say “the set of” and the

vertical bar ‘|’ is read as “such that.” We sometimes use a colon “:” in place of the vertical

bar.

{v| condition on v} is read as “the set of v such that” the condition on v holds.

{v ∈ S| condition on v} is read as “the set of v in S such that” the condition on v holds.

The examples below should explain how set builder notation works.

7.2.1 Examples

{x|x ∈ Z and |x| < 5} means “the set of x in Z such that |x| is less than 5” which

is equal to {−4,−3,−2,−1, 0, 1, 2, 3, 4}. We might also write {x ∈ Z||x| < 5}.

{x ∈ Z|x2 < 10} = the set of integers such that x2 < 10 = {−3,−2,−1, 0, 1, 2, 3}.

{x ∈ N|x2 < 10} = the set of natural numbers such that x2 < 10 = {0, 1, 2, 3}.

{z|z = 2k and k ∈ N} = the set of z such that z = 2k where k is a natural number

= {0, 2, 4, 6, . . .} = the positive even integers.

7.3 Venn Diagrams

Venn Diagrams are a way of using pictures to describe sets and set operations. The first thing

we do is draw a universe or universal set , U . The set U contains all the objects that we might

want to be in the sets we are talking about, for example, U might be all real numbers or all

people living today or all current Northeastern University students. We use a rectangle to show

U .

 U 
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We then show a single set S with elements in the universe U like this.

 U 

S 

If two sets A and B with elements from the universe U have no elements in common, we say A

and B are disjoint . Here is a Venn diagram showing the relationship between disjoint sets A

and B.

 U 

A B 

We say A is a subset of B (or A is included in B or B includes A) if every element of A is also

an element of B. We write

A ⊆ B if A is a subset of B, In this case, A might be equal to B.

A ⊂ B if A is a subset of B but A is not equal to B. This means that every element of A

is an element of B but there is at least one element of B that is not an element of A. We say

A is a proper subset of B.

Here is a Venn diagram that shows A ⊆ B or A ⊂ B.

 

U 

A B 

7.4 Set Operations

Just like we use arithmetic operations, e.g. +, −, ×, /, to combine numbers to yield new

numbers, we use set operations to combine sets to form new sets. The basic set operations

follow with definitions, corresponding Venn diagrams, and examples.
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7.4.1 ∪ Union

A ∪B = {x|x ∈ A or x ∈ B}

 
 U 

A 

B 

Let A = {1, 2, 3, 4}, B = {2, 3, 4, 6, 7, 9}, and C = {1, 2, 9}. Then

A ∪B = {1, 2, 3, 4, 6, 7, 9}
B ∪ C = {1, 2, 3, 4, 6, 7, 9}
A ∪ C = {1, 2, 3, 4, 9}

For any set S, S ∪ ∅ = S and S ∪ U = U where U is the universe.

7.4.2 ∩ Intersection

A ∩B = {x|x ∈ A and x ∈ B}

 
 U 

A 

B 

Let A = {1, 2, 3, 4}, B = {2, 3, 4, 6, 7, 9}, and C = {1, 2, 9}. Then

A ∩B = {2, 3, 4}
B ∩ C = {2, 9}
A ∩ C = {1, 2}

For any set S, S ∩ ∅ = ∅ and S ∩ U = S where U is the universe.

Sets A and B are disjoint if and only if A ∩B = ∅.

If A and B are finite sets, the cardinality of A ∪ B, is given by |A ∪ B| = |A|+ |B| − |A ∩ B|.
This is the Principle of Inclusion-Exclusion. When we add up |A|+ |B|, we have counted

all the elements of A and all the elements of B but we have counted the elements in A ∩ B
twice so we must subtract that number to get the correct result. This statement seems obvious
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but often proves to be a stumbling block in the counting problems we will get to later in the

semester.

7.4.3 A Complement

A = {x|x ∈ U and x /∈ A}

 
 U 

A 

Let A = {1, 2, 3, 4}, B = {2, 3, 4, 6, 7, 9}, C = {1, 2, 9} and U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Then

A = {0, 5, 6, 7, 8, 9}
B = {0, 1, 5, 8}
C = {0, 3, 4, 5, 6, 7, 8}

The empty and universal sets are related by ∅ = U and U = ∅.

7.4.4 Difference

A−B = {x|x ∈ A and x /∈ B}

 
 U 

A 

B 

Let A = {1, 2, 3, 4}, B = {2, 3, 4, 6, 7, 9}, and C = {1, 2, 9}. Then

A−B = {1}
B −A = {6, 7, 9}
B − C = {3, 4, 6, 7}
C −B = {1}
A− C = {3, 4}
C −A = {9}

For any set S, S − ∅ = S and S − U = ∅ where U is the universe.
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7.4.5 Symmetric Difference

A4B = {x|x ∈ A and x /∈ B} ∪ {x|x ∈ B and x /∈ A}

Let A = {1, 2, 3, 4}, B = {2, 3, 4, 6, 7, 9}, and C = {1, 2, 9}. Then

A4B = {1, 6, 7, 9}
B 4A = {1, 6, 7, 9}
B 4 C = {1, 3, 4, 6, 7}
C 4B = {1, 3, 4, 6, 7}
A4 C = {3, 4, 9}
C 4A = {3, 4, 9}

All of the set operations introduced above yield sets in the same universe as the original sets.

We now look at two ways of building sets from a given set or sets that result in a set with

elements from a different universe.

7.4.6 Power Set

If A is a set, the power set P(A) is the set of all subsets of A. We often need to use subsets of

a set when we model a real problem, e.g. if the universe is all Northeastern students, we may

want to consider possible subsets of students in particular classes, or dorms, or teams.

If A = {1, 2} then P(A) = {∅, {1}, {2}, {1, 2}}. The elements of P(A) are sets, not numbers.

In general, the cardinality of the power set |P(A)| = 2|A| and sometimes we use 2A instead of

P(A) to denote the power set of A.

More Examples of Power Sets

If A = {a, b, c} then P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

P(∅) = {∅} which is not the same as ∅. The empty set ∅ has no elements but it

does have one subset, ∅.

If S = {x}, P(S) = {∅, {x}} and P(P(S)) = {∅, {∅}, {{x}}, {∅, {x}}}. Note that

|S| = 1, |P(S)| = 2 = 2|S|, and |P(P(S))| = 4 = 2|P(S)| .
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7.4.7 Cartesian Product

You learned about one particular Cartesian product R×R back in high school when you drew

graphs of functions. R×R = {(x, y)|x, y ∈ R} and it is usually visualized as a plane.

 

x→ 

↑ 
y 

(x,y) 

x 

y 

Points correspond to order pairs (x, y). Unlike sets, order matters when we write an ordered

pair. The ordered pairs (1, 2) and (2, 1) are not equal whereas the sets {1, 2} and {2, 1} are

equal. The Cartesian product is named after Rene Descartes.

We can define the Cartesian product of any two sets, A and B, in a similar way.

A×B = {(x, y)|x ∈ A and y ∈ B}

Let A = {1, 2, 3} and B = {a, b}, then A×B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}. We can

visualize A×B similarly to the way we visualized R×R.

 
 

1 2 3 

a 

b 

. 
(1,a) 

. 
(2,a) 

. 
(3,a) 

. 
(1,b) 

. 
(2,b) 

. 
(3,b) 

A B×  

In general, the cardinality of A×B = |A×B| = |A| × |B|.

We often need the Cartesian product of many sets, e.g. A × B × C. The elements of the

Cartesian product A × B × C are similar to ordered pairs but they have three components

instead of two, e.g. (a, b, c). As with ordered pairs, the order matters. We call such an ordered

triple a 3-tuple. An n-tuple has n components.

Examples

Tuples

(7, 5, 0,−3, 11, 4) is a 6-tuple of integers.

(Fell, Felleisen, Aslam) is a 3-tuple of CCIS professors.
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(Aslam, Felleisen, Fell) is a different 3-tuple of CCIS professors.

Cartesian Products

R×R×R = {(x, y, z)|x, y, z ∈ R} is usually used to represent 3-dimensional space

 

x 

y 

z 

b 
a 

c 

(a, b, c) 

If A = {1, 2}, B = {a, b}, and C = {X,Y } then

A×B × C = {(1, a,X), (1, a, Y ), (1, b,X), (1, b, Y ), (2, a,X), (2, a, Y ), (2, b,X), (2, b, Y )}

In general, the cardinality |A1 ×A2 × · · · ×An| = |A1| × |A2| × · · · × |An|.

7.5 Computer Representation of Sets

Just like numbers, sets can be represented on a computer by 0s and 1s. First, we order the

elements of the universe. We use bit-strings whose length is the cardinality of the universe U

to represent the subsets of U . Each position in the bit-string corresponds to an element of U .

A one in some position means the corresponding element is in the set while a zero means the

element is not in the set.

Examples

Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Here are some subsets of U .
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U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 1111111111

All elements are in U .

S = {1, 2, 5, 6, 7, 9} 0110011101

S = {0, 3, 4, 8} 1001100010

This is the bit-wise complement of the bit-string for S.

A = {2, 5, 6, 7, 9} 0010011101

B = {1, 4, 6, 8, 9} 0100101011

A ∩B 0000001001

This is the bit-wise and of the bit-strings for A and B.

A ∪B 0110111111

This is the bit-wise or of the bit-strings for A and B.

Further Reading

Kenneth H. Rosen, Discrete Mathematics and Its Applications [7, pages 82-85 and 93-94].

Think about the set R of all sets that are not members of themselves.

See Wikipedia on Russell’s Paradox

Exercises

Set Builder Notation

Exercise 7.1

Show or describe the elements in each set.

a. A = {n ∈ Z | 1 ≤ |2× n| ≤ 6}

b. B = {n ∈ N | 1 ≤ |2× n| ≤ 6}

c. C = {n ∈ Z | n ≤ 4}

d. D = {n ∈ Z | n2 ≤ 4}

e. E = {n2 ∈ Z | |n| ≤ 4}

f. F = {n ∈ R | n ≤ 4}

''https://en.wikipedia.org/wiki/Russell's_paradox''
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g. G = {n ∈ R | n2 ≤ 4}

h. H = {n2 ∈ R | n ≤ 4}

Venn Diagrams

Exercise 7.2

Create a Venn diagram for each of the sets below.

a. A ∪B ∪ C

b. A ∩B ∩ C

c. A ∩ (B ∪ C)

d. (A ∪B) ∩ C

Set Operations

Exercise 7.3

Let A = {2, 3, 4, 7, 9}, B = {0, 6, 7}, C = {0, 4, 9} and U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Evaluate

the following.

a. A ∪B b. A ∩B c. A−B d. B −A e. A4B

f. C ∪B g. C ∩B h. C −B i. B − C j. C 4B

k. A ∪ C l. A ∩ C m. A− C n. C −A o. A4 C

Exercise 7.4

Let A = {0, 1, 2, 3, 4}, B = {5, 6, 7, 8, 9}, C = {3, 4, 5, 6} and U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Evaluate the following.

a. A ∪B b. A ∩B c. A−B d. B −A e. A4B

f. C ∪B g. C ∩B h. C −B i. B − C j. C 4B

k. A ∪ C l. A ∩ C m. A− C n. C −A o. A4 C

Exercise 7.5

Let A = {0, 1, 2}, B = {3, 4, 5, 6}, C = {7, 8, 9} and U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Evaluate the

following.

a. A ∪B b. A ∩B c. A−B d. B −A e. A4B

f. C ∪B g. C ∩B h. C −B i. B − C j. C 4B

k. A ∪ C l. A ∩ C m. A− C n. C −A O. A4 C

Power Set
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Exercise 7.6

Give the power set for each of these sets.

a. {1} b. {X} c. {21} d. {α}
e. {1, 2} f. {X,Y } g. {21, 33} h. {α, β}
i. {1, 2, 3} j. {X,Y, Z} k. {21, 33, 42} l. {α, β, γ}
m. {1, 2, 3, 4} n. {W,X, Y, Z} o. {21, 33, 42, 56} p. {α, β, γ, δ}
q. P({1}) r. P({X}) s. P({21}) t. P({α})
u. P({1, 2}) v. P({X,Y }) w. P({21, 33}) x. P({α, β})

Cartesian Product

Exercise 7.7

Let A = {1, 2}, B = {X,Y, Z}, and C = {α, β, γ}. Show each of the Cartesian Products below.

a. A×B b. B ×A c. B × C d. C ×B
e. A× C f. C ×A g. A×A h. A×B ×A
i. A×A×A j. B × ∅ k. B × {∅} l. {∅, 0} ×B

Cardinality

Exercise 7.8

Let A = {1, 2}, and B = {X,Y, Z}. Give the cardinality of each set below.

a. A×B b. A×A×A c. B ×B ×B d. A×P(A)

e. P(A)×P(A) f. P(A)×P(B) g. P(P(A)) h. P(P(B))

i. P(P(A×B)) j. P(P(A)×P(B)) k. P(P(∅))×B l. P(P(A)×P(P(B)))

Computer Representation of Sets

Exercise 7.9

Let the universal set U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. LetA = {1, 3, 5, 7, 8, 9} andB = {0, 2, 4, 6, 8, 9}.
Using the representation of sets shown in section 7.5, give the representation for each of these

sets.
a. A b. B c. A ∪B d. A ∩B
e. A f. B g. A ∪B h. A ∩B
i. A ∪B j. A ∩B k. B ∪A l. B ∩B
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Counting

Combinatorics is the branch of mathematics largely concerned with counting discrete objects,

and counting plays a central role in many aspects of computer science. Many problems in

computer science involve counting possible solutions, enumerating those solutions, or finding

the optimal solution among a candidate set. The algorithms for finding such solutions, and the

analysis of these algorithms, all depend on counting.

As a simple example, consider the problem of planning a party. Suppose that you have 20

friends, and you wish to invite eight of them over for dinner. You also want to discuss possible

invitation lists with your best friend. How many possible invitation lists are there? The answer

is a surprisingly large number: 125,970.

Once you have selected the eight invitees, you may want to arrange them at the dinner table

in a particular order—some pairs of your guest may have much more fun sitting next to each

other than others. To model this problem, you might start by assigning each pair of partygoers

a conviviality index, e.g., a number in the range 1 to 10 indicating how much fun this pair

would have sitting next to each other at dinner. How many such conviviality indices must be

computed? You might naively construct a 9 × 9 table, where each row is labeled with one of

the nine partygoers (eight guest plus yourself) and each column is similarly labeled with one of

the partygoers; the (i, j) entry would then contain the conviviality index for corresponding pair

of partygoers. However, this table containing 81 entries is clearly excessive: each conviviality

index appears twice, once as (i, j) and once as (j, i), and the (i, i) indices are not needed (we

trust that everyone gets along with themselves!). How many conviviality indices are actually

needed? The answer is significantly smaller: 36.

Finally, given any arrangement of partygoers around a table, you could compute the total

99
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conviviality by simply adding the conviviality indices for each pair of partygoers sitting next

to each other; your goal would be to find such an arrangement which maximizes the total con-

viviality. One naive approach would be to simply enumerate all possible such arrangements,

compute the total conviviality for each arrangement, and output the arrangement with max-

imum total conviviality. How many such arrangements must be considered? The number of

such arrangements is surprisingly large: 20,160.

The example above illustrates how counting can and does play a role in solving problems

and/or analyzing the efficiency of such solutions. Creating invitation lists and computing

conviviality indices are related to the counting paradigm of combinations which we shall explore

in Section 8.5. Arranging partygoers around a table is related to the counting paradigm of

permutations which we shall explore in Section 8.4. We begin by discussing some basic rules

from which one can derive formulae for counting combinations, permutations, and other discrete

objects.

8.1 Basic Rules

In order to count or enumerate a collection of discrete objects, one can consider the choices

that need to be made in order to generate the objects in the collection, and then count the

number of objects which can be generated based on those choices and a few basic rules. We

illustrate two basic such rules through an example below.

Alice and Bob often eat lunch together at a local deli. Alice eats a big breakfast every day,

so she has a light lunch; she always orders either a soup or a sandwich, never both. Bob skips

breakfast every day, so he has a big lunch; he always orders both a soup and a sandwich. On

an average day, the deli might offer six different soups and twelve different sandwiches.

How many different meals can Alice order?

How many different meals can Bob order?

Though the questions look similar and the underlying numbers are the same, the answers

are quite different. Bob must choose one soup and one sandwich. He has 6 ways to choose a

soup and 12 ways to choose a sandwich. Since any soup can be paired with any sandwich, there

are 6 · 12 = 72 total different meals that he can order. Alice must choose either one of six soups

or one of 12 sandwiches for a total of 6 + 12 = 18 different meals.

The two different counting rules that we used can be generalized. Bob’s meal choice problem

generalizes to the Product Rule, and Alice’s meal choice problem generalizes to the Sum Rule.

The Product Rule If A and B are finite sets then the number of ways of choosing an element

from A and an element from B is |A×B| = |A| × |B|.
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This corresponds to Bob’s meal choice: he must choose a soup and a sandwich, and since

there are six soups and 12 sandwiches, he can choose from among 6× 12 = 72 possible meals.

If in addition Bob were to choose a drink and there were eight possible drinks, Bob would then

have 6× 12× 8 = 576 possible meal choices. The product rule can clearly be extended to this

more general case.

The General Product Rule If A1, A2, . . . , An are finite sets, then the number of ways of

choosing an element from A1, an element from A2, . . . , and an element from An is |A1×A2×
· · · ×An| = |A1| × |A2| × · · · × |An|.

The product rule is applicable when one must make two (or more) consecutive choices from

sets of alternatives; for example, Bob must first choose a soup and then choose a sandwich.

Conversely, the sum rule is applicable when one must make one choice from the union of two

(or more) sets of alternatives; for example, Alice must choose a meal from the union of the set

of soups and sandwiches.

The Sum Rule If A and B are disjoint finite sets then the number of ways of choosing a

single element from A or B is |A ∪B| = |A|+ |B|.

Like the product rule, the sum rule can be generalized to more than two sets of alternatives

in an obvious way.

The General Sum Rule If A1, A2, . . . , An are mutually disjoint finite sets then the number

of ways of choosing a single element from A1, A2, . . . , or An is |A1 ∪ A2 ∪ · · · ∪ An| =

|A1|+ |A2|+ · · ·+ |An|.

Example 8.1

Personal Identification Numbers or PINs are entered on a numeric keypad and, hence made up

entirely of digits.

The PINs on our office locks are required to be exactly 4 digits. How many different PINs are

possible?

The set of digits, D = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 has cardinality 10. Each PIN corre-

sponds to an element of D ×D ×D ×D. There are 104 = 10, 000 different PINs.

How many different 7 digit PINs are there?

107 = 10, 000, 000.
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How many different 4 to 7 digit PINs are there?

A single PIN has either 4 or 5 or 6 or 7 digits. We use the product rule to separately

count the sets of 4-digit, 5-digit, 6-digit, and 7-digit passwords then use the sum

rule to count the union of these sets. The number of 4 to 7 digit pins is 104 + 105 +

106 + 107 = 11, 110, 000.

Example 8.2

Passwords are often composed of alpha-numeric characters, a, b, ..., z, 0, 1, 2, ..., 9 on systems that

are not case-sensitive or A,B, ..., Z, a, b, ..., z, 0, 1, 2, ..., 9 on systems that are case-sensitive.

How many 4-character alpha-numeric passwords are there if you can use upper- and lower-case

letters and digits (i.e. case-sensitive)?

There are 26 upper-case letters, 26 lower-case letters, and 10 digits for a character

set C of size 62. The total number of possible passwords is |C × C × C × C| =

(62)4 = 14, 776, 336.

If a hacker has code that can try out passwords on a system at a rate of 1 per second, how long

would it take her to break into a system that

a) uses 4-digit passwords?

10,000 seconds = 2 hours 46 minutes 40 seconds.

b) uses 4-character case-sensitive, alpha-numeric passwords?

14,776,336 seconds = 171 days 32 minutes 16 seconds

Example 8.3

Bit strings are strings composed of 0s and 1s.

How many bit strings are there with 8 bits?

28 = 256.

How many bit strings are there with 16 bits?

216 = 65, 536.

What is the largest integer that can be represented in 16-bit two’s complement?

Since positive integers in two’s complement must have a 0 in the leftmost position,

we have only 15 places to represent the magnitude of the integer. The largest integer

we can represent is 0111 1111 1111 1111 = 215 − 1 = 32767.
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Example 8.4

Picking Students Suppose that there are three sections of a discrete structures class containing

73, 64, and 41 students, respectively.

a) How many distinct ways are there of choosing one discrete structures student to write up a

sheet of notes for everyone to use at the final?

The sum rule applies, yielding 73 + 64 + 41 = 178 possibilities.

b) How many distinct ways are there of choosing one discrete structures student from each

class to form an advisory committee?

The product rule applies, yielding 73 · 64 · 41 = 191, 552.

c) How many distinct ways are there of listing six different discrete structures students from a

41 person section to go to the board one after the other to present problem solutions?

Consider the choices that must be made in generating such a section. There are 41

students to choose from as the first presenter, but then there are only 40 students

to choose from as the second presenter, 39 as the third presenter and so on. Note

that multiple choices must be made (so the product rule applies) and the size of

the sets of alternatives (from which these choices must be made) shrinks with each

successive choice.The result is

41 · 40 · 39 · 38 · 37 · 36 = 3, 237, 399, 360.

This is an example of permutations, which is discussed in more detail in Section 8.4.

d) How many distinct ways are there of choosing six discrete structures students to form the

course volleyball team?

Now we have to choose a set of six students out of the 178 discrete structures

students. If we count the ways to make a list of 6 students, as in c, we get

178 · 177 · 176 · 175 · 174 · 173 possible ordered lists of 6 students.

Each set of 6 students appears in this list 6! = 6 · 5 · 4 · 3 · 2 · 1 times so the number

of sets is of six students out of the 178 is

178 · 177 · 176 · 175 · 174 · 173

6 · 5 · 4 · 3 · 2 · 1
=

178!

172! · 6!
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This is an example of combinations, which is discussed in more detail in Section 8.5.

Example 8.5

More Passwords Suppose passwords are restricted to 6 case-sensitive alpha-numeric characters

and must contain at least 1 digit and at least 1 letter. How many are there?

There are (62)6 passwords composed of 6 case-sensitive alpha-numeric characters

with no other restrictions. Of these, (52)6 are composed of letters only and (10)6

are composed of digits only. All the others have at least one digit and at least one

letter. So the answer is [(62)6 − (52)6 − (10)6].

Suppose passwords may have 6 to 10 case-sensitive alpha-numeric characters and must contain

at least 1 digit and at least 1 letter. How many are there?

Since a password may have 6 or 7 or 8 or 9 or 10 letters, we can count each of these

possibilities separately and apply the sum rule to get the result.

[(62)6−(52)6−(10)6]+[(62)7−(52)7−(10)7]+[(62)8−(52)8−(10)8]+[(62)9−(52)9−(10)9]+[(62)10−(52)10−(10)10]

8.2 Inclusion-Exclusion Principle

In our description of the sum rule above, we assumed that the sets of alternatives from which

one must make a single choice were mutually disjoint, i.e., that they did not share any common

elements. In our lunch example with Alice and Bob, the sets of soups, sandwiches, and drinks

are clearly mutually disjoint. However, one often encounters situations when a single choice

must be made from sets of alternatives which are not disjoint. For example, suppose that Alice

and Bob’s deli has both a lunch menu and a dinner menu, and that one is allowed to order

off either menu at lunchtime. Furthermore, suppose that some sandwiches that are available

for lunch are also available for dinner? In how many ways can Bob pick his sandwich? In

mathematical terms, let Sl denote the set of lunch sandwiches, and let Sd denote the set of

dinner sandwiches. Applying the sum rule, the total number of sandwich choices is |Sl ∪ Sd|
which is |Sl|+ |Sd| if the sets Sl and Sd are disjoint. If Sl and Sd are not disjoint, then |Sl|+ |Sd|
will double-count those sandwiches which are in both Sl and Sd, i.e., available for both lunch

and dinner. To avoid this double counting, we must subtract a quantity that corresponds to the

number of sandwiches which are double-counted; this is precisely |Sl ∩ Sd|. This is the essence

of the inclusion-exclusion principle, as defined below and shown graphically in Figure 8.1.
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Figure 8.1: |A|+|B| counts the elements in A and the elements in B, but the elements of A∩B
(the red/shaded ones) are counted twice. The proper total count is |A∪B| = |A|+ |B|−|A∩B|
as dictated by the inclusion-exclusion principle.

Inclusion-exclusion Principle If A and B are finite sets then |A∪B| = |A|+ |B|− |A∩B|.

Example 8.6

How many strings of 6 upper-case letters start with A or end with Z?

265 start with A. 265 end with Z. 264 start with A and end with Z and they were

counted twice. The answer is 265 + 265 − 264.

Example 8.7

This problem is Exercise 20 in Kenneth H. Rosen, Discrete Mathematics and Its Applications [7,

page 311]. How many positive integers between 1000 and 9999 inclusive (There are 9000 con-

secutive integers.)

a) are divisible by 9?

Every 9th integer is divisible by 9 and 9 divides 9000 evenly so there are 1000.

b) are even?

Half the integers are even and 2 divides 9000 evenly so 4500 are even.

c) have distinct digits?

Integers between 1000 and 9999 all have 4 digits and the leftmost digit cannot be 0

so there are 9 choices. The second digit can be any digit but the first so there are 9

choices. There are 8 choices for the third digit and 7 for the fourth. By the Product

Rule, 9× 9× 8× 7 = 4536 have distinct digits.

d) are not divisible by 3?

Every 3rd integer is divisible by 3 and 3 divides 9000 evenly so there are 3000 that

are divisible by 3 and 9000− 3000 = 6000 that are not divisible by 3.
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e) are divisible by 5 or 7? Use the Inclusion-Exclusion Principle here.

We compute the number divisible by 5 plus the number divisible by 7 minus the

number divisible by both (i.e. divisible by 35).

• divisible by 5: 9000/5 = 1800

• divisible by 7: 9000/7 = 1285.71429 . . . so there are either 1285 or 1286.

This take some extra checking, e.g. there are 3 integers from 4 to 12 that are

divisible by 4 (4, 8, 12) but only 2 integers from 3 to 11 (4, 8) that are divisible

by 4. The range in each case includes 9 integers and 9/4 = 2.25.

The first integer starting at 1000 that is divisible by 7 is 1001 and 1001 + 7 ·
1285 = 1001 + 8995 = 9996 so the answer is 1286.

• divisible by 35: 9000/35 = 257.142857 . . .. The first integer starting at 1000

that is divisible by 35 is 1015 and 1015+35 ·257 = 10010 > 9999 so the answer

is 257 (not 258).

• Now we apply the Inclusion-Exclusion Principle. The number divisible by 5

plus the number divisible by 7 minus the number divisible by both is 1800 +

1286− 257 = 2829.

f) are not divisible by either 5 or 7?

This is 9000 minus the number that are divisible by 5 or 7, 9000− 2829 = 6171.

g) are divisible by 5 but not by 7?

This is the number divisible by 5 but not divisible by 35, 1800− 257 = 1543.

h) are divisible by 5 and 7?

This is the same as the number divisible by 35 which is 257.

8.3 Pigeonhole Principle

Pigeons like to roost between the rafters in the eaves of overhanging roofs. Suppose that there

are 10 such locations, and suppose that 11 or more pigeons decide to roost there. Then there

must exist a location with two or more roosting pigeons. This is the essence of the Pigeonhole

Principle.
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Pigeonhole Principle If k + 1 or more objects are placed in k boxes, then there must exist

a box that contains two or more objects.

This simple and seemingly obvious principle show up quite often in counting problems,

primarily to show that some property of a collection of objects must exist. For example, if 13

or more people gather in a room, then it is guaranteed that at least two of them share the same

birth month. While this may happen in a gathering of 12 or fewer people, it is not guaranteed.

Example 8.8

Suppose that there are 102 students in two sections of discrete structures. If they all take the

final, will at least two of them get the same grade?

There are 101 possible grades 0, 1, . . . , 100 so the result follows from the pigeonhole

principle.

Example 8.9

If I use the last two digits of their social security numbers as a code to post grades in anonymity,

will at least two students get the same code?

There are 100 2-digit codes, 00 through 99 so by the time I list the first 101 students

there will be two with the same code.

Example 8.10

If a drawer contains 12 red socks and 12 blue socks and I pull some socks out in the dark,

a) how many must I pull out to be sure of having a pair?

3 because there are only 2 colors.

b) how many must I pull out to be sure of having a pair of red socks?

14 because I might pull out all the blue ones and just 2 red ones.

c) how many must I pull out to be sure of having at least one of each color?

13 because I might pull out all 12 of one color and just one of the other color.

Example 8.11

Every integer n has a multiple that has only 0s and 1s in its decimal expansion.
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Proof

Consider the n+ 1 numbers 1, 11, . . . , 11111...11 where the last number has (n+ 1)

ones. If we evaluate each of these numbers modn, two of them must give the same

value as there are only n possible results, 0, . . . , n − 1. If then a − b is divisible by

n. So take the two numbers that result in the same value and subtract the smaller

from the larger. The result is a multiple of n and has only 0s and 1s in its decimal

expansion. Here’s an example. Take n = 6.

1 mod 6 = 1

11 mod 6 = 5

111 mod 6 = 3

1111 mod 6 = 1

so 1111− 1 = 1110 is a multiple of 6.

Example 8.12

In any set of n + 1 positive integers not exceeding 2n, there must be one integer that divides

another.

Write each of the n + 1 integers as a power of 2 times an odd integer, aj = 2ejqj .

Then q1 . . . qn+1 are n+1 odd integers less than 2n. Two of them must be the same.

One of the corresponding ajs divides the other.

8.3.1 Generalized Pigeonhole Principle

The pigeonhole principle can be generalized in an obvious way: Suppose that 21 or more pigeons

attempt to roost in 10 locations; then there must exist a location that contains three or more

pigeons. This is a special case of a more general result. Suppose that {x1, x2, . . . , xn} is a

collection of n numbers, and let x be the average of these numbers, i.e.,

x =
1

n

n∑
i=1

xi =
x1 + x2 + · · ·+ xn

n
.

Then it clearly cannot be the case that every number is less than the average; in other words,

there must exist at least one number that is at least as large as the average. Returning to our

pigeonhole example, suppose that 21 pigeons attempt to roost in 10 locations. The average

number of pigeons per location is 21/10 = 2.1, and by our argument above, it cannot be the

case that every location contains fewer than the average number of pigeons. Thus, at least one

location must contain at least 2.1 pigeons. Since pigeons are discrete objects (we can’t have
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1/10 of a pigeon!), there must exist a location with d2.1e = 3 pigeons. This is the essence of

the generalized pigeonhole principle.

Generalized Pigeonhole Principle If N objects are placed in k boxes, then there must exist

a box that contains dN/ke or more objects.

Example 8.13

Suppose that there are 51 students in a discrete structures class. How many students are

guaranteed to have birthdays in the same month? (In particular, what is the largest number of

students that are guaranteed to have the same birth month?)⌈
51
12

⌉
= 5 students are guaranteed to have birthdays in the same month.

8.4 Permutations

A permutation is an ordered arrangement of a set (or subset) of objects. Suppose, for example,

that one had to run four errands, a trip each to (1) the grocery store, (2) the dry cleaners, (3) the

hardware store, and (4) the post office. One would have to decide in which order these errands

would be performed. Any such ordering of these errands is a permutation. Each permutation

may have an associated cost (e.g., the total driving distance if the errands are processed in

a specific order), and one often wants to minimize this cost. A brute force approach would

be to list all possible permutations, determine each associated cost, and pick the permutation

with the least cost. How many such permutations are there? One could choose any of the

four errands to start with, then any of the three remaining errands second, then either of the

two remaining errands third, and finally the last remaining errand fourth. Note that these

choices are made consecutively, so the Product Rule applies: There are four possibilities for

the first choice, three for the second, two for the third, and one choice for the last, for a total

of 4 · 3 · 2 · 1 = 4! = 24 total possibilities (permutations). If there were n errands to run (or n

objects to order), the number of possible permutations is n!.

Counting Permutations The number of permutations of n distinct elements is

n! = n · (n− 1) · (n− 2) · · · 1.

Now suppose that one only had time to run two of the four errands. How many ordered

arrangements of two of the four errands are there? Applying our analysis from above, there are
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four choices for the first errand and three remaining choices for the second, yielding 4 · 3 = 12

possible arrangements. More generally, an ordered arrangement of r objects from a collection

is referred to as an r-permutation and denoted by P (n, r); calculators often use the notation

nPr. Applying the above analysis to the general case yields the number of such arrangements.

Counting r-permutations The number of r-permutations of n distinct elements is

P (n, r) =

r terms︷ ︸︸ ︷
n · (n− 1) · (n− 2) · · · (n− r + 1) =

n!

(n− r)!
.

Note that r-permutations are a generalization of permutations; indeed, and n-permutation

is an ordered arrangement of all n out of n objects, and the number of such n-permutations is

P (n, n) = n!/0! = n!.

Example 8.14

A wedding party consists of the bride, the groom, the bride’s mother and father, the groom’s

mother and father, the best man, the maid of honor, two ushers, and two bride’s maids.

a. How many ways are there of arranging all of them in a row for a picture?

There are 12 people in the wedding party so there are P (12, 12) = 12! ways of arranging

them in a row.

b. How many ways if the bride and groom stand together on the left side of the line?

There are 2 ways to arrange the bride and groom on the far left side of the line and

P (10, 10) = 10! ways of arranging the rest of the party so 2 · 10! possible arrangements.

c. How many ways if the bride and groom are together but anywhere in the line?

There are P (10, 10) = 10! ways of arranging the rest of the party without the bride and

groom. Then the bride and groom together can be place between and two of the lined up

people or to the left or to the right of all of them. That’s 11 different positions. There are

2 ways to arrange the bride and groom. The total number of arrangements is 10! · 11 · 2.

d. How many ways can 5 members of the wedding party line up for a picture?

We must line up 5 people out of 12 so P (12, 5) = 12 · 11 · 10 · 9 · 8.

Example 8.15

On the trip I am about to take, I must visit Florence, Milan, Venice, London, Bristol, and

Warwick.
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a. How many different itineraries are possible?

There are 6 cities so 6! possible itineraries.

b. How many itineraries are possible if all the British cities are consecutive and all the Italian

cities are consecutive?

Florence, Milan, and Venice are in Italy. London, Bristol, and Warwick are in England.

There are 3! orders for the Italian cities and 3! orders for the British cities. I can go to

Italy first or to England first so there are 3! · 3! · 2 = 72 possible itineraries.

Example 8.16

a. How many permutation are there of the letters A B C D E F G H I J?

P (10, 10) = 10!.

b. How many of them contain the block

i. HEAD

First arrange the other letters, B, C, F, G, I, J. There are 6! arrangements. Then

place the block HEAD between two of the arranged letters or at one of the ends.

There are 7 places it can go. That makes a total of 7 · 6! strings. You can also think

of this as gluing the H,E,A,D together to form one block and then counting all the

arrangements of the 7 blocks, HEAD, B, C, F, G, I, J to get 7!.

ii. HJF

This is just like part i but you must arrange the other 7 letters and then there are 8

places where HJF can go.

iii. BIGFACEDHJ

Just one.

8.5 Combinations

An r-permutation is an ordered arrangement or r out of n elements, while an r-combination is

an unordered subset of r out of n elements. Consider our “errands” examples from the previous

section. If one had to choose two out of four possible errands, there are P (4, 2) = 4 · 3 = 12

such ordered arrangements (r-permutations). Note that such permutations distinguish between
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identical subsets of errands if they appear in a different order; e.g., (grocery store,post office)

is different from (post office, grocery store) since the errands are processed in a different order.

If order did not matter, then these two “arrangements” would be identical and denoted with

set notation {grocery store, post office}. Such a subset is a 2-combination. More generally,

an unordered subset of r elements out of n is an r-combination, and the number of such

combinations is denoted C(n, r) =
(
n
r

)
. Calculators often use the notation nCr analogous to

nPr for r-permutations. Finally,
(
n
r

)
is often referred to as a binomial coefficient for reasons

that will be explained in the following section.

Counting r-combinations The number of r-combinations of n distinct elements is

C(n, r) =
(n
r

)
=

n!

r! · (n− r)!
.

Proof: P (n, r) = C(n, r) · P (r, r). That is, to create an ordered list of r elements from a set

of n elements, first choose r elements from the set (there are C(n, r) ways to do this) and then

choose an ordering of the r elements (there are P (r, r) ways to do this). Since we already know

that P (n, r) = n!/(n− r)! and P (r, r) = r!, the result follows. 2

Note that choosing r out of n elements to be included in a subset is equivalent to choosing

the n− r elements which should be left out of the subset. Therefore, every r-combination has

a unique associated (n− r)-combination, and thus the number of r-combinations is equivalent

to the number of (n− r)-combinations. Mathematically, we have

C(n, r) =
(n
r

)
=

n!

r! · (n− r)!
=

n!

(n− r)! · r!
=

(
n

n− r

)
= C(n, n− r).

Example 8.17

Eight members of the wedding party (described above) are to do a traditional circle dance.

How many different groups of eight can be selected?

There are 12 people in the wedding party so we can choose C(12, 8) different subsets

of 8 people. C(12, 8) = 12!
(8!)(4!) = 12·11·10·9

4·3·2·1 = 11 · 5 · 9· = 495.

Example 8.18

Now that we have selected 8 people for the dance, how many ways can we arrange them in a

circle?

This is a permutation problem, not a combination problem. It is similar, but not

quite the same as finding the number of ways to arrange 8 people in a line. There
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are P (8, 8) = 8! ways to do that. Each circular arrangement will appear 8 times as

a linear arrangement. (A B C D E F G H forms the same circular arrangement as

B C D E F G H A or C D E F G H A B . . . ) So there are 8!/8 = 7! possible circle

dance arrangements.

Example 8.19

How many ways can I select 3 men and 3 women from the wedding party?

There are 6 men and 6 women in the wedding party. The number of ways of choosing

3 men (or 3 women) is C(6, 3) = 20. The number of ways of selecting 3 men and 3

women from the wedding party is 20 · 20 = 400.

Example 8.20

How many ways can I select 6 students from this class of 51 students to get a grade of ”A”?

C(51, 6) =
51!

(45!)(6!)
=

51 · 50 · 49 · 48 · 47 · 46

6 · 5 · 4 · 3 · 2 · 1·
= 17 · 10 · 49 · 2 · 47 · 46 = 36018920.

Really, we won’t do it this way—we’ll look at your grades.

8.6 Binomial Theorem

One important application of combinations is the Binomial Theorem which allows one to expand

expressions of the form (x+ y)n for any non-negative integer n.

Binomial Theorem Let x and y be variables, and let n be a non-negative integer. Then

(x+ y)n =

n∑
j=0

(
n

j

)
xn−jyj

=
(n

0

)
xn +

(n
1

)
xn−1y +

(n
2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(n
n

)
yn

Proof: Consider the product

(x+ y)n = (x+ y) · (x+ y) · · · (x+ y)︸ ︷︷ ︸
n copies

.
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To expand this product, one could repeatedly apply the distributive law

(a+ b) · c = ac+ bc.

Applying the distributive law to (x+y)n = (x+y) · (x+y)n−1, one could choose first to expand

via x in the first factor, obtaining the sub-expression x · (x + y)n−1, or one could expand via

y, obtaining y · (x+ y)n−1. Similarly for the remaining factors, one could choose to expand via

x or y. The full expansion is the sum of all the expressions one obtains from making all such

possible choices.

Suppose that one chooses to expand via y a total of j times, thus expanding via x the

remaining n− j times. What expression results? We have j y-factors and n− j x-factors, thus

obtaining the expression xn−jyj . How many such expressions can one obtain? There are n

total (x+ y) factors, and one must choose j of them to expand via y (and thus n− j to expand

via x). This is a direct application of combinations—there are precisely
(
n
j

)
ways of choosing j

out of n factors to expand via y. Thus, the term xn−jyj will appear
(
n
j

)
times. The complete

expansion is thus the sum of all
(
n
j

)
xn−jyj terms for all possible j. 2

Note that the combination
(
n
j

)
appears as the coefficient associated with each term of the

form xn−jyj . For this reason, combinations
(
n
j

)
are often referred to as binomial coefficients.

Example 8.21

Expand (x+ y)4.

(x+ y)4 =

4∑
j=0

(
4

j

)
x4−jyj

=

(
4

0

)
x4 +

(
4

1

)
x3y +

(
4

2

)
x2y2 +

(
4

3

)
xy3 +

(
4

4

)
y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4

Example 8.22
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Expand (2x+ y−2)3.

(2x+ y−2)3 =

3∑
j=0

(
3

j

)
(2x)3−j(y−2)j

=

(
3

0

)
(2x)3 +

(
3

1

)
(2x)2(y−2) +

(
3

2

)
(2x)(y−2)2 +

(
3

3

)
(y−2)3

= (2x)3 + 3(2x)2(y−2) + 3(2x)(y−2)2 + (y−2)3

= 8x3 + 12x2y−2 + 6xy−4 + y−6

Example 8.23

Give the term in (a+ b)42 that contains the factor b17.(
42

17

)
a25b17

8.6.1 Pascal’s Triangle

Pascal’s triangle is a geometric arrangement of the binomial coefficients in a triangle. It is

named after Blaise Pascal, even though the ancient Chinese studied it centuries before him.

The binomial coefficients
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n−1
)
,
(
n
n

)
form the n-th row of Pascal’s triangle. The

rows are staggered so that each number inside the triangle lies diagonally below two other

numbers.

Pascal’s triangle arises as a consequence of the following fact concerning binomial coeffi-

cients.

Theorem If n is a positive integer and k is an integer such that 0 ≤ k ≤ n, then(
n+ 1

k

)
=
(n
k

)
+

(
n

k − 1

)
.

Proof: An intuitive proof proceeds as follows: To choose k out of n + 1 objects, consider

whether the first object is chosen or not. If the first object is not chosen, then the k objects

must all be chosen out of the remaining n objects; there are
(
n
k

)
such possibilities. If the first

object is chosen, then an additional k−1 objects much be chosen from the remaining n objects;

there are
(
n
k−1
)

such possibilities. Thus, the total number of ways of choosing k objects from

n+ 1 objects is
(
n
k

)
+
(
n
k−1
)
.
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One can also prove this theorem by directly manipulating the binomial coefficients in their

expanded factorial form.

(n
k

)
+

(
n

k − 1

)
=

n!

(n− k)! · k!
+

n!

(n− (k − 1))! · (k − 1)!

=
(n− (k − 1)) · n!

(n− (k − 1)) · (n− k)! · k!
+

k · (n!)

k · (n− (k − 1))! · (k − 1)!

=
(n− (k − 1) + k) · n!

(n− (k − 1)) · (n− (k − 1))!

=
(n+ 1) · n!

(n+ 1− k)! · k!

=
(n+ 1)!

(n+ 1− k)! · k!

=

(
n+ 1

k

)
2

This theorem effectively says that that one can compute an entry in Pascal’s triangle by adding

the two elements diagonally above it; see the diagram below.

(a+ b)0 1

� �
(a+ b)1 1 1

� � � �
(a+ b)2 1 2 1

� � � � � �
(a+ b)3 1 3 3 1

� � � � � � � �
(a+ b)4 1 4 6 4 1

� � � � � � � � � �
(a+ b)5 1 5 10 10 5 1

8.7 Balls in Bins

Suppose that there are 60 students in a discrete math class, and we recorded each student’s

birthday. Surprisingly, a result in probability theory known as the Birthday Paradox states

that there is a greater than 99% chance that at least two people will share the same birthday.

Now suppose that we were to write down a tally of all 60 birthdays by date, for example
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Date Jan 1 Jan 2 Jan 3 · · · Dec 31

Count 1 0 2 · · · 1

How many such tallies are there? Each tally corresponds to a unique sequence of 365 numbers

whose sum is 60, such as the sequence (1, 0, 2, . . . , 1) above. This is a specific instance of what

is generally known as a “balls in bins” problem: Imagine throwing 60 balls into 365 bins; how

many ways can the 60 balls be placed in these 365 bins, where the only quantities of interest

are the numbers of balls in each bin? In our example, we wish to calculate the number of ways

of assigning 60 students to 365 possible birthdays, where birthday repetitions are allowed.

In order to count the number of such arrangements of balls in bins, we shall consider an

alternate but equivalent representation of any such arrangement. Imagine that the bins are

all adjacent, and that there is a divider between adjacent bins. Let “|” represent the dividers,

and let “•” represent balls. Any arrangement of balls in bins can be encoded by a sequence

consisting of one • for each ball in the first bin, followed by a divider |, followed by one • for

each ball in the second bin, and so on. In our example arrangement above, the encoding would

be

• | | • • | · · · | •

Note the two adjacent dividers that represent the empty “bin” corresponding to Jan 2. Any

such sequence will contain exactly 424 symbols: 60 • symbols corresponding to the balls and

364 | symbols corresponding to the bin dividers.1 How many such sequences are there? We

have 424 total symbols, and we must choose which 60 will be • symbols (and thus which

364 will be | symbols). This is a direct application of combinations, and thus the answer is(
424
60

)
=
(
424
364

)
≈ 6.57× 1073, an astronomically large number.2 In the general case, we have the

following result.

Balls in Bins The number of arrangements of n balls placed in m bins is(
n+m− 1

n

)
=

(
n+m− 1

m− 1

)
.

Balls in bins problems arise in many areas of computer science, including data structures

(analysis of hashing), networking (analysis of congestion), and so on.

Note: You can also think of the balls as zeros and the dividers as ones. When you are trying

to find the number of ways of placing n balls in m bins, think of each possibility as a binary

1There is always one less divider than the number of bins; for example, two bins require only one separating
divider.

2It is estimated that there are 1058 atoms in our solar system and 1080 atoms in the entire observable universe.



118 Counting

number with n 0s (the balls) and m− 1 1s (the dividers). So you are just counting the number

of n+m− 1 bit binary numbers with exactly m− 1 1s or exactly n 0s.

Exercises

Simple Counting

Exercise 8.1

If you roll a pair of six sided dice, one red and one black, there are 36 possible rolls, e.g. the

red die comes up 3 and the black die comes up 5. For each of the following, tell how many of

these rolls satisfy the condition.

a. The total is 2.

b. The total is 4.

c. The total is 7.

d. The total is 10.

e. The total is between 5 and 8. (5 and 8 included)

f. The total is between 2 and 12. (2 and 12 included)

g. The red die is 3.

h. The red die is 3 and the black die is 6.

i. The sum is less than 5.

j. The red die is less than the black die.

k. The two dice are equal.

l. The two dice are different.

Exercise 8.2

Some games use octahedral dice. They have 8 sides numbered from 1 to 8. How many possible

outcomes are there if you roll a pair of octahedral dice?

Answer each of the questions in exercise 8.1, assuming the dice are 8-sided instead of 6-sided.

Exercise 8.3

If you draw a card from a standard deck of 52 cards, how many different ways are there to do

each of the following?
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a. Draw a card.

b. Draw a jack.

c. Draw a heart.

d. Draw a face card.

e. Draw the ace of spades.

f. Draw the 2 of diamonds.

g. Draw a card that is not a face card or an ace.

h. Draw a joker.

i. Draw a black card.

j. Draw a 10 or an 8.

Sum and Product Rules

Exercise 8.4

a. For Mother’s Day, Eloise’s daughter always sends her a balloon or flower arrangement

from lastminutegifts.com. They offer 10 different balloon arrangements and 45 different

flower arrangements. How many different gifts can she choose from?

b. Eloise always sends her mother a balloon arrangement and a flower arrangement, both

from ftd.com. How many ways can Eloise select her gift?

Exercise 8.5

In History 101: The Olden Days, students are given a list of 7 historical novels and a list of 15

essay topics.

a. In the regular sections, students must turn in a book report on one of the novels or a

five-page essay on one of the listed topics. How many ways can a student complete the

assignment?

b. In the honors sections, students must turn in a book report and an essay. How many

ways can an honors student complete the assignment.
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Exercise 8.6

a. In the cafeteria at the National Computer Science Research Institute (INRIA) in Roc-

quencourt, France, a lunch ticket entitles you to one hors d’œuvre, one entrée, one salad,

one cheese, and one desert. If there are 7 choices of hors d’œuvre, 3 choices of entrée, 2

choices of salad, 11 choices of cheese and 5 choices of dessert, how many different 5-course

meals can one choose for lunch?

b. In the cafeteria at NotEastern U., a meal ticket lets you choose one item from 3 different

sushi boxes, 5 different sandwiches (wrapped in plastic), 2 soups, or a box of carrots with

cheese dip. How many different lunches can one get at this cafeteria?

Exercise 8.7

NSF (National Science Foundation) Fast-Lane Passwords have 6 to 10 alpha-numeric characters

where upper- and lower-case are distinguished. They must contain at least 2 digits and at least

2 letters. How many are there?

Exercise 8.8

Regular Massachusetts license plates have either three digits followed by three letters, e.g. 924

XVA, or four digits followed by two letters, e.g. 2007 CS. How many possible license plates are

there?

Exercise 8.9

Members of the Secret Superwoman Society each have a password composed of different letters

from the word “SUPERWOMAN.”

a. How many different 10-letter passwords can they form?

b. How many different 5-letter passwords can they form?

c. How many 5-letter passwords can they form if the middle letter must be a vowel?

d. How many 5-letter passwords can they form if the first letter must be “W”?

e. How many 5-letter passwords can they form if the first letter must be “W” and the middle

letter must be a vowel?

Inclusion-Exclusion Principle
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Exercise 8.10

Still referring to the Secret Superwoman Society above 8.9, how many 5-letter passwords can

they form if the first letter must be “W” or the middle letter must be a vowel?

Exercise 8.11

At State University, many students are majoring in two or more subjects. In all, there are 320

computer science majors, 145 math majors, and 580 business majors. There are 35 students

majoring in both computer science and math, 20 students majoring in business and math, 90

students majoring in business and computer science, and 10 students majoring in all three

subjects.

a. How many students are majoring in computer science or math?

b. How many students are majoring in computer science or business?

c. How many students are majoring in business or math?

d. How many students are majoring in computer science, business, or math?

Pigeonhole Principle

Exercise 8.12

The Geek Dormitory has 75 rooms numbered 0 to 74. Each student is assigned a room whose

number is the student’s ID number modulo 75.

a. How many students must there be to be certain that at least 2 students will be sharing

some room?

b. How many students must there be to be certain that at least 3 students will be sharing

some room?

c. If 150 students are assigned to Geek Dormitory, can we be sure that there will not be

three or more students assigned to the same room?

d. If 150 students are assigned to Geek Dormitory, what is the largest number of students

that might end up assigned to one room?

Exercise 8.13

The New Village Cinema shows 6 different movies in 6 300-seat theaters. Exactly 1111 people

come to the theater on Saturday night.

a. “I know that at least N people will view the same movie.” What is the largest value N

can have for that statement to necessarily be true?
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b. If one of the theaters s closed for renovation, what is the largest value N can have for the

statement to necessarily be true?

Exercise 8.14

A salesman regularly takes trips through the same 11 cities. On any given trip, he may stay

overnight in a city more than once and he need not stay in every city.

a. How many nights must he be out to be sure that he stays in some city at least twice?

b. How many nights must he be out for it to be possible that he stays in some city at least

twice?

c. How many nights must he be out to be sure that he stays in some city at least three

times?

d. How many nights must he be out for it to be possible that he stays in some city at least

three times?

e. If he takes a trip that has 30 nights out, what the largest number of nights that he knows

he must stay in the same city?

Permutations

Exercise 8.15

Evaluate
a. P (5, 2) b. P (5, 3) c. P (5, 4)

d. P (6, 2) e. P (6, 3) f. P (6, 4)

g. P (10, 2) h. P (10, 3) i. P (11, 3)

j. P (1234, 0) k. P (1234, 1) l. P (10000, 2)

Exercise 8.16

A salesman regularly takes trips through the same 6 cities.

a. If he visits each city exactly once on a trip, how many different itineraries could he have?

b. If he always visits Springfield first and the other five in any order, how many different

itineraries could he have?

c. If he always visits Springfield first, Worcester last, and the other four in any order, how

many different itineraries could he have?

Exercise 8.17
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a. How many ways can you arrange all the letters of the word JUPITER?

b. How many 5-letter strings of distinct letters can you make from the letters in JUPITER?

c. How many 3-letter strings of distinct letters can you make from the letters in JUPITER?

d. (optional) How many of the 3-letter strings of distinct letters from the letters in JUPITER

are legitimate ScrabbleTM words?

Exercise 8.18

A mountain bike, a tennis racket, a baseball mitt, and a math book are the prizes offered in

a school lottery. If 130 students each bought one raffle ticket, how many different ways might

the prizes be distributed.

Combinations

Exercise 8.19

Evaluate
a. C(5, 2) b. C(5, 3) c. C(5, 4)

d. C(6, 2) e. C(6, 3) f. C(6, 4)

g. C(10, 2) h. C(10, 3) i. C(11, 3)

j. C(1234, 0) k. C(1234, 1) l. C(10000, 2)

Exercise 8.20

Acme Vacuum Cleaner Company sells their wares in 60 cities. Each sales person is assigned 6

cities to cover.

a. How many different assignments might Sally get?

b. If Sally decides to work double time, she will have to cover 12 cities. How many different

assignments might she get?

Exercise 8.21

A Poker hand consists of 5 cards drawn from a deck of 52 cards (no Jokers).

a. How many different Poker hands are there?

b. How many Poker hands include the Ace of Spades?

c. How many Poker hands include four Aces?

d. How many Poker hands include only face cards (Jack, King Queen) or Aces?

e. How many Poker hands include no face cards (Jack, King Queen) or Aces?
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Exercise 8.22

Four $25 prizes are offered in a school lottery. If 130 students each bought one raffle ticket,

how many different ways might the prizes be distributed.

Binomial Theorem

Exercise 8.23

Expand each of the following.

a. (x+ y)3 b. (x+ y)5 c. (x+ y)6

d. (2x+ y)3 e. (x+ 3y)4 f. ( 1x + 3y)4

g. (x− y)5 h. (1 + n)6 i. (x2 + y−2)5

Exercise 8.24

Use the Binomial Theorem to show the following.

a.

1 ·
(n

0

)
+ 2 ·

(n
1

)
+ 4 ·

(n
2

)
+ 8 ·

(n
3

)
+ · · ·+ 2n ·

(n
n

)
= 3n.

b. (
10

0

)
−
(

10

1

)
+

(
10

2

)
−
(

10

3

)
+ · · · −

(
10

7

)
+

(
10

8

)
−
(

10

9

)
+

(
10

10

)
= 0.

Pascal’s Triangle

Exercise 8.25

Below is the 16th row of Pascal’s Triangle. Use it to compute the 15th and 17th rows of Pascal’s

Triangle.

1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

Exercise 8.26

Fill in rows 0 through 9 of Pascal’s Triangle in a hexagonal grid, as shown below. You can find

hexagonal graph paper at (http://incompetech.com/graphpaper/hexagonal/). Then add

the numbers along the shallow diagonals as shown by the dotted lines in the picture. Do these

numbers look familiar?

http://incompetech.com/graphpaper/hexagonal/
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1 
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1 

1 

1 

Balls in Bins

Exercise 8.27

I have a box with 50 Snickers candy bars. 8 kids come over on Halloween night, to trick-or-treat.

a. How many ways can I distribute all 50 Snickers candy bars to the 8 kids?

b. How many ways can I distribute all 50 Snickers candy bars to the 8 kids if every kid gets

at least 2 candy bars?
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Probability

The mathematical theory of probability is a way of formally representing and reasoning about

uncertain events. In 1654, mathematicians Blaise Pascal and Pierre de Fermat corresponded

about the odds for gambling outcomes and thus became co-founders of the theory of probability.

In 1774, Pierre-Simon Laplace defined the probability of an event as the ratio of the number

of favorable outcomes to the total number of possible outcomes. This definition only applies if

all outcomes are equally likely; e.g., heads and tails are equally likely outcomes when we toss

a fair coin but not equally likely when we toss a biased coin. In this chapter, we will primarily

follow Laplace and mostly consider events where all outcomes are equally likely. This is a

pretty common occurrence and when it happens, the task of computing probabilities reduces

to a task of counting. You will learn about more general probability when you take MTH U481

Probability and Statistics or ECN U350 Statistics.

9.1 Definitions and Basic Properties

An experiment or random experiment yields one of a possible set of outcomes. The sample

space is the set of all possible outcomes. We will assume that all outcomes are equally likely.

An event is a subset of the sample space, i.e. a set of outcomes.

The probability of an event E that is a subset of a finite sample space S is p(E) = |E|
|S| .

Let E1, E2, andE3 be events in sample space S.

p(E) = 1− P (E)

127

http://en.wikipedia.org/wiki/Blaise_Pascal
http://en.wikipedia.org/wiki/Pierre_de_Fermat
http://en.wikipedia.org/wiki/Pierre-Simon_Laplace
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The Inclusion-Exclusion Principle tells us that

p(E1 ∪ E2) = p(E1) + p(E2)− p(E1 ∩ E2)

9.2 Examples

9.2.1 Dice

The study of probability did, after all, start with gambling.

Experiment: Roll a pair of fair dice once.

i) What is the size of the sample space?

There are 6 possibilities for the black die and 6 for the white one. By the product

rule, there are a total of 6 · 6 = 36 possible tosses.

What is the probability of each of these events?

ii) The total is 6.

There are exactly 5 ways that the two dice that result in a sum of 6.

Black 1 2 3 4 5

White 5 4 3 2 1

So the probability of the sum being 6 is 5/36.

iii) The total is 9.

There are exactly 4 ways that the two dice that result in a sum of 9.

Black 3 4 5 6

White 6 5 4 3

So the probability of the sum being 9 is 4/36 = 1/9.

iv) The total is greater than 8.

There are exactly 4 ways that the two dice that result in a sum of 9,

Black 3 4 5 6

White 6 5 4 3

exactly 3 ways that the two dice that result in a sum of 10,

Black 4 5 6

White 6 5 4
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exactly 2 ways that the two dice that result in a sum of 11,

Black 5 6

White 6 5

exactly 1 ways that the two dice that result in a sum of 12,

Black 6

White 6

So the probability of a sum greater than 8 is (4 + 3 + 2 + 1)/36 = 10/36 = 5/18.

v) The total is seven or eleven.

There are exactly 2 ways that the two dice result in a sum of 11

Black 5 6

White 6 5

and 6 ways that the sum can be 7.

Black 1 2 3 4 5 6

White 6 5 4 3 2 1

So the probability a 7 or 11 is (2 + 6)/36 = 8/36 = 2/9.

vi) Both dice have the same number.

There are 6 ways that the numbers can be the same.

Black 1 2 3 4 5 6

White 1 2 3 4 5 6

So the probability that the numbers are the same is 6/36 = 1/6.

vii) The numbers are 4 and 3.

There are exactly 2 ways this can happen so the probability is 2/36 = 1/18.

Black 3 4

White 3 4

viii) Snake-eyes.

There is only one way this can happen so the probability is 1/36.

Black 1

White 1

9.2.2 Cards

- still gambling

Experiment: Draw a single card from a normal 52 card deck.

i)What is the size of the sample space?
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Each card is a possible event. The size of the sample space is 52.

What is the probability of each of these events?

ii) The card is a face card.

There are 12 face cards (4 jacks, 4 queens, 4 kings) so the probability of a face card

is 12/52 = 3/13.

iii) The card is black.

Half the cards are black so the probability of drawing a black card is 1/2.

iv) The card is a heart.

There are 13 hearts so the probability is 13/52 = 1/4.

v) The card is a queen.

There are 4 queens so the probability is 4/52 = 1/13.

vi) The card is a number (2 through 10).

There are 4 · 9 = 36 number cards so the probability is 36/52 = 9/13.

vii) The card is the Ace of Spades.

There is one Ace of Spades so the probability is 1/52.

viii) The card is a joker.

The probability is 0. There are no jokers in a standard deck of 52 cards

9.2.3 Urns

Experiment: An urn contains 15 red balls and 10 blue balls. A single ball is drawn.

i)What is the size of the sample space?

There are 25 balls so the size of the sample space is 25. You might want to think of

the red balls as numbered from 1 to 15 and the black ones as numbered from 1 to

10.

What is the probability of each of these events?

ii) The ball drawn is red.

There are 15 red balls so the probability is 15/25 = 3/5.
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iii) The ball drawn is blue.

There are 10 blue balls so the probability is 10/25 = 2/5. Notice that 3/5+2/5 = 1;

drawing a red ball and drawing a blue ball are complementary events.

Experiment: An urn contains 15 red balls and 10 blue balls. Three balls are drawn

at once.

i) What is the size of the sample space?

The number of possible draws is

C(25, 3) =
25 · 24 · 23

3 · 2 · 1
= 2300.

What is the probability of each of these events?

ii) All three balls are red.

There are C(15, 3) = 15·14·13
3·2·1 = 455 ways of choosing 3 red balls so the probability

is 455/2300 = 91/460.

iii) Two balls are red and one is blue.

There are C(15, 2) = 15·14
2·1 = 105 ways of choosing 2 red balls and 10 ways of

choosing 1 blue ball so there are 105 · 10 = 1050 ways of choosing 2 red balls and

one blue one. The probability is 1050/2300 = 21/46.

Experiment: An urn contains 15 red balls and 10 blue balls. Three balls are drawn

sequentially and each is returned to the urn before the next ball is drawn.

i) What is the size of the sample space?

There are 25 choices for each of the balls so there are possible 253 = 15625 sequences

of three balls (with replacement).

What is the probability of each of these events?

ii) All three balls are red.

There are 153 = 3375 sequences of three red balls (with replacement) so the proba-

bility is 153

253
= 33

53
= 27

125

iii) Two balls are red and one is blue.

There are 3 positions for the blue ball.

There are 10 balls that can go in this position.

There are 152 = 225 sequences of two red balls for the remaining places.

In all, there are 3 · 10 · 152 = 6750 outcomes with two red balls and one blue ball.

The probability of this event is 3·10·152
253

= 3·2·9
53

= 36
125 .
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9.2.4 Bytes

Experiment: Toss a fair coin 8 times, 1 for heads, 0 for tails to generate a byte.

i) What is the size of the sample space?

There are 28 = 256 bytes.

What is the probability of each of these events?

ii) The byte has exactly four ones.

Each byte with exactly four ones corresponds to a subset of size 4 of the 8 positions

in the byte. There are C(8, 4) = 8·7·6·5
4·3·2·1 = 70 such subsets. Therefore, the probability

of generating a byte with exactly four 1s is 70/256 = 35/128.

iii) The byte starts and ends with a 1.

The first and last positions in the byte are fixed but the other six places can be

anything. The number of such bytes is 26 = 64 and the probability is 26

28
= 1

4 .

iv) The byte starts and ends with the same bit.

There are twice as many bytes in the event than in part iii. The probability is 1
2 .

v) The byte contains the substring 111111.

Those strings with exactly 6 ones: 11111100, 01111110, 00111111

Those strings with exactly 7 ones: 11111110, 11111101, 01111111, 10111111

and one string with exactly 8 ones: 11111111.

The probability that the byte contains the substring 111111 is 8/256 = 1/64.

vi) The byte does not contain 2 consecutive ones.

Think of making up the string from the 2-bit blocks, 00, 10, 01 with the constraint

that 01 can only be followed by 00 or 01.
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1 2 3 4 count

00, 10 −→ 00, 10 −→ 00, 10 −→ 00, 10, 01 ←→ 2 · 2 · 2 · 3 = 24

↘ ↘
01 −→ 00, 01 ←→ 2 · 2 · 1 · 2 = 8

01 −→ 00 −→ 00, 10, 01 ←→ 2 · 1 · 1 · 3 = 6

↘
01 −→ 00, 01 ←→ 2 · 1 · 1 · 2 = 4

01 −→ 00 −→ 00, 10 −→ 00, 10, 01 ←→ 1 · 1 · 2 · 3 = 6

↘ ↘
01 −→ 00, 01 ←→ 1 · 1 · 1 · 2 = 2

01 −→ 00 −→ 00, 10, 01 ←→ 1 · 1 · 1 · 3 = 3

↘
01 −→ 00, 01 ←→ 1 · 1 · 1 · 2 = 2

total = 55

The probability = 55/256.

9.3 Conditional Probability and Bayes Theorem

We start with a puzzle – the famous Monty Hall paradox. Suppose you are a contestant in a

game show. The host shows you three closed doors. One door leads to a brand new car, and

the other two doors each lead to a lemon. If you are able to find the door leading to the car,

you get the car! You are asked to select one of the doors, but not open it. You go ahead and

select one of the doors. At this point, the host opens one of the other two doors that reveals

a lemon, and asks: “Do you want to stay with your choice, or switch?” What should you do?

Does it matter?

A priori, without any other information, each of the three doors is equally likely to be the

one leading to the car, so at first glance it seems that it does not matter whether you stay or

you switch. It turns out, however, that the action of the game show host gives you additional

information; so it does matter! Let us first understand this using basic counting; we will then

explain this in the context of conditional probability.

Suppose the three doors are labeled A, B, and C. Without loss of generality, we may assume

that you selected A as your first choice. There are 3 equally likely possibilities: the car is behind

door A, the car is behind door B, or the car is behind door C. Let us consider each of these in

turn.

If the car is behind A, then the host can open any one of the other two doors since both

lead to lemons. And in this case, your correct response (in hindsight) is to stay.
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If the car is behind B, then the host will open door C. In this case, your correct response is

to switch.

Similarly, if the car is behind C, then the host will open door B, and your correct response

is to switch.

So in 2 out of the 3 equally likely cases, you should switch. This means you are more likely

to win the car if you switch!

9.3.1 Conditional Probability

The conditional probability of an event E1 given event E2 is the probability that event E1

occurs, given that event E2 occurs. It is denoted by Pr[E1|E2] and can be defined as:

Pr[E1|E2] =
Pr[E1 ∩ E2]

Pr[E2]
.

As an example, consider the roll of two fair dice. A priori, the probability that the roll of

the first die yields a 5 is 1/6. But if we are told that the sum of the two dice is 9, then the

probability of obtaining a 5 in the first roll, given this new information changes.

Pr[the first roll is a 5 | the sum is 9] =
Pr[the first roll is a 5 AND the sum is 9]

Pr[the sum is 9]
=

1
36
4
36

=
1

4
.

9.3.2 Bayes Theorem

Bayes Theorem relates one conditional probability (e.g., the probability of a hypothesis H

given an observation E) with its inverse (the probability of an observation given a hypothesis).

Bayes Theorem is used heavily in statistics, analysis of data sets, machine learning, information

retrieval, and several diverse applications in science and engineering.

To understand Bayes Theorem, it is crucial to note that Pr[H|E] is quite different from

Pr[E|H]. Bayes Theorem states that

Pr[H|E] =
Pr[E|H] · Pr[H]

Pr[E]
.

The theorem directly follows from the definition of conditional probability.

Pr[H|E] =
Pr[H ∩ E]

Pr[E]
=

Pr[E|H] · Pr[H]

Pr[E]
.

The above equation can also be easily seen using Venn diagrams.
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9.3.3 Explaining Monty Hall paradox using Bayes Theorem

Let us understand the Monty Hall paradox using Bayes Theorem. When the host asks you

whether you would like to switch, the calculation you should do is to determine the probability

that you will win the prize given the information provided to you.

As before, suppose without loss of generality that the door you select is labeled A. Also, let

us label the door that the host opens as B. Now, consider the following calculations.

Pr[prize behind A | host opens B] =
Pr[host opens B | prize behind A] Pr[prize behind A]

Pr[host opens B]

=
1
2 ·

1
3

1
2

=
1

3
.

Pr[prize behind B | host opens B] =
Pr[host opens B | prize behind B] Pr[prize behind B]

Pr[host opens B]

= 0.

Pr[prize behind C | host opens B] =
Pr[host opens B | prize behind C] Pr[prize behind C]

Pr[host opens B]

=
1 · 13
1
2

=
2

3
.

Thus, you would be better off switching from door A to door C, i.e., from the door you have

selected to the other unopened door.

9.3.4 Another application of Bayes Theorem

Here is an example that illustrates the use of Bayes Theorem in biostatistics. Suppose the a

priori probability of you being infected with the H1N1 virus is 10−5. Further suppose that a

blood test is 99% accurate and you test positive. How likely is it that you actually have the

virus? Let us do the calculations.
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Pr[virus] = 0.00001

Pr[no virus] = 0.99999

Pr[positive test | virus] = 0.99

Pr[positive test | no virus] = 0.01

Pr[virus | positive test] =
Pr[positive test | virus] · Pr[virus]

Pr[positive test]

=
0.99 · 0.00001

Pr[positive test]

=
0.0000099

Pr[positive test]

Pr[no virus | positive test] =
Pr[positive test | no virus] · Pr[no virus]

Pr[positive test]

=
0.01 · 0.99999

Pr[positive test]

=
0.0099999

Pr[positive test]

Thus, even after testing positive, you are 1000 times more likely not to have the virus than

have it.

9.4 Markov Chains

Markov chains are often used to model probabilistic systems when the chance of a future event is

only dependent on the present and not dependent on the past. Consider the following example.

When Prof. Aslam takes his two children (ages 8 and 10) out to dinner, they often get to

choose the restaurant. They have three favorite restaurants: Bertucci’s (Italian), Margaritas

(Mexican), and Sato (Chinese/Japanese). Over the course of the past four years, Prof. Aslam

has noticed that they are much more likely to pick a restaurant that they have eaten at recently

than to choose a different restaurant; however, they will eventually tire of eating at the same

restaurant repeatedly, and then they will choose a different one. Prof. Aslam has also noted

that have clear favorites among these restaurants, and this is reflected in how likely it is that

they will return to a given restaurant that they have just visited and what restaurants they are

likely to visit next if they choose to switch.

This information is encoded in a Markov chain as follows: There is one state for each

restaurant and transition arcs from state to state, labeled with the probabilities that one will

transition from one restaurant to another at any given time. Note that “self transitions” are

http://www.bertuccis.com/
http://www.margs.com/
http://satorestaurant.com/
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allowed, corresponding to the chance that one will stay at a given restaurant. Based upon

Prof. Aslam’s observation of how his children pick the restaurants they want to visit, the

following Markov Chain roughly describes their restaurant choice behavior, where B, M , and

S represent Bertucci’s, Margaritas, and Sato, respectively:

!

M" S"

.3!

.2! .3!
.1!

.2!

.5!

.1!

.7!

.6!

B"

This Markov chain operates as follows. When in some state, say B, the Markov chain will

transition to a state in the next round according to the transition arcs outgoing from B. Given

the Markov chain above, when in state B, the chance that one will revisit B is 0.7, the chance

that one will move to state M is 0.2, and the chance that one will move to state S is 0.1. Note

that the probabilities associated with transition arcs are conditional probabilities; for example,

the arc from B to M is labeled 0.2, and this corresponds to the fact that if one is in state B in

round n, then one will be in state M in round n+ 1 with probability 0.2. If we let Xk be the

state of the Markov chain in round k, we then have

Pr[Xn+1 = M |Xn = B] = 0.2.

We further note that the sum of the (conditional) probabilities associated with all transition

arcs outgoing from a state must be 1.

A useful representation of all the state-to-state Markov chain transition probabilities is a

transition matrix, typically denoted P , where each entry pij denotes the conditional probability

of transitioning from State i to State j. Assuming that we order the rows and columns of P

alphabetically (Bertucci’s first, Margaritas second, Sato third), we have the following transition
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matrix for our example Markov chain:

P =


.7 .2 .1

.3 .6 .1

.3 .2 .5


Note that the sum of each row must be 1, corresponding to the fact that the sum of the

(conditional) probabilities associated with all transition arcs outgoing from a state must be 1.

Any matrix whose rows sum to 1 and whose elements are values in the range [0, 1] (and thus can

be interpreted as probabilities) is said to be stochastic. Every stochastic matrix corresponds to

a Markov chain and can be interpreted as such.

One can simulate a Markov chain by starting in some state and transitioning from state to

state in subsequent rounds according to the transition arcs (and their probabilities) associated

with each state. Here is one such simulation lasting 50 rounds and starting at Bertucci’s.

BBMMMMMMBBBMBMMBBBBBBBBBSMSSSSBBBBBMMMMSSSSBBMBBBB

Note that in this sequence of 50 restaurant visits, Bertucci’s is visited 26 times, Margaritas is

visited 15 times, and Sato is visited 9 times. Thus, the empirical fraction of time that each

restaurant is visited is as follows: B = 0.52, M = 0.30, and S = 0.18. Here is another simulation

lasting 200 rounds:

BMSMBBBBBBBMMBBMMMMBBBSSBBBSMMBBBBBBBMMMMSBBBBBBBB

MMBBBBMBMBBBBBMMBBBBBBSBBBBBBBMMSBBBBBBBBBBSSSSBSS

SBMMMSBBMMBSSSSSBBBBBMMMBBMMMSSSSBBSMMMBBBBBBBBSMM

MSBBBBBSSBBMBBMMMMMMMMMMMMBBBBBBBBSSMMMMMSBSBBBBMM

Here the counts are B = 108, M = 59, and S = 33 corresponding to the empirical fractions

B = 0.540, M = 0.295, and S = 0.165.

One natural question that arises in the context of Markov chains is the following: If one

were to run a Markov chain for an arbitrarily long amount of time, what fraction of the time

would one spend visiting each state? For example, it seems clear from the simulations of the

Markov chain given above that one would visit Bertucci’s more often than Margaritas, and

Margaritas more often than Sato, but can one prove that this is true and determine the exact

visit rates?

The set of “long term visit rates” associated with the states of a Markov chain is referred

to as the stationary distribution of the Markov chain and is typically denoted by a vector ~π, in

our case,

~π = 〈πB, πM , πS〉
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where πB is the long term fraction of time spent visiting Bertucci’s, and so on.

How can one solve for these long term visit rates, the stationary distribution of the Markov

chain? Consider visits to Bertucci’s. Each visit to Bertucci’s is preceded by a visit to some

restaurant, followed by a transition from that restaurant to Bertucci’s. There are three possible

restaurants that one could have eaten at preceding the visit to Bertucci’s in question: Bertucci’s

itself, Margaritas, and Sato. The chance that one will eat at Bertucci’s (πB) is the chance that

one was at Bertucci’s (πB) and chose to stay there (.7), plus the chance that one was at

Margaritas (πM ) and chose to transition to Bertucci’s (.3), plus the chance that one was at

Sato (πS) and chose to transition to Bertucci’s (.3). Thus, we have the following equation:

πB = .7πB + .3πM + .3πS (9.1)

We can similarly derive equations for πM and πS :

πM = .2πB + .6πM + .2πS (9.2)

πS = .1πB + .1πM + .5πS (9.3)

One can compactly express this set of equations using the stationary distribution vector ~π and

the transition matrix P as follows:

~π = ~π · P (9.4)

Equations (9.1) through (9.3) are three equations in three unknowns that one could, in

principle, solve in the usual way to determine πB, πM , and πS . However, these three equations

are not linearly independent: Adding Equation (9.2) to Equation (9.3) yields Equation (9.1).

As a consequence, an additional equation is required.1 Fortunately, we have one additional

equation relating πB, πM , and πS : Since ~π forms a probability distribution over the possible

states, we must have that the sum of πB, πM , and πS is 1.

πB + πM + πS = 1 (9.5)

Using two of Equations (9.1) through (9.3) together with Equation 9.5, one can now solve for

πB, πM , and πS . For example, rewriting Equations 9.2 and 9.3 to place all variables on the

1The fact that Equations (9.1) through (9.3) are not linearly independent is a consequence of the fact that P
is a stochastic matrix, i.e., the rows are constrained to sum to 1. Since this is true for every Markov chain, an
additional equation will always be required in order to solve for ~π.
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left-hand side of the equation, we obtain:

.2πB − .4πM + .2πS = 0 (9.6)

.1πB + .1πM − .5πS = 0 (9.7)

Subtracting 5 times Equation 9.6 from Equation 9.5, we obtain that πM = 1/3; similarly,

subtracting 10 times Equation 9.7 from Equation 9.5, we obtain that πS = 1/6. Finally,

plugging these values into Equation 9.5, we obtain that πB = 1/2 and thus

~π = 〈1/2, 1/3, 1/6〉.

Note the similarity of these values to the simulation results we obtained above. If one were to

simulate our Markov chain long enough, the average visit rates would converge to the stationary

distribution values given in ~π above. In the context of our example, over the course of time,

Prof. Aslam would expect to spend 1/2 his time eating at Bertucci’s, 1/3 of his time eating at

Margaritas, and 1/6 of his time eating at Sato.

Exercises

Dice

Exercise 9.1

If a pair of fair six-sided dice, one red, one black, are rolled, what is the probability of each of

these events?

a. The total is 4.

b. The total is 7.

c. The total is less than 7.

d. The red die has a higher number than the black die.

e. The total is even.

Exercise 9.2

If a pair of fair octahedral dice (see Exercise 8.2), one red, one black, are rolled, what is the

size of the sample space?

Answer each of the questions in Exercise 9.1, assuming the dice are 8-sided instead of 6-sided.
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Exercise 9.3

Assume three fair six-sided dice are rolled.

a. What is the size of the sample space?

What is the probability of each of these events?

b. The total is 7.

c. The total is less than 7.

d. The total is 15.

e. The total is even.

Cards

Exercise 9.4

If a single card is drawn from a standard deck of 52 cards, what is the probability of each of

these events?

a. The card is a jack.

b. The card is a red face card.

c. The card is an even number.

Exercise 9.5

a. If two cards are dealt from a deck, what is the size of the sample space?

What is the probability of each of the following events?

b. Both cards are face cards.

c. Neither card is a face card.

d. Both cards have the same suit.

e. Both cards are aces.

Exercise 9.6
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a. If a Poker hand of 5 cards is dealt from a deck, what is the size of the sample space?

What is the probability of each of the following events?

b. The hand contains all 4 Aces.

c. The hand is a royal flush, ace, king, queen, jack, ten, all in the same suit.

d. The hand is a full house, three cards of one rank and two cards of a different rank.

e. The hand is a pair, two cards of equal rank and three other cards that do not match these

or each other.

Lottery

Exercise 9.7

Ten balls numbered 1 to 10 are in a bag.

a. What is the probability of drawing the ball numbered 8 on a single draw?

b. What is the probability of drawing the ball numbered 8 in three draws if:

i. The ball drawn is always returned to the bag before the next selection?

ii. The balls are not returned to the bag before the next selection?

c. What is the probability of drawing the sequence 9, 5, 2 in three draws if:

i. The ball drawn is always returned to the bag before the next selection?

ii. The balls are not returned to the bag before the next selection?

d. What is the probability of drawing the numbers 9, 5, 2 in any order in three draws if:

i. The ball drawn is always returned to the bag before the next selection?

ii. The balls are not returned to the bag before the next selection?
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C h a p t e r 10

Algorithms for Searching and

Sorting: Description and Analyses

Searching and sorting are two of the most fundamental and widely encountered problems in

computer science. In this chapter, we describe four algorithms for search and three algorithms

for sorting.

10.1 Algorithms for Searching

Given a collection of objects, the goal of search is to find a particular object in this collection

or to recognize that the object does not exist in the collection. Often the objects have key

values on which one searches and data values which correspond to the information one wishes

to retrieve once an object is found. For example, a telephone book is a collection of names (on

which one searches) and telephone numbers (which correspond to the data being sought). For

the purposes of this handout, we shall consider only searching for key values (e.g., names) with

the understanding that in reality, one often wants the data associated with these key values.

The collection of objects is often stored in a list or an array. Given a collection of n objects

in an array A[1 . . n], the i-th element A[i] corresponds to the key value of the i-th object in the

collection. Often, the objects are sorted by key value (e.g., a phone book), but this need not

be the case. Different algorithms for search are required if the data is sorted or not.

The input to a search algorithm is an array of objects A, the number of objects n, and the

key value being sought x. In what follows, we describe four algorithms for search.

145
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10.1.1 Unordered Linear Search

Suppose that the given array was not necessarily sorted. This might correspond, for example,

to a collection exams which have not yet been sorted alphabetically. If a student wanted to

obtain her exam score, how could she do so? She would have to search through the entire

collection of exams, one-by-one, until her exam was found. This corresponds to the unordered

linear search algorithm. Note that in order to determine that an object does not exist in the

collection, one needs to search through the entire collection.

Now consider the following array:

i 1 2 3 4 5 6 7 8

A 34 16 12 11 54 10 65 37

Consider executing the Unordered-Linear-Search algorithm on this array while searching

for the number 11. The first four elements would need to be examined until the fourth element

containing the value 11 is found. In analyzing the performance of search algorithms, we will

consider these “examination counts” as a measure of the performance of such algorithms.

Now consider executing the Unordered-Linear-Search on this array while searching for

the number 13. Since 13 does not exist in the array, one must examine all eight of the array

elements until one could definitively return “13 not found.”

10.1.2 Ordered Linear Search

Now suppose that the given array is sorted. In this case, one need not necessarily search through

the entire list to find a particular object or determine that it does not exist in the collection.

For example, if the collection of exams were sorted by name, one need not search beyond the

“P”s to determine that the exam for “Peterson” does or does not exist in the collection. A

simple modification of the above algorithm yields the ordered linear search algorithm. Note

that while scanning the array from left-to-right (smallest-to-largest values), a search can now

be terminated early if and when it is determined that the number being sought (and as yet not

found) is less than the element currently being examined.

Now consider the following array, the sorted version of the array used in our previous

example:

i 1 2 3 4 5 6 7 8

A 10 11 12 16 34 37 54 65

Consider executing the Ordered-Linear-Search on this array while searching for the number

11. In this case, the first two elements would need to be examined until the second element

containing the value 11 is found.
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Now consider executing the Ordered-Linear-Search on this array while searching for

the number 13. Note that only the first four elements need be examined until the value 16 is

encountered and one can definitively return “13 not found.”

10.1.3 Chunk Search

Given an ordered list, one need not (and one typically does not) search through the entire

collection one-by-one. Consider searching for a name in a phone book or looking for a particular

exam in a sorted pile: one might naturally grab 50 or more pages at a time from the phone

book or 10 or more exams at a time from the pile to quickly determine the 50 page (or 10 exam)

“chunk” in which the desired data lies. One could then carefully search through this chunk

using an ordered linear search. Let c be the chunk size used (e.g., 50 pages or 10 exams). We

shall refer to the algorithm encoding the above ideas as chunk search.

Again consider the following array:

i 1 2 3 4 5 6 7 8

A 10 11 12 16 34 37 54 65

Consider executing the Chunk-Search on the above array while searching for the number 34

and using c = 3 (i.e., chunks of size 3). To determine if 34 is in the first chunk, the third

element (at the end of the first “chunk”) with value 12 must be examined. Since 34 > 12,

we next examine the sixth element (at the end of the second “chunk”) with value 37. Since

34 < 37, we conclude that the value 34, if it exists in the array, must be contained in the second

chunk. We then simply execute Ordered-Linear-Search on the subarray A[4 . . 6] consisting

of the three elements in the second chunk, eventually finding 34 in the fifth position.

Now consider executing Chunk-Search on the above array while searching for the num-

ber 33. Chunk-Search would behave exactly as described above, except that the call to

Ordered-Linear-Search would return “33 not found” when searching the subarray A[4 . . 6].

10.1.4 Binary Search

Now consider the following idea for a search algorithm using our phone book example. Select a

page roughly in the middle of the phone book. If the name being sought is on this page, you’re

done. If the name being sought is occurs alphabetically before this page, repeat the process on

the “first half” of the phone book; otherwise, repeat the process on the “second half” of the

phone book. Note that in each iteration, the size of the remaining portion of the phone book

to be searched is divided in half; the algorithm applying such a strategy is referred to as binary

search. While this many not seem like the most “natural” algorithm for searching a phone book
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(or any ordered list), it is provably the fastest. This is true of many algorithms in computer

science: the most natural algorithm is not necessarily the best!

Again consider the following array:

i 1 2 3 4 5 6 7 8

A 10 11 12 16 34 37 54 65

Consider executing the Binary-Search on this array while searching for the number 34. Two

determine if 34 is in the first or second half of the array, we split the array in half, considering

the fourth element (at the end of the “first half”) whose value is 16. Since 34 > 16, we conclude

that the number 34, if it exists in the array, must be contained in the second half, i.e., the

subarray A[5 . . 8]. We then repeat on the second half of the array, splitting it in half and

considering the sixth element whose value is 37. Since 34 < 37, we continue with the subarray

A[5 . . 6], finding the element whose value is 34 in the next iteration.

Now consider executing Binary-Search on this array while searching for the number

33. Binary-Search will behave exactly as described above until the last subarray of size 1

containing only the element whose value is 34 is considered. At this point, one can definitively

return “33 not found” since there are no subarrays yet to be searched which could possibly

contain the number 34.

10.2 Analysis of Algorithms

One of the major goals of computer science is to understand how to solve problems with comput-

ers. Developing a solution to some problem typically involves at least four steps: (1) designing

an algorithm or step-by-step procedure for solving the problem, (2) analyzing the correctness

and efficiency of the procedure, (3) implementing the procedure in some programming language,

and (4) testing the implementation. One of the goals of CSU200 and CSU211 is to provide you

with the tools and techniques necessary to accomplish these steps. In this handout, we consider

the problem of analyzing the efficiency of algorithms by first considering the algorithms for

search that we developed earlier.

How can one describe the efficiency of a given procedure for solving some problem? Infor-

mally, one often speaks of “fast” or “slow” programs, but the absolute execution time of an

algorithm depends on many factors:

• the size of the input (searching through a list of length 1,000 takes longer than searching

through a list of length 10),

• the algorithm used to solve the problem (Unordered-Linear-Search is inherently

slower than Binary-Search),
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• the programming language used to implement the algorithm (interpreted languages such

as Basic are typically slower than compiled languages such as C++),

• the quality of the actual implementation (good, tight code can be much faster than poor,

sloppy code), and

• the machine on which the code is run (a supercomputer is faster than a laptop).

In analyzing the efficiency of an algorithm, one typically focuses on the first two of these factors

(i.e., the “speed” of the algorithm as a function of the size of the input on which it is run),

and one typically determines the number of program steps (or some count of other interesting

computer operations) as a function of the input size—the actual “wall clock” time will depend

on the programming language used, the quality of the code produced, and the machine on

which the code is run.

The latter three factors are important, but they typically induce a constant factor speedup

or slowdown in the “wall clock” execution time of an algorithm: a 2GHz PC will be twice

as fast as a 1GHz PC, a compiled language may run 10 times faster than an interpreted one,

“tight” code may be 30% faster than “sloppy” code, etc. However, a more efficient algorithm

may induce a speedup which is proportional to the size of the input itself: the larger the input,

the greater the speedup, as compared to an inefficient algorithm.

Finally, when analyzing the efficiency of an algorithm, one often performs a worst case

and/or an average case analysis. A worst case analysis aims to determine the slowest possible

execution time for an algorithm. For example, if one were searching through a list, then in

the worst case, one might have to go through the entire list to find (or not find) the object in

question. A worst case analysis is useful because it tells you that no matter what, the running

time of the algorithm cannot be slower than the bound derived. An algorithm with a “good”

worst case running time will always be “fast.” On the other hand, an average case analysis

aims to determine how fast an algorithm is “on average” for a “typical” input. It may be

the case that the worst case running time of an algorithm is quite slow, but in reality, for

“typical” inputs, the algorithm is much faster: in this case, the “average case” running time

of the algorithm may be much better than the “worst case” running time, and it may better

reflect “typical” performance.

Average case analyses are usually much more difficult than worst case analyses—one must

define what are “typical” inputs and then “average” the actual running times over these typical

inputs—and in actual practice, the average case running time of an algorithm is usually only a

constant factor (often just 2) faster than the worst case running time. Since worst case analyses

are (1) interesting in their own right, (2) easier to perform than average case analyses, and (3)
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often indicative of average case performance, worst case analyses tend to be performed most

often.

With this as motivation, we now analyze the efficiency of the various algorithms for search

described above.

10.2.1 Linear Search

Consider the Unordered-Linear-Search algorithm discussed above. This algorithm simply

iterates through the array, examining its elements one-by-one. Note that each iteration of this

algorithm takes some constant amount of time to execute, dependent on the programming

language used, the actual implementation, the machine on which the code is run, etc. Since we

do not know this constant, we may simply count how many times the algorithm iterates or how

many array elements must be examined; the running time of the algorithm will be proportional

to this count. For searching and sorting algorithms, we shall consider the number of array

elements which must be examined as an indicator of the performance of the algorithm.

In the worst case, on an input of size n, the number being sought will be compared to each

of the n elements in the array for a total of n array examinations. Let T (n) be the function of

n which describes the running time of an algorithm. We then have

T (n) = n

in the worst case. This is a linear function—if one where to plot T (n) vs. n, it would be a

straight line—and this explains why this algorithm is referred to as a linear search algorithm.

Now consider the Ordered-Linear-Search algorithm described above.

In the worst case, on an input of size n, if the number being sought is at least as large as

every element in the array A, then each array element must be examined. Thus, we again have

T (n) = n

in the worst case, which is a linear function.

10.2.2 Chunk Search

Now consider the Chunk-Search algorithm described above.

One element must be examined for each chunk considered, for a maximum of n/c such

examinations on an array of size n using chunks of size c. Ordered-Linear-Search will then

be performed on a chunk of size c (at most), engendering c further element examinations in the
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worst case. We therefore have

T (n) = n/c+ c. (10.1)

Note that the running time of Chunk-Search depends on both n and c. What does this

analysis tell us? We can use this analysis, and specifically Equation 10.1, in order to determine

the optimal chunk size c; i.e., the chunk size which would minimize the overall running time of

Chunk-Search (in the worst case).

Suppose that one were to run Chunk-Search using a very small value of c. Our chunks

would be small, so there would be lots of chunks. Much of the time would be spent trying to

find the right chunk, and very little time would be spent searching for the element in question

within a chunk. Consider the extreme case of c = 1: in the worst case, n/c = n/1 = n element

examinations would be spent trying to find the right chunk while only c = 1 examinations

would be spent searching within a chunk for a total of n+ 1 examinations (in the worst case).

This is worse than Unordered-Linear-Search or Ordered-Linear-Search (though it is

still linear).

Now consider using a very large value of c. Our chunks would be big, so there would

be few of them, and very few element examinations would be spent finding the right chunk.

However, searching for the element in question within a very large chunk would require many

such examinations. Consider the extreme case of c = n: in the worst case, n/c = n/n =

1 element examinations would be spent “finding” the right chunk (our chunk is the entire

list) while c = n examinations would be spent searching within a chunk for a total of n + 1

compares (in the worst case). This is again worse than either Unordered-Linear-Search

or Ordered-Linear-Search (though, again, it is still linear).

Is Chunk-Search doomed to be no faster than linear search? No! One must optimize the

value of c in order to minimize the total number of comparisons, and this can be accomplished

by choosing a value of c which balances the time (number of examinations) spent finding the

right chunk and the time spent searching within that chunk.

Suppose that we wish to spend precisely equal amounts of time searching for the correct

chunk and then searching within that chunk; what value of c should we pick? Our goal is then

to find a c such that n/c (the time spent searching for a chunk) is equal to c (the time spent

searching within a chunk). We thus have

n/c = c

⇔ n = c2

⇔
√
n = c.
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Thus, the desired chunk size is c =
√
n, and using this chunk size, we have

T (n) = n/c+ c

= n/
√
n+
√
n

=
√
n+
√
n

= 2
√
n.

Note that for sufficiently large n, this is much faster than a linear search. For example, if

n = 1, 000, 000, Ordered-Linear-Search would require 1,000,000 element examinations in

the worst case, while Chunk-Search would require approximately 2,000 examinations in the

worst case—Chunk-Search would be 500 times faster (in the worst case).

Do even better values of c exist? No. One can show through the use of calculus that c =
√
n

is optimal. We essentially have a function (n/c + c) which we wish to minimize with respect

to c. Taking the derivative with respect to c, setting this derivative to zero, and solving for c

yields c =
√
n.

10.2.3 Binary Search

Finally, consider the Binary-Search algorithm discussed above. In each iteration of binary

search, one element is examined and the procedure either returns (if the number being sought

is found or the subarray being considered cannot further be cut in half) or the (sub)array being

considered is cut in half. The question now becomes, how many times can one cut an array

of size n in half until there is only one element left? This is the maximum number of array

elements that will be examined. Consider: Cutting an array of size n in half yields n/2. Cutting

this array in half again yields (n/2)/2 = n/22 = n/4. Cutting the array in half a third time

yields ((n/2)/2)/2 = (n/22)/2 = n/23 = n/8. In general, cutting an array in half k times yields

an array of size n/2k. How large can k be until n/2k is one? We have

n/2k = 1

⇔ n = 2k

⇔ log2 n = k.

Therefore, at most log2 n iterations will be performed until the array can no longer be cut in

half, and thus the worst case running time of Binary-Search is

T (n) = log2 n.
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This is faster still than even Chunk-Search: on an array of size 1,000,000 Binary-Search

would perform 20 comparisons (in the worst case), as compared to 2,000 for Chunk-Search

and 1,000,000 for Ordered-Linear-Search! This is the power of fast algorithms.

10.2.4 Comparison of Search Algorithms

The table below compares the worst times for the search methods we has discussed..

Name WorstTime Comment n = 1000

Linear Search n key ≥ last 1000

Chunk Search
√
n when c = n/c 32

Binary Search log2 n 10

10.3 Algorithms for Sorting

Ordered-Linear-Search, Chunk-Search, and Binary-Search each assume that the un-

derlying array or list which is being searched is already in sorted order. How can one take an

unordered array or list and sort it? Algorithms for sorting are fundamental to computer sci-

ence and dozens have been developed. In this section, we shall consider three such algorithms:

Insertion-Sort, Selection-Sort, and Merge-Sort.

10.3.1 Insertion Sort

Insertion-Sort corresponds to the method that many people use to sort cards as they are

being dealt to them. The first card is placed in one’s hand, the second card is compared to the

first and placed either before or after it, and so on. In general, one has some i cards, in sorted

order, in one’s hand, and the i + 1st card is compared to successive cards (starting from the

left or right) until the proper location to “insert” the card is found.

Now consider the following array:

i 1 2 3 4 5 6 7 8

A 34 16 12 11 54 10 65 37

Let us consider how to sort this array using Insertion-Sort. Imagine the numbers 34, 16,

12, . . . , being “dealt” to you, in this order, like cards. You would start with the number 34, a

trivially sorted list. Then the number 16 would be inserted into this list, producing the sorted

list “16 34.” The number 12 would then be inserted into this list, producing “12 16 34,” and

so on. In general, in phase k of the algorithm, the kth element of the array is inserted into the

sorted list formed from the first k − 1 elements of the array. The process of insertion sort is
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shown below, where a diamond 3 is used to separate the processed and sorted array elements

from the as yet unprocessed array elements.

Phase Processed 3 Unprocessed

0 3 34 16 12 11 54 10 65 37

1 34 3 16 12 11 54 10 65 37

2 16 34 3 12 11 54 10 65 37

3 12 16 34 3 11 54 10 65 37

4 11 12 16 34 3 54 10 65 37

5 11 12 16 34 54 3 10 65 37

6 10 11 12 16 34 54 3 65 37

7 10 11 12 16 34 54 65 3 37

8 10 11 12 16 34 37 54 65 3

Analysis: What is the running time of Insertion-Sort on an array containing n elements?

In phase 1 of the algorithm, the first array element must be examined. In phase 2 of the algo-

rithm, the second element must be examined and compared to the first (which must therefore

be examined). In general, in the kth phase of Insertion-Sort, the kth element must be ex-

amined, and in the worst case, it may be compared to each of the previously processed k − 1

elements, resulting in k total elements being examined. Thus, the total number of elements

examined (in the worst case) is given by

1 + 2 + 3 + · · ·+ (n− 2) + (n− 1) + n.

We shall consider mathematical techniques for determining the size of such sums in Chapter 11.

10.3.2 Selection Sort

While Insertion-Sort can be used to process cards on-line, as they are being dealt, the next

algorithm we shall consider cannot proceed until all the cards have been dealt. However, in

sorting a list or array of elements that are all given in advance, both algorithms are equally

applicable.

Selection-Sort begins by examining the list of elements, “selecting” the smallest one,

and “swapping” it with the first element of the list. In phase 2, Selection-Sort selects the

smallest element from the remaining n−1 elements and swaps it with the element in position 2.

In general, in the kth phase, Selection-Sort selects the smallest element from the remaining
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n − k + 1 elements and swaps it with the element in position k. The process of selection sort

is shown below.

Phase Processed 3 Unprocessed

0 3 34 16 12 11 54 10 65 37

1 10 3 16 12 11 54 34 65 37

2 10 11 3 12 16 54 34 65 37

3 10 11 12 3 16 54 34 65 37

4 10 11 12 16 3 54 34 65 37

5 10 11 12 16 34 3 54 65 37

6 10 11 12 16 34 37 3 65 54

7 10 11 12 16 34 37 54 3 65

8 10 11 12 16 34 37 54 65 3

Analysis: What is the running time of Selection-Sort on an array containing n elements?

In phase 1 of the algorithm, all n elements must be examined in order to find the smallest

element. In phase 2 of the algorithm, the n − 1 remaining elements must all be examined to

find the second smallest element. In general, in phase k of the algorithm, the remaining n−k+1

elements must all be examined to determine the kth smallest element. Thus, the total number

of elements examined is given by

n+ (n− 1) + (n− 2) + · · ·+ 3 + 2 + 1.

Note that this is the same sum as given by the analysis of Insertion-Sort, only written

backwards. Again, we shall consider mathematical techniques for determining the size of such

sums in Chapter 11.

10.3.3 Merge Sort

Merge-Sort is a divide-and conquer algorithm. This is how it works:

Start with an unsorted list of n elements.

1. If n = 1, STOP. The list is sorted.

2. Break the list into two approximately equal pieces and apply Merge-Sort to each piece.

3. Merge the two sorted sublists to produce the sorted list.
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Merge takes two sorted lists and combines them by repeatedly comparing the two lowest

elements and sending the smaller one off to be the next element in the combined list.

Example 10.1

Original List 19 3 12 5 7 22 18 4

Two Parts 19 3 12 5 7 22 18 4

Four Parts 19 3 12 5 7 22 18 4

Eight Parts 19 3 12 5 7 22 18 4

Merge to Four Parts 3 19 5 12 7 22 4 18

Merge to Two Parts 3 5 12 19 4 7 18 22

Merge to Sorted List 3 4 5 7 12 18 19 22

In Chapter 13 we analyze Merge-Sort, whose implementation is inherently recursive and

whose analysis depends on the mathematical technique of recurrences. Merge-Sort is provably

faster than either Insertion-Sort or Selection-Sort, in the worst case.

10.3.4 Comparison of Sorting Algorithms

There is a table comparing many sorting algorithms in this article, Wikipedia on Sorting Algorithms.

The table below is just about the sorts we are looking at this semester.

Name Best Average Worst Average n = 1000

Insertion sort n n2 n2 106

Selection sort n2 n2 n2 106

Merge sort n log n n log n n log n 9966

Quicksort n log n n log n n2 9966

Exercises

In the problems that follow, you will consider three of the algorithms for search which we

discussed in class: Ordered-Linear-Search, Chunk-Search, and Binary-Search. Let

T1(n), T2(n), and T3(n), respectively, be the number of element examinations1 required by

1worst-case. . .

https://en.wikipedia.org/wiki/Sorting_algorithm
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these algorithms when run on a list whose length is n. We have

T1(n) = n

T2(n) =
√
n

T3(n) = log2(n).

In the problems that follow, you will compare and contrast the growth rates of these functions.

Exercise 10.1

On a single sheet of graph paper, plot the number of element examinations required for

each of the three algorithms when run on lists of length n = 1, 2, 4, 8, and 16. For each

algorithm, connect the plot points with a smooth, hand-drawn curve. See the plots given in

the “Exponentials and Logs” handout for examples of what you should do. You may print a

piece of graph paper from the PDF located at the following URL:

http://www.printfreegraphpaper.com/gp/c-i-14.pdf

(If you view this assignment on-line, you may simply click on the above hyperlink.)

Exercise 10.2

i. Suppose that you were given a budget of 20 element examinations. For each of the three

algorithms, determine the largest array length such that the number of examinations

made is guaranteed to be at most 20.

ii. How many times larger is the array that Binary-Search can handle, as compared to

the arrays that Chunk-Search and Ordered-Linear-Search can handle? How many

times larger is the array that Chunk-Search can handle, as compared to the array that

Ordered-Linear-Search can handle?

Exercise 10.3

Moe, Larry, and Curly have just purchased three new computers. Moe’s computer is 10 times

faster than Larry’s and 50 times faster than Curly’s.2 However, Moe runs Ordered-Linear-Search

on his computer, while Larry and Curly run Chunk-Search and Binary-Search, respec-

tively. Moe, Larry, and Curly begin to perform searches over various data stored on their

computers. . .

2In other words, Moe’s computer can perform 50 operations (such as an element examination) in the time it
takes Curly’s computer to perform one operation, and Moe’s computer can perform 10 operations in the time it
takes Larry’s computer to perform one operation.

http://www.printfreegraphpaper.com/gp/c-i-14.pdf
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i. How large must n (the size of the array) be so that Curly’s computer begins to outperform

Moe’s?

ii. How large must n be so that Larry’s computer begins to outperform Moe’s?

iii. How large must n be so that Curly’s computer begins to outperform Larry’s?

Hint: For parts of this problem, you will have to solve an equation that involve n (or
√
n)

and log2 n. Such equations typically cannot be solved analytically, i.e., by applying the rules of

algebra to obtain a formula for n. Such equations are often solved numerically by using. . . binary

search! Consider the equation

10 log2 n = n.

First, find two initial values of n, one of which causes the left-hand side of the equation to

exceed the right, and the other of which causes the right-hand side of the equation to exceed

the left. The solution to the equation lies somewhere between these two values. For example,

when n = 2, the left-hand side of the equation is 10 while the right-hand side is 2. Conversely,

when n = 128, the left-hand side is 70 while the right-hand side is 128. The solution to this

equation lies somewhere between n = 2 and n = 128. One could then apply binary search in

this range to find the solution in question. (Think about which half of the interval one should

search and why.)

Exercise 10.4

Consider the setup described in the problem above.

i. Moe and Curly both run a search on the same data set. Despite the fact that Curly’s

machine is 50 times slower than Moe’s, Curly’s machine performs the search 100 times

faster than Moe’s machine. How large is the data set?

ii. Suppose that Moe switches to Chunk-Search. On this same data set, will Moe’s machine

now outperform Curly’s? Explain.

Hint: Again, for part of this problem, you will need to solve an equation using binary search.



C h a p t e r 11

Sequences, Sums, and Series

11.1 Sequences

A sequence is a function t from a subset of the integers (usually N or Z+) to a set S. In this

discussion, the set S will be a set of numbers but we could have a sequence of colors, musical

notes, or even computer programs.

We often write an = t(n). Each an is a term of the sequence. The sequence a1, a2, a3, . . .

may be denoted by {an} or {an}n=1···∞. The numbers, 1, 2, 3, . . . are the term indices and

a1, a2, a3, . . . are the term values

Cover the right-hand side of the page below and see if you can give the next term of each

sequence and the function t(n) that defines the sequence? Assume the first term is a1.

Example 11.1

1, 1/2, 1/3, 1/4, 1/5, 1/6, . . . next term = 1/7, t(n) = 1/n.

Example 11.2

2, 4, 6, 8, 10, 12, . . . next term = 14, t(n) = 2n.

Example 11.3

2, 4, 8, 16, 32, 64, . . . next term = 128, t(n) = 2n.

Example 11.4

7, 8, 9, 10, 11, 12, . . . next term = 13, t(n) = n+ 6.

Example 11.5

1/2, 1, 2, 4, 8, 16, . . . next term = 32, t(n) = 2n−2 = 2n

4 .

159
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Example 11.6

1, 3, 6, 10, 15, 21, . . . next term = 28, t(n) = (n2 + n)/2.

Example 11.7

1, 1, 1, 1, 1, 1, 1, . . . next term = 1, t(n) = 1.

Example 11.8

1, 1, 2, 3, 5, 8, . . . next term = 13, t(n) =

{
1 n = 1, 2

t(n− 1) + t(n− 2) n > 2

Example 11.9

1/2,−2/3, 3/4,−4/5, 5/6,−6/7, . . . next term = 7/8, t(n) = (−1)(n−1)n/(n+ 1).

Example 11.10

2, 3, 5, 7, 11, 13, . . . next term = 17, t(n) = nth prime number.

These examples include several different types of sequences. For some it is easy to find the next

term and the function that describes the general term while for others the formulas may seem

to come out of nowhere. In the next section, we will discuss some special types of sequences

that will cover many, but not all, of the sequences above.

11.1.1 Arithmetic Sequences

An arithmetic sequence is a sequence in which each term equals the preceding term plus a

constant. A general arithmetic sequence looks like this a, a + d, a + 2d, a + 3d, . . .. The first

term is a and the constant difference between terms is d. The nth term of the sequence a, a+

d, a+ 2d, a+ 3d, . . . is given by t(n) = a+ (n− 1)d.

The following examples are arithmetic sequences. For each example, find a, d, the next

term, and the nth term, t(n).

Example 11.11

4, 7, 10, 13, 16, 19, . . . a = 4, d = 3, next term = 22, t(n) = 4 + 3(n− 1) = 3n+ 1.

Example 11.12

−7,−1, 5, 11, 17, 23, . . . a = −7, d = 6, next term = 29, t(n) = −7 + 6(n− 1) = 6n− 13.

Example 11.13

30, 25, 20, 15, 10, 5, . . . a = 30, d = −5, next term = 0, t(n) = 30− 5(n− 1) = −5n+ 35.
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11.1.2 Geometric Sequences

A geometric sequence is a sequence in which each term equals the preceding term times a

constant. A general geometric sequence looks like this a, ar, ar2, ar3, ar4, . . . the first term

is a and the constant ratio between successive terms is r. The nth term of the sequence

a, ar, ar2, ar3, ar4, . . . is given by t(n) = a · r(n−1).
The following examples are geometric sequences. For each example, find a, r, the next term,

and the nth term, t(n).

Example 11.14

2, 6, 18, 54, 162, . . . a = 2, r = 3, next term = 486, t(n) = 2 · 3(n−1).

Example 11.15

1,−4, 16,−64, 256, . . . a = 1, r = −4, next term = −1024, t(n) = (−4)(n−1).

11.1.3 Quadratic Sequences

A quadratic sequence is a sequence whose nth term is given by a quadratic function,

an = an2 + bn+ c

.

Here are some quadratic sequences and the quadratic function that generates each one.

Example 11.16

1, 4, 9, 16, 25, 36, . . . an = n2.

Example 11.17

6, 15, 28, 45, 66, 91, . . . an = 2n2 + 3n+ 1.

An arithmetic sequence is given by a linear function and the difference between successive terms

is a constant. In a quadratic sequence the differences between successive terms are given by a

linear function and the second differences are constant.

Example 11.18

sequence 6 15 28 45 66 91 · · ·
differences 9 13 17 21 25 · · ·
second differences 4 4 4 4 · · ·

You can check whether a sequence of number can be given by a quadratic function by finding

the second differences. Once you know that a sequence is quadratic, to find the coefficients a,
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b, and c, plug in the values you have and solve for a, b, and c. The system of three equations

in three unknowns that you get will be particularly east to solve. The method shown in the

example below should always work.

For the sequence 6, 15, 28, 45, 66, 91, . . .,

a · 12 + b · 1 + c = a+ b+ c = 6

a · 22 + b · 2 + c = 4a+ 2b+ c = 15

a · 32 + b · 3 + c = 9a+ 3b+ c = 28

Subtract the first equation from the second and the second from the third to get:

3a+ b = 9

5a+ b = 13

Now subtract the first of these equations from the second to get:

2a = 4 0r a = 2.

Use the value a = 2 to find b,3a+ b = 6 + b = 9 so b = 3. Finally, use the values of a = 2 and

b = 3 to find c. a+ b+ c = 2 + 3 + c = 6 so c = 1 and an = 2n2 + 3n+ 1.

11.2 Series and Partial Sums

A series is a sum of the terms of a sequence. Since a sequence has infinitely many terms, a

series is the sum of infinitely many terms. We often sum only the first n terms of a sequence.

The sum of the first n terms is called the nth partial sum. The following is a sum of an infinite

number of terms.

∞∑
k=1

ak = a− 1 + a2 + a3 + · · ·

Below is the sum of the first n terms. This is the nth partial sum. k is the index of summation;

1 is the lower limit ; n is the upper limit.

n∑
k=1

ak = a1 + a2 + a3 + · · ·+ an

This is also a partial sum. j is the index of summation; m is the lower limit; n is the upper

limit.
n∑

j=m

aj = am + am+1 + am+2 + · · ·+ an
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11.2.1 Arithmetic Sums

An arithmetic sum is a sum of terms of an arithmetic sequence.

n∑
k=0

a+dk = a+(a+d)+(a+2d)+(a+3d)+· · ·+(a+nd) =
(number of terms)

2
(first term + last term)

The formula we have given for the sum is easy to remember and does not involve any of the

variables, n, a, d. It is based on what we refer to as Gauss’s Trick . Carl Friedrich Gauss is

considered to be one of the greatest mathematicians to ever live. The story (as my grandfather

told it to me) is that at the age of nine, Carl Friedrich Gauss was the youngest student in an

arithmetic class. The schoolmaster asked the students to sum up all the numbers (i.e. integers)

from 1 to 100. The young Carl immediately placed his slate on the schoolmaster’s table. When

all the other students had finished their sums, the slates were turned over and only Carl’s was

correct. How did he get the right answer so quickly? Probably he noticed that if you start at

the ends and pair up numbers, each pair adds up to 101.

1 +

101︷ ︸︸ ︷
2 + · · ·+ 50 + 51︸ ︷︷ ︸

101

+ · · ·+ 99 +100

︸ ︷︷ ︸
101

There are exactly 50 = 100/2 pairs so the sum is 50 · 101 = 5050.

For more versions of this tale, see “Gauss’s Day of Reckoning” by Brian Hayes

Example 11.19

1 + 2 + · · ·+ 100 = 100
2 (1 + 100) = 5050

Example 11.20

1 + 2 + 3 + · · ·+ n = n
2 (n+ 1)

Example 11.21

2 + 5 + +8 + 11 + 14 + 17 + 20 + 23 + 26 + 29 = 10
2 (2 + 29) = 155

11.2.2 Geometric Sums and Series

A geometric sum is a sum of terms of a geometric sequence.

n∑
k=1

ark = ar + ar2 + ar3 + · · ·+ arn

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://www.americanscientist.org/template/AssetDetail/assetid/50686?&print=yes
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or, summing from 0
n∑
k=0

ark = a+ ar + ar2 + ar3 + · · ·+ arn

With geometric sequences, summing the infinite sequence may be meaningful. Infinite sums

are called series.
∞∑
k=0

ark = a+ ar + ar2 + ar3 + · · ·

Let’s find a formula fort the nth partial sum
∑n

k=1 ar
k = ar+ar2 +ar3 + · · ·+arn. You should

find it more useful to learn the method below than to memorize any particular formula it leads

to.

Let S =
∑n

k=0 ar
k = a+ ar + ar2 + ar3 + · · ·+ arn.

Then rS =
∑n

k=0 ar
k+1 = ar + ar2 + ar3 + ar4 + · · ·+ arn + arn+1.

S − rS = a− arn+1 as all the other terms cancel out when we subtract rS from S.

So S = a−arn+1

1−r = a(1−rn+1)
1−r . When r > 1, we usually compute rS − S instead of S − rS so

we don’t have to work with negative numbers. See the second example below.

Example 11.22

∑6
k=0

1
3k

= 1 + 1
3 + 1

32
+ 1

33
+ 1

34
+ 1

35
+ 1

36
=

1

(
1− 1

1
37

)
1− 1

3

= 37−1
37−36 = 2187−1

2197−729 = 2186
1458 ≈ 1.499.

Using the method rather than the formula, set

S =
6∑

k=0

1

3k
=

1

1
+

1

3
+

1

32
+

1

33
+

1

34
+

1

35
+

1

36

The ratio, r = 1
3 .

1

3
S =

6∑
k=0

1

3k+1
=

1

3
+

1

32
+

1

33
+

1

34
+

1

35
+

1

36
+

1

37

2

3
S = S − 1

3
S = 1− 1

37
so S =

3

2
(1− 1

37
) = 1.5 · (1− 1

2187
) ≈ 1.499

Example 11.23∑6
k=0 3k = 1 + 3 + 32 + 33 + 34 + 35 + 36 =

1(1−37)
1−3 = 27−1

2 = 2186
2 = 1093.
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Using the method rather than the formula, set

S =
6∑

k=0

3k = 1 + 3 + 32 + 33 + 34 + 35 + 36

The ratio, r = 3.

3S =
7∑

k=1

3k = 3 + 32 + 33 + 34 + 35 + 36 + 37

2S = 3S − S = 37 − 1 so S =
37 − 1

2
=

2186

2
= 1093.

Example 11.24

∑6
k=0

1
2k

= 1 + 1
2 + 1

22
+ 1

23
+ 1

24
+ 1

25
+ 1

26
=

1

(
1− 1

1
27

)
1− 1

2

= 27−1
27−26 = 128−1

128−64 = 127
64 ≈ 1.984.

Example 11.25

∑n
k=0

1
2k

=
1

(
1− 1

1
2n+1

)
1− 1

2

=
1− 1

1
2n+1
1
2

= 2− 1
2n . What happens when n gets very large?

Example 11.26∑∞
k=0

1
2k

= ?

11.2.3 Some Special Sums

The following two sums are neither arithmetic nor geometric but they frequently appear in

applications so we include them here.

∑n
k=1 k

2 = n(n+1)(2n+1)
6 .∑n

k=1 k
3 = n2(n+1)2

4 .

Exercises

Arithmetic Sequences

Exercise 11.1

The following series are all arithmetic. In each case, tell the next term, give a formula for the

nth term assuming that n = 1 for the first term, and give a formula for the kth term assuming

that k = 0 for the first term.
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a. 6, 8, 10, 12, 1416, . . .

b. 16, 14, 12, 10, 8, 6, . . .

c. −16,−14,−12,−10,−8,−6, . . .

d. −6,−8,−10,−12,−14− 16, . . .

e. −6,−3, 0, 3, 6, 9, . . .

f. 0, 5, 10, 15, 20, 25, . . .

g. 5, 10, 15, 20, 25, 30, . . .

h. 0, 12 , 1,
3
2 , 2,

5
2 , . . .

i. 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, . . .

j. −72,−60,−48,−36,−24,−12, . . .

Geometric Sequences

Exercise 11.2

The following series are all geometric. In each case, tell the next term, give a formula for the

nth term assuming that n = 1 for the first term, and give a formula for the kth term assuming

that k = 0 for the first term.

a. 4, 16, 64, 256, 1024, . . .

b. −4,−16,−64,−256,−1024, . . .

c. 4,−16, 64,−256, 1024, . . .

d. 1
3 ,

1
9 ,

1
27 ,

1
81 ,

1
243 , . . .

e. 81, 27, 9, 3, 1, . . .

f. 1
2 ,−

1
4 ,

1
8 ,−

1
16 ,

1
32 , . . .

g. 6,−6, 6,−6, 6, . . .

h. 1, .5, .25, .125, .625, . . .

i. 2, 6, 18, 54, 162, . . .

j. 7,−14, 28,−56, 112, . . .
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Quadratic Sequences

Exercise 11.3

The following series are all quadratic. In each case, tell the next term, show the sequence of

first differences, show the constant second difference, give a formula for the nth term assuming

that n = 1 for the first term, and give a formula for the kth term assuming that k = 0 for the

first term.

a. 1, 3, 7, 13, 21, . . .

b. 1, 2, 5, 10, 17, . . .

c. −2,−1, 2, 7, 14, . . .

d. −1,−.5, .5, 2, 4, . . .

e. 10, 9, 7, 4, 0, . . .

f. −1,−5,−10,−16,−23, . . .

g. 2, 5, 6, 5, 2, . . .

h. 4, 8, 11, 13, 14, . . .

i. 15, 6, 0,−3,−3, . . .

j. 4, 0, 0, 4, 12, . . .

Miscellaneous Sequences

Exercise 11.4

Some of the following series are arithmetic, some are geometric, some are quadratic, and some

are none of the above. In each case, tell the type of series, the next term, and, unless otherwise

indicated, give a formula for the kth term assuming that k = 0 for the first term.

a. 7, 5, 3, 1,−1, . . .

b. 3, 3, 5, 9, 15, . . .

c. 5, 10, 20, 40, 80, . . .

d. 3, 1.5, 0.75, 0.375, 0.1875, . . .

e. 2, 4, 10, 28, 82, . . .

f. −8,−3, 2, 7, 12, . . .
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g. −6, 1, 22, 57, 106, . . .

h. −1, 1, 0, 1, 1, 2, 3, . . . - no formula

i. 3, 4, 7, 11, 18, . . . - no formula

j. 4, 14, 23, 34, 42, . . . - no formula

Summation Notation

Exercise 11.5

Expand the following sums to show the individual terms, and evaluate the sums e.g.

n=4∑
n=1

n2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30.

a.
6∑

k=1

3k b.
5∑

k=0

2k + 3 c.
6∑

k=1

1

k

d.
7∑

k=1

6 e.
10∑
m=2

m

2
f.

10∑
n=5

n3

g.
3∑

j=−3
j2 h.

3∑
i=−3

i3 i.
5∑

k=1

k2 − k + 1

Exercise 11.6

Write each of the following sums using summation notation. Try to make you answers as

simple as possible.

a. 7 + 12 + 17 + 22 + · · ·+ 177

b. 4 + 7 + 10 + 13 + · · ·+ 304

c. 1 + 11 + 21 + 31 + · · ·+ 251

d. 1 + 2 + 4 + 8 + ...+ · · ·+ 1, 073, 741, 824

e. 2 + 6 + 18 + 54 + · · ·+ 2, 324, 522, 934

f. 1
5 −

1
25 + 1

125 −
1

625 + · · ·+ 1
30,517,578,125
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Arithmetic Sums

Exercise 11.7

Apply Gauss’s trick to evaluate each of the following sums.

a. 7 + 12 + 17 + 22 + · · ·+ 177

b. 4 + 7 + 10 + 13 + · · ·+ 304

c. 1 + 11 + 21 + 31 + · · ·+ 251

d. 1 + 2 + 3 + 4 + · · ·+ 1000

e. 1 + 3 + 5 + 7 + · · ·+ 1001

f. 15 + 22 + 29 + 36 + · · ·+ 715

Exercise 11.8

Apply Gauss’s trick to evaluate each of the following sums.

a.

200∑
k=1

3k b.

300∑
k=1

2k c.

50∑
k=1

9k

d.

200∑
k=1

6 e.

37∑
k=1

7k f.

1000∑
k=1

8k

g.

83∑
k=7

3k h.

255∑
k=11

2k i.

450∑
k=43

9k

Exercise 11.9

Consider the arithmetic series

5 + 8 + 11 + 14 + · · ·+ 125.

a. How many terms are in this series? Explain.

b. Apply Gauss’s trick to evaluate this sum. Show your work. You must give an answer in

the form
x · y

2

for some x and y, and you may then use a calculator to evaluate this expression.
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c. Write this series as a summation in the form

n∑
k=1

(a · k + b)

for some a, b, and n.

d. Rewrite this summation in the form

a ·
n∑
k=1

k +
n∑
k=1

b.

What is the value of
n∑
k=1

b

for your values of n and b? Apply the standard arithmetic summation formula to evaluate

n∑
k=1

k

for your value of n. Finally, evaluate the original expression by using the values of these

summations and your value of a. Show your work. You should obtain the same value as

in part ii above, of course.

Geometric Sums

Exercise 11.10

Use the method described in section 11.1.2 to evaluate the following geometric sums.

a. 1 + 2 + 4 + 8 + · · ·+ 1024

b. 1 + 2 + 4 + 8 + · · ·+ 2n where n is an integer greater than 1

c. 1 + 1
2 + 1

4 + 1
8 + · · ·+ 1

1024

d. 1 + 1
2 + 1

4 + 1
8 + · · ·+ 1

2n where n is an integer greater than 1

e. 1 + 1
3 + 1

9 + 1
27 + · · ·+ 1

59,049

f. 1 + 1
3 + 1

9 + 1
27 + · · ·+ 1

3n where n is an integer greater than 1

g. 510 + 59 + 58 + · · ·+ 1 + 1
5 + · · ·+ 1

510
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Exercise 11.11

Use the method described in section 11.1.2 to find closed forms for the following geometric

sums. You may include exponents like 3489 or rN in your answers.

a.
200∑
k=1

3k b.
300∑
k=1

2k c.
50∑
k=1

2 · 5−k

d.
200∑
k=1

5

2−k
e.

37∑
k=1

7k f.

1000∑
k=1

rk where r is a real number greater than 0.

g.

N∑
k=1

3k h.

255∑
k=11

2k i.

2N∑
k=1

10k

Miscellaneous Sums

Exercise 11.12

A telescoping series is a series of the form

n∑
k=1

(ak − ak+1)

for some sequence a1, a2, a3, . . .

a. Show that
n∑
k=1

(ak − ak+1) = a1 − an+1.

b. Show that
n∑
k=1

1
k(k+1) is a telescoping series. What is the form of ak for any k?

Hint: Factor the ratio 1
k(k+1) into terms involving 1

k and 1
k+1 .

c. Using parts i and ii above, show that

n∑
k=1

1

k(k + 1)
= 1− 1

n+ 1
.

Explain.
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Mathematical Induction

Mathematical Induction is a technique used to prove specific statements about the natural

numbers very directly, and it can be applied in a wide variety of circumstances. In this chapter

we introduce some variations on Mathematical Induction with examples, to lay the groundwork

for its use in studying recurrences later.

12.1 The Principle of Mathematical Induction

Mathematical Induction is a proof technique. We often find ourselves with statements about

the natural numbers that begin “for all integers n, where n ≥ 0, ...”. We have already seen

several such statements, for example Gauss’s formula from Chapter 11

For all n ≥ 0,

n∑
i=0

i =
n(n+ 1)

2

When we first saw this equation, we verified its truth by noticing a pattern in the sums of the

first and last elements. That proof is essentially creative, because it requires you to have seen

the pattern and determined its importance.

The use of Mathematical induction is considerably less creative, but still quite powerful.

For this theorem of Gauss, we can apply induction to convince ourselves that the statement

is true in a predictable, formulaic way. The rough idea is to first show that the statement in

question is true for n = 0, and also show that if it is true for some arbitrary n = k it must also

be true for n = k + 1. The Principle of Mathematical Induction says that this is enough to

establish truth everywhere.
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The Principle of Mathematical Induction If P ⊆ N is some set of natural numbers, and

1. (Base case) 0 ∈ P .

2. (Inductive step) Whenever k ∈ P , also k + 1 ∈ P .

then P encompasses the whole set of natural numbers: P = N.

This principle is deceptively simple. It only says that if you’ve got a set that contains 0,

and also if you know k + 1 is in the set for every k in the set, then your set is really all of the

natural numbers. Because, first 0 is in the set because of the base case. And because of the

inductive step as well as the fact that you have 0, you must also have 0 + 1 = 1. And since you

have 1 and the inductive step you must also have 2. And since you have 2 you must also have

3. And so on; in this way you can accumulate all the numbers into P .

If you’re thinking this is obvious or clearly uninteresting, your instinct is right. This property

of N is so fundamental that it is often taken as an axiom when studying the natural numbers.

It is, very deeply, one of the core ideas makes the natural numbers what they are.

12.2 A First Example

Returning to the idea that we can use induction as a formulaic way to prove things about

numbers, consider how we would use this to show that
∑n

i=0 i = n(n + 1)/2. If we take P to

be “the set of values n for which this equation is true”, and establish conditions 1 and 2, then

we will have shown that this equation is true for all n. The power here is that in the course of

doing this, we will only have had to verify the theorem in one real case (for 0). So,

1. First we must show that this equation is true for n = 0. So plugging in 0 for n,

n∑
i=0

i =

0∑
i=0

i = 0 =
0 · (0 + 1)

2
=

n(n+ 1)

2

we see clearly that this equation is true for n = 0.

2. Now, we want to show that whenever this is equation is true for n = k, it is also true for

n = k+ 1. So we assume that it is true for n = k and set out, given that, to prove that it

is true for n = k + 1. Notice this usage of the inductive step as we proceed to the second
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line. This assumption baked into our proof is typically called the induction hypothesis.

n∑
i=0

i =
k+1∑
i=0

i =

(
k∑
i=0

i

)
+ (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2 · (k + 1)

2

=
(k + 1)((k + 1) + 1)

2
=
n(n+ 1)

2

And that’s all there is to it; the preceding two demonstrations, together with the principle

of mathematical inducion, proves Gauss’s equation. Often these proofs give the impression that

not much has really been demonstrated, but so long as you have the basic structure in which

you show that 0 is okay and that k+1 is ok (assuming k is), then you have a proof by induction.

12.3 More Examples

Example 12.1

Prove Bernoulli’s Inequality : if x ∈ R and x > −1, and n is any natural number, then

(1 + x)n ≥ 1 + nx

First, we establish the base case, n = 0.

(1 + x)n = (1 + x)0 = 1 ≥ 1 + 0 · x = 1 + nx

Then, the induction step. Assume the inequality for n = k. Then, when n = k + 1,

(1 + x)n = (1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x)

= 1 + kx+ x+ kx2

= 1 + (k + 1)x+ kx2

≥ 1 + (k + 1)x = 1 + nx

Notice that as we proceed to the second line we’ve used the induction hypothesis, and also note

that kx2 ≥ 0 for all the permissible values of k and x.

Example 12.2
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Prove that for any natural number n, n3 − n is divisible by 3.

First the base case: if n = 0, n3 − n = 0, and 0 is divisible by 3. Now suppose that k3 − k
is divisible by 3, then for n = k + 1,

n3 − n = (k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1)− (k + 1)

= (k3 − k) + 3(k2 + k)

And notice that the final form is the sum of two values known to be divisible by 3, k3 − k (by

the induction hypothesis) and 3(k2 + k) (since it is a multiple of 3). Therefore the sum itself,

n3 − n is also divisible by 3.

12.4 Variations of Mathematical Induction

Although one frequently encounters the need to prove statements for all natural numbers,

Mathematical Induction is also useful when you don’t need to go quite that far.

It’s possible, and straigtforward, to use Mathematical Induction when you have some other

infinite subsets of the natural numbers. For instance, consider this statement: for all n ≥ 5,

n2 < 2n. This is true, but the n ≥ 5 part is important since the inquality is false at n = 4 for

instance. We can prove it by using a variation of Mathematical Induction where the base case

is n = 5 instead of n = 0.

So, for the base case, when n = 5,

n2 = 52 = 25 < 32 = 25 = 2n

And if we assume that n2 < 2n for n = k, then for n = k + 1,

n2 = (k + 1)2 = k2 + 2k + 1 < 2k + 2k + 1 < 2k + 2k = 2 · 2k = 2k+1 = 2n

The first inequality is true by the induction hypothesis. The second inequality is true if 2k+1 <

2k, which is left as an exercise for the reader. Given that, we have shown the induction step is

true, and therefore our statement, n2 < 2n is true whenever n ≥ 5.

One justification for the validity of this variation of Mathematical Induction is that the

theorem in question can be viewed as a theorem beginning at n = 0 when written in terms of

n+ 5, or in this case (n+ 5)2 < 2n+5.

We can also vary the induction step, to prove statements about all even numbers, for

instance. In such a proof we would need to show that n = 0 is true, and that whenever n = k

is true then also n = k+ 2 is true. Just as in the base case variation, you could consider such a
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proof as normal Induction where the theorem is written in terms of 2 · n. Similarly you could

prove a theorem about all negative integers by using a base case of n = −1 and an induction

step in which you use the n = k case to demonstrate the n = k − 1 case.

Exercises

Exercise 12.1

a. Consider the series

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n · (n+ 1) =

n∑
k=1

k(k + 1).

Show that
n∑
k=1

k(k + 1) =
n(n+ 1)(n+ 2)

3

by induction.

b. Now consider the series

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n+ 1)
=

n∑
k=1

1

k(k + 1)
.

Show that
n∑
k=1

1

k(k + 1)
= 1− 1

n+ 1

by induction.
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Recurrences

The running times of most inherently recursive procedures, such as Merge-Sort, lend them-

selves to specification and analysis via recurrences. In this chapter, we discuss how one specifies

recurrences and how one solves such recurrences.

13.1 Specifying Recurrences

A recurrence is simply a mathematical formula which specifies the running time of the algorithm

on n elements, T (n), as a function of the running time on some smaller number of elements

(e.g., T (n/2)) plus some amount of overhead. For example, consider Merge-Sort. In order

to Merge-Sort n elements, one must

1. recursively call Merge-Sort on the first and second halves of the n elements and then

2. merge the sorted subgroups returned by the recursive calls.

So, what is the running time of Merge-Sort? If we let T (n) represent the total running time

of Merge-Sort on n elements, then in Step 1 above, T (n/2) must be the running time of

Merge-Sort on each of the first and second halves of those n elements. In Step 2, on the

order of n operations is required to merge two sorted groups whose total size is n. Therefore,

the total running time of Merge-Sort, T (n), is twice T (n/2) (for the recursive calls) plus on

the order of n work to perform the merge. Pulling this all together, we have

T (n) = 2T (n/2) + n. (13.1)

There are a few subtleties in the above description which we have glossed over:
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1. What if n is not even so that n/2 is not an integer? If n were 27, how could one recursively

call Merge-Sort on 13 1/2 elements?

2. What does “on the order of n operations” mean, anyway?

3. What happens when n gets small? The recursion eventually has to stop, right?

To answer the first question, we note that in reality Merge-Sort splits the set of n elements

as evenly as possible, and this is specified in the code for Merge-Sort itself: one recursive call

is on bn/2c elements and the other recursive call is on dn/2e elements. If n is even, we do have

two recursive calls on exactly n/2 elements each; if n is odd, we have recursive call on (n−1)/2

and (n+ 1)/2 elements, respectively. So in reality, our recurrence is more precisely

T (n) = T (bn/2c) + T (dn/2e) + n. (13.2)

However, one can show that for the class of recurrences corresponding to the overwhelming ma-

jority of real recursive procedures and programs, the floors and ceilings do not affect the analysis

in any significant way. In other words, Recurrence 13.2 “behaves” just like Recurrence 13.1.

To answer the second question, one must specify precisely what “effort” one is counting. The

merge operation in Merge-Sort, for example, involves comparing elements, copying elements,

incrementing counters, etc., etc. Should we count compares? Compares and copies? Program

lines executed? Microseconds of wall-clock time? The answer is to count all and none of them.

The merge operation entails somewhere between bn/2c and n compares and exactly n copies.

Each compare or copy is associated with a few lines of program code, plus some constant

overhead. Each line of code may be executed in some number of microseconds, etc. So,

depending on what “effort” one is counting, we might assess the merge as requiring n, 2n,

15n + 6, or some similar amount of “effort.” However, each of these accountings is effectively

the same, they’re just in different units: n compares, 2n counts and compares, 15n+ 6 program

lines, and so on. It’s analogous to seconds vs. minutes vs. hours.

What’s important is the fact that all of these accountings grow linearly in n (as opposed to,

say, n2). In algorithmic analysis, one cares about the asymptotic growth rate (i.e., the function

of n, say n vs. n2) and not constant factors, lower order terms, or specific “units” of accounting.

Furthermore, one can show that for the class of recurrences corresponding to the overwhelming

majority of real recursive procedures and programs, dropping the constant factors (e.g., the

“15” in 15n+ 6) and lower order terms (e.g., the “6” in 15n+ 6) does not affect the asymptotic

analysis in any way. Thus, while our recurrence may precisely be

T (n) = T (bn/2c) + T (dn/2e) + 15n+ 6, (13.3)
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(as measured in units of program lines), Recurrence 13.3 “behaves” (asymptotically) just like

Recurrence 13.1.

Dropping constant factors and lower order terms yields what is referred to as “order no-

tation;” for example, “15n + 6” is said to be “on the order of n.” Order notation is used so

often in mathematics and computer science that a special notation has been developed for it:

one would write 15n+ 6 = Θ(n), where Θ is the Greek capital letter “theta.” Variants on this

notation include O (big-oh) and Ω (big-omega) which roughly correspond to “at most on the

order of” (big-oh) and “at least on the order of” (big-omega). Θ, O, and Ω are the asymptotic

analogues of =, ≤, and ≥.

Finally, to answer the third question, we note that recursive procedures do eventually ter-

minate when some base condition is met. In the case of Merge-Sort, a one item list need

not be recursive split in order to be sorted: it is already (trivially) sorted. Thus, Merge-Sort

returns in (on the order of) one unit of time when called on a list of length one. Thus, T (1) = 1.

This is a base case of the recurrence. Our recurrence is therefore more precisely

T (n) =

1 if n = 1

2T (n/2) + n if n > 1.
(13.4)

A recurrence may have more than one base case (for instance, a recursive procedure may specify

different termination actions when n = 1, n = 2, and n = 3). However, for all recurrences

corresponding to the overwhelming majority of real recursive procedures and programs, the

base case(s) take some small, constant amount of “effort” and are thus “on the order of” 1. So,

a recurrence of the form given by Recurrence 13.1 is implicitly assumed to be of the form given

by Recurrence 13.4, unless the base case(s) are given explicitly. So, after all those subtleties,

we are back where we started:

T (n) = 2T (n/2) + n.

How can one solve such recurrences?

13.2 Solving Recurrences

Consider our recurrence T (n) = 2T (n/2) + n. In order to solve the recurrence, it is good

practice to first rewrite the recurrence with the recursive component last and to use a generic

parameter not to be confused with n. We may think of the following equation as our general

pattern, which holds for any value of 2.

T (2) = 2 + 2T (2/2) (13.5)
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Since our pattern (Equation 13.5) is valid for any value of 2, we may use it to “iterate” the

recurrence as follows.

T (n) = n+ 2T (n/2)

= n+ 2
(
n/2 + 2T (n/22)

)
= n+ n+ 22 T (n/22) (13.6)

= 2n+ 22 T (n/22) (13.7)

Always simplify the expression, eliminating parentheses and combining terms as in Equa-

tions 13.6 and 13.7, before expanding further. Continuing. . .

T (n) = 2n+ 22
(
n/22 + 2T (n/23)

)
= 2n+ n+ 23 T (n/23)

= 3n+ 23 T (n/23)

= 3n+ 23
(
n/23 + 2T (n/24)

)
= 3n+ n+ 24 T (n/24)

= 4n+ 24 T (n/24)

Notice the pattern that has been developed:

T (n) = n+ 2T (n/2) = 2n+ 22 T (n/22) = 3n+ 23 T (n/23) = 4n+ 24 T (n/24).

Thus, we expect that for any k, we would have

T (n) = k · n+ 2k T (n/2k).

Formally, one must prove that this pattern is, indeed, correct (and we shall do so at the end of

this handout), but assuming that it is correct, we may continue as follows.

Given that T (n) = k · n + 2k T (n/2k) for all k, we next choose a value of k which causes

our recurrence to reach a known base case, e.g., T (1). For what value of k does n/2k = 1? We
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must solve for k in this equation. . .

n/2k = 1

⇔ n = 2k

⇔ log2 n = k

Since n/2k = 1 when k = log2 n, and T (1) = 1, we have

T (n) = k · n+ 2k T (n/2k)

= log2(n) · n+ 2log2 n T (1)

= n log2 n+ n · 1

= n log2 n+ n

Dropping the lower order term, we have that T (n) is on the order of n log2 n, and we would

write

T (n) = Θ(n log2 n).

Thus, Merge-Sort is not quite as fast as linear search, which is Θ(n), but it is faster than

Insertion-Sort, which is Θ(n2).

To complete our analysis, we next prove that the pattern we used was indeed correct; our

proof is by induction.

Claim 1 For all k ≥ 1, T (n) = k · n+ 2k T (n/2k).

Proof: The proof is by induction on k. The base case, k = 1, is trivially true since the resulting

equation matches the original recurrence. For the inductive step, assume that the statement is

true for k − 1; i.e.,

T (n) = (k − 1) · n+ 2k−1 T (n/2k−1).

Our task is then to show that the statement is true for k. This may be accomplished by starting

with this inductive hypothesis and applying the definition of the recurrence, as follows.

T (n) = (k − 1) · n+ 2k−1 T (n/2k−1)

= (k − 1) · n+ 2k−1
(
n/2k−1 + 2T (n/2k)

)
= (k − 1) · n+ n+ 2k T (n/2k)

= k · n+ 2k T (n/2k)

2
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Exercises

Exercise 13.1

Solve the following recurrences via iteration. Assume a base case of T (1) = 1. As part of your

solution, you will need to establish a pattern for what the recurrence looks like after the k-th

iteration. For this assignment, you need not formally prove that your patterns are correct,

though you will lose points if your pattern are not correct. Your solutions may involve n raised

to a power and/or logarithms of n. For example, a solution of the form 9log3 n is unacceptable;

this should be simplified as nlog3 9 = n2.

i. T (n) = 4T (n/2) + n.

ii. T (n) = 4T (n/2) + n2.
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Growth of Functions

In previous chapters, we have encountered the functions n,
√
n, and log2(n) with respect to

algorithms for search, and the functions n log2 n and n2 with respect to algorithms for sorting.

What difference is there among algorithms whose running times correspond to these functions?

Let’s assume that your computer can perform 10,000 operations (e.g., data structure manip-

ulations, database inserts, etc.) per second. Given algorithms that require lg n, n1/2, n, n lg n,

n2, n3, n4, n6, 2n, and n! operations to perform a given task on n items, here’s how long it

would take to process 10, 50, 100, and 1,000 items.

n

10 50 100 1,000

lg n 0.0003 sec 0.0006 sec 0.0007 sec 0.0010 sec

n1/2 0.0003 sec 0.0007 sec 0.0010 sec 0.0032 sec

n 0.0010 sec 0.0050 sec 0.0100 sec 0.1000 sec

n lg n 0.0033 sec 0.0282 sec 0.0664 sec 0.9966 sec

n2 0.0100 sec 0.2500 sec 1.0000 sec 100.00 sec

n3 0.1000 sec 12.500 sec 100.00 sec 1.1574 day

n4 1.0000 sec 10.427 min 2.7778 hrs 3.1710 yrs

n6 1.6667 min 18.102 day 3.1710 yrs 3171.0 cen

2n 0.1024 sec 35.702 cen 4× 1016 cen 1× 10166 cen

n! 362.88 sec 1× 1051 cen 3× 10144 cen 1× 102554 cen

Table 14.1: Time required to process n items at a speed of 10,000 operations/sec using ten
different algorithms. Note: The units above are seconds (sec), minutes (min), hours (hrs), days
(day), years (yrs), and centuries (cen)!

Note the explosive growth of the exponential and factorial algorithms, rendering them nearly
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useless for all practical purposes. The explosive growth of the exponential and factorial functions

is explored in more details in the tables that follow.

n

15 20 25 30 35 40 45

3.28 sec 1.75 min 55.9 min 1.24 days 39.8 days 3.48 yrs 1.12 cen

Table 14.2: Time required to process n items at a speed of 10,000 operations/sec using a 2n

algorithm.

n

11 12 13 14 15 16 17

1.11 hrs 13.3 hrs 7.20 days 101 days 4.15 yrs 66.3 yrs 11.3 cen

Table 14.3: Time required to process n items at a speed of 10,000 operations/sec using an n!
algorithm.

Algorithms whose running times are slower than n3 (e.g., the n4, n6, 2n, and n! algorithms

in the tables above) are generally too slow to be useful on meaningfully large data sets, and

2n and n! algorithms are effectively useless on all but trivially small data sets. One of the

goals of a course in Algorithms is to provide the techniques for developing fast and practical

polynomial-time algorithms; unfortunately, the theory of NP-completeness which one typically

studies in a Theory of Computation course dictates that there are large classes of interesting

computer science problems that in all likelihood cannot be solved faster than exponential (e.g.,

2n) time.

A plot of the functions lg n,
√
n, n, n lg n, and n2 is show in Figure 14.1. Note that lg n

and
√
n are nearly identical in the range [1, 10] shown, though lg n grows much more slowly

than
√
n for larger values of n. Further note the large disparity in the values of the functions n,

n lg n, and n2 even over this limited range; these differences become even more dramatic as n

becomes larger, thus emphasizing the importance of asymptotic efficiency in algorithm design.
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Figure 14.1: A plot of the functions lg n,
√
n, n, n lg n, and n2 over the range n ∈ [1, 10].
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PCR

PCR stands for polymerase chain reaction. PCR is a technique to generate millions of

copies of a particular DNA sequence from a single piece of DNA. The words chain reaction

accurately capture the essence of the technique. In a nuclear chain reaction one nucleus splits

emitting particles that then cause two other nuclei to split which in turn cause four and then

eight and then sixteen setting off an exponential explosion, literally. Similarly PCR creates

an explosion of copies. Polymerase is an enzyme that enables the chain reaction and we will

explain its role in greater detail in what follows. At its heart PCR is actually an algorithm.

And it is possible to understand how PCR works without understanding all the deep biology

and chemistry underlying it. [6]

15.1 Why is PCR such a major breakthrough?

PCR is such a major breakthrough that biochemists and molecular biologists refer to biology

as essentially consisting of two epochs before PCR and after PCR. Before PCR was invented

creating copies of DNA sequences involved painstaking and back-breaking lab work. Numerous

hours had to be spent with reagents in test-tubes to splice longer sequences and then separate

the desired portion using centrifuges and mass spectrometers. But all this work resulted in a

very low yield

PCR was invented (demonstrated) by Kary Mullis on 16 December 1983 while working as

a chemist at (the now defunct) Cetus Corp. PCR is now so common-place that it is considered

as indispensable and ordinary as the test-tube. It is utilized for a wide variety of applications.

These include DNA cloning for sequencing, DNA-based phylogeny, or functional analysis of

genes; the diagnosis of hereditary diseases; the identification of genetic fingerprints (used in

189



190 PCR

forensic sciences and paternity testing); and the detection and diagnosis of infectious diseases.

When detectives on CSI nail a suspect by lifting his DNA prints from a drinking glass - thats

PCR in action.

In 1993, Mullis was awarded the Nobel Prize in Chemistry (along with Michael Smith) for

his work on PCR.

15.2 Why is PCR controversial?

Almost as soon as news of the discovery of PCR hit the scientific establishment, controversy

erupted. According to Mullis it was in the spring of 1983 while driving on the highway late

one night with his girlfriend that he got the idea for PCR. Cetus awarded him $10,000 for the

patent filing. A spate of lawsuits followed with Du Pont ultimately losing out to Roche which

acquired Cetus for three hundred million dollars. Academics pointed out that a 1968 paper

of Hargobind Khorana (another Nobel prize winner) and Kjell Kleppe had foreseen many of

the central points of the discovery. Senate committees were convened to debate whether PCR

was really a discovery at all and whether a patent was justified for something in which no new

biology or chemistry was invented.

The main reason for all the controversy was the enormous amount of money at stake.

Another factor in the controversy was the personality of Kary Mullis, which is/was quirky to

say the least. After his PhD from Berkeley he quit science to pursue a career as a sci-fi writer

before returning to Cetus as a biochemist. He has openly promoted fields such as astrology, in

addition to being an AIDS denialist and a climate change denialist. He has claimed to talk to

extra-terrestrials. He has decried establishment science and lab work claiming that he did his

best work while surfing or driving.

15.3 Basic biology

We need to know just a minimal amount of biology to follow PCR. In particular we need to know

about DNA. Deoxyribonucleic acid (DNA) is a nucleic acid containing the genetic instructions

used in the development and functioning of most known living organisms. The DNA segments

carrying this genetic information are called genes. DNA consists of two long polymers of simple

units called nucleotides. These two strands run in opposite directions to each other. Each

nucleotide contains one of four types of molecules called bases (or nucleobases or nucleic acids).

These four bases are denoted: A (adenine), T (thymine), C (cytosine) and G (guanine). (It is

the sequence of these four bases along the backbone that encodes information. This information

is read using the genetic code, which specifies the sequence of the amino acids within proteins.
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The code is read by copying stretches of DNA into the related nucleic acid RNA in a process

called transcription.)

For our purposes we can think of a strand of DNA as consisting of a directed sequence of

bases:

A → T → T → C → A → G → T

Within cells DNA is organized into long structures called chromosomes characterized by

the now-legendary Watson-Crick double-helix structure comprised of two anti-parallel strands

with the weak bonds: A − T and C − G. The above single strand is part of the following

double-stranded DNA:

A → T → T → C → A → G → T

| | | | | | |
T ← A ← A ← G ← T ← C ← A

15.4 Elementary transformations

Rather than present Mullis discovery right away we are going to present the basic operations

on DNA that were well-known at the time of the discovery.

First, when a test tube of double stranded DNA is heated (in a controlled fashion) then it

breaks up into two constituent and complementary single strands:

A → T → T → C → A → G → T

| | | | | | |
T ← A ← A ← G ← T ← C ← A

breaks into

A → T → T → C → A → G → T

and

T ← A ← A ← G ← T ← C ← A

Second when single strands of DNA are cooled then complementary copies (if sufficient in

proportion) will rejoin and form the complete double stranded DNA. This is the reverse of

heating.

Third, when a single strand of DNA is cooled in a test tube with an abundant supply of

bases along with polymerase then polymerase will create a complementary strand by moving

along the given strand and adding bases one by one. Thus for example, polymerase could start

adding to the following strand as follows:
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A → T → T → C → A → G → T

becomes

A → T → T → C → A → G → T

| |
C ← A

Note that polymerase will only add in the complementary direction to the given strand, in

other words, if polymerase started adding in the middle then it could not complete the initial

part:

A → T → T → C → A → G → T

| | |
T ← A ← A

Further, note that complementary strands started by polymerase are not stable until they

are many (tens of) bases long. This means that the addition of polymerase will only rarely

result in a complementary strand that starts at the beginning and goes all the way to the end.

More typically it would start somewhere in the middle and continue to the end.

Lastly, it is possible to get quantities of short DNA strands (tens of bases) called primers

through conventional (pre-PCR) techniques.

15.5 The PCR algorithm

So here is the problem: given a small quantity of DNA containing a DNA (sub)sequence of

interest, create a large number of copies of the DNA sequence.

And at this point, knowing about DNA, heating, cooling, polymerase and primers you know

everything that Kary Mullis knew at the time of his revolutionary discovery.

Here is the solution to the problem. Let the given double strand be

· · · → o → · · · → ω → · · ·
| |

· · · ← ó ← · · · ← ώ ← · · ·

and let the sequence of interest be bracketed between o and ω, i.e. o → · · · → ω.

Mullis brilliant idea was to add enough primers o and ώ and then to heat and cool repeatedly

in cycles. Observe what happens after the first heating:

· · · → o → · · · → ω → · · ·
· · · ← ó ← · · · ← ώ ← · · ·
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Now comes the magic of polymerase with the primers, and we get:

· · · → o → · · · → ω → · · ·
| |

· · · ← ó ← · · · ← ώ ←

and

→ o → · · · → ω → · · ·
| |

· · · ← ó ← · · · ← ώ ← · · ·

After the second heating:

· · · → o → · · · → ω → · · ·
and

· · · ← ó ← · · · ← ώ ←
and

→ o → · · · → ω → · · ·
and

· · · ← ó ← · · · ← ώ ← · · ·

So far we are getting more than our desired sequence (or its complement) we are getting

extensions of our desired sequence (or its complement). Let us denote the desired sequence

or its complement by D. Let us denote a sequence which extends the desired sequence (or its

complement) on both ends by D and let us denote a sequence which extends the desired (or

its complement) on only one end by D . In other words we use D to denote both:

· · · → o → · · · → ω → · · ·
and

· · · ← ó ← · · · ← ώ ← · · ·

We use D to denote (both):

· · · ← ó ← · · · ← ώ ←
and

→ o → · · · → ω → · · ·

We use D to denote:

ó ← · · · ← ώ

and

o → · · · → ω
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Observe that after the first heating we have 2 D s. After two heatings we have 2 D s and

2 D s. Once again the magic of polymerase with the primers, and it is after the third heating

that we get two copies (or complements) of the desired sequence. After the third heating we

get 2 D s, 4 D s and 2 Ds.

If we have 2 D s to start, we will always have just 2 D s. Each of these will yield a new

D with each heating while the D s will each yield a D and a D. After n heating cycles, we

have 2 D s and 2(n − 1) D s as there were none after the first heating but we then added 2

with each cycle. Each existing D will yield a D and each existing D will yield 2 Ds with the

next heating cycle. The number of Ds after n cycles is 2n − 2n.

If we create a table of tallies of the three kinds of sequences we get:

Heating Cycle D D D

1 2 0 0

2 2 2 0

3 2 4 2

4 2 6 8

5 2 8 22

n 2 2(n− 1) 2n − 2n

Observe that each row totals to 2n as it should. Observe also that the number of D s is

constant while the number of D s grows linearly and the number of the desired sequence D

grows exponentially.

Below we plot a tally of the three kinds of sequences to get a sense for why exponential

growth is so explosive.

Figure 15.1: Exponential (D) vs Linear (D ) vs Constant ( D )

For additional reading, see Wikipedia: Polymerase chain reaction [12].

http://en.wikipedia.org/wiki/Polymerase_chain_reaction
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Graphs

We use graphs to model networks such as computer, airline, phone, or social networks. They

can also be used to model such diverse things as connections between data in a database or

molecular structure.

 

 

High School Dating Patterns The Internet

Mark Newman’s Gallery of Network Images Bill Cheswick’s Internet Mapping Project

  

Boston Subway DNA

MBTA Maps and Schedules Santa Monica College - animated image
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http://www-personal.umich.edu/~mejn/networks/
http://www.cheswick.com/ches/map/gallery/index.html
http://www.mbta.com/schedules_and_maps/subway/
http://homepage.smc.edu/hgp/images/dna-rep-small.gif
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16.1 Simple Graphs

A simple graph1 G = (V,E) is a set of vertices V connected by edges E.

An edge in a simple graph is just an unordered pair of vertices, i.e. a set containing two vertices.

The two vertices of an edge are said to be adjacent . We talk about going along an edge to get

to one vertex from another. In a simple graph, each edge is like a two-way street. When an

edge e connects two vertices u and v, we write e = {u, v} or e = {v, u}2. An edge cannot go

from a vertex to itself.

Example 16.1

This graph has six vertices and seven edges.

 

A 

C 
F 

E 

B 

D 

V = {A,B,C,D,E, F}
E = {{A,C}, {A,D}{D,F}, {D,E}, {C,B}, {B,F}, {F,E}}
Vertices D and F are adjacent.

Vertices C and E are not adjacent.

We say an edge e = {v, u} is incident to the vertices u and v. The degree, deg(v) of a vertex is

the number of edges that are incident to it.

Example 16.2

In the graph of example 16.1 vertices A, B, C, and E have degree 2. Vertices D and F have

degree 3.

If u and v are vertices in a graph G = (V,E), a path of length n from u to v is a sequence

of vertices 〈v0, v1, · · · , vn〉 in V such that u = v0, v = vn, and such that {vk, vk+1} ∈ E for

0 ≤ k ≤ n − 1. That is, each successive pair of vertices is connected by an edge. We say that

1also called an undirected graph
2Graph theorists often write (u, v) for a bidirectional edge even though it really is a set as the ordering doesn’t

matter. We will stick with {v, u} to emphasize this fact.
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the path contains the vertices v0, v1, · · · , vn and the edges {vk, vk+1}, 0 ≤ k ≤ n− 1. Note that

the length of a path is the number of edges in the path. The path 〈u〉 is a path of length 0 from

u to itself.

A vertex v is reachable from a vertex u if there is a path from u to v. We also say that u

and v are path connected if there is a path from u to v. The connected component of a vertex

u is the set of all vertices v such that v is reachable from u.

Example 16.3

Here are some paths in the graph of example 16.1:

〈A,C,B, F 〉 is a path from vertex A to vertex F .

〈F,E,D〉 is a path from vertex F to vertex D.

〈D,E, F 〉 is a path from vertex D to vertex F .

〈D,F 〉 is also a path from vertex D to vertex F .

〈D,A,C,B, F 〉 is another path from vertex D to vertex F .

〈D,A,C,B, F,D,E, F,D,E, F 〉 is a long path from vertex D to vertex F .

Example 16.4

This graph has eight vertices and eight edges.

 

A 

C 
F 

E 

B 

D 
I 

H 

V = {A,B,C,D,E, F,H, I}
E = {{A,C}, {A,D}, {D,F}, {D,E}, {C,B}, {B,F}, {F,E}, {H, I}}
All the paths in example 16.3 are paths in this graph too.

〈HI〉 is a path from H to I.

There is no path from vertex D to vertex I. Vertex I is not reachable from the vertex D.

The vertices A, B, C, D, E, and F are all path connected to each other.

The connected component of C is {A,B,C,D,E, F}.
The connected component of H is {H, I}.

A simple path is a path that has no repeated vertices. If you follow a simple path, you will

never go through that same vertex twice.
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Example 16.5

The paths 〈D,E, F 〉, 〈D,F 〉, and 〈D,A,C,B, F 〉 are all simple paths from vertex D to vertex

F in the graph of example 16.4 . The path 〈D,A,C,B, F,D,E, F,D,E, F 〉 is not a simple path

from vertex D to vertex F as it goes through each of the vertices D, E, and F multiple times.

A cycle is a path 〈v0, v1, · · · , vn〉 such that the vertices 〈v1, · · · , vn〉 are distinct and v0 = vn. A

cycle is just a closed path or loop that has no repeated vertices except for ending up where it

started.

Example 16.6

This is the graph of example 16.4.

 

A 

C 
F 

E 

B 

D 
I 

H 

The path 〈A,C,B, F,D,A〉 is shown in blue. The path starts at vertex A, and proceeds in

the direction of the arrow. These paths 〈D,E, F,D〉, and 〈F,E,D, F 〉 are also cycles in the

graph.

The paths 〈D,E, F,D,E, F,D〉 and 〈D,E, F,D,A〉 are not cycles.

16.2 Weighted Graphs

In the graphs we have looked at so far, all edges were treated as equal. If the graph is a model

of a highway system with the edges representing roads and the vertices representing cities, then

each edge will have a distance associated with it. If a graph represents a computer network,

each edge might have a bandwidth. For an airline network, the edges would have prices of

tickets. A weighted graph G = (V,E,w) is a simple graph with a weight associated with each

edge that is given by a function w : E → R. When we draw a weighted graph, we put the

weights on or next to the edges. In the graph below, w({A,B}) = 7 and w({H,N}) = 3. The

weight of a path is the sum of the weights of its edges.
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Example 16.7
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7 

6 

2 3 9 

1 

3 2 

4 8 5 

3 1
3 

6 4 

3 

2 2 5 3 

7 

5 

7 

5 

A B C 

D E F 

G H I 

J K L 

M N O 

In this weighted graph, the edge {H,N} has weight 3.

The weight of the path 〈A,D,H,K,O〉 = 5 + 2 + 4 + 5 = 16.

The paths 〈E,D,H,K〉 and 〈E,C, F, L,O,K〉 are both paths from E to K. The weight of

〈E,D,H,K〉 = 6 + 2 + 4 = 12 and the weight of 〈E,C, F, L,O,K〉 = 3 + 9 + 4 + 3 + 5 = 24.

16.3 Graph Data Structures

There are many operations we need to do with graph structures. When you look for a flight

on Travelocity, their computer must find a path between the cities you name. When it finds

the cheapest flight, it is actually finding the path with the lowest weight. Before we can write

programs to do these searches, we must have a way of representing graphs that our programs

can understand. We could just keep a list of the vertices and a list of the edges, but it is time

consuming to search through such lists to find paths. There are two standard representations

of graphs that are used in computer programs, adjacency lists and adjacency matrices.

16.3.1 Adjacency List

The adjacency list of a graph G = (V,E) is an array of the vertices and a list, for each vertex,

of the vertices adjacent to it, i.e all the vertices u ∈ V such that {v, u} ∈ E. With an adjacency

list, it is easy to find all the vertices that are adjacent to a given vertex which is the same as

finding all the edges incident to that vertex.
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Example 16.8

Here is a simple graph and its adjacency list.

 
A 

B 

D 

C 
F 

I 

E 

H 
 A 

B 

C 
D 
E 
F 

H 
I 

B 

B 

A 

A 

A 

C 
C 

D 

D 

D 

D 

E 
E 

F 

F 

H 

H 

I 

I 
F 

For a weighted graph, we need a way to store the weights as well as the vertices and edges. We

store these weights in the adjacency lists right next to the names of the adjacent vertices.

Example 16.9

Here is a weighted graph and its adjacency list.

 

5 

7 

9
4 

2 5 

6 1 8 

A B 

C D E 

F G 

 
A 

B 

C 

D 

E 

F 

G 

B C 7 5 

A D 7 4 E 9 

A D 5 2 F 6 G 1 

B C 4 2 E 5 

B D 9 5 G 8 

C 6 

C E 1 8 

16.3.2 Matrices

A matrix is just a two-dimensional array of numbers. Matrices are very important in mathe-

matics as they provide a concise and algebraically useful way of representing linear functions

on n-dimensional spaces. In computer science, you will see them used for such diverse things

as solving systems of linear equations and representing rotations in computer graphics. Here,

we use them to represent simple graphs.
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Formally, an n×m matrix A has n rows and m columns. We write A = (aij) where (aij) is the

number in row i and column j. The numbers (aij) are called the elements of A.

Example 16.10

The matrix A below is a 3× 4 matrix. a13 = 6, a31 = 0, a24 = 8, and there is no a42.

A =


3 0 6 7

5 2 9 8

0 1 7 4



16.3.3 Adjacency Matrix

Given the simple graph G = (V,E), assume V = {v1, v2, · · · , vn} where n = |V |. Recall that

|V | is the cardinality of V which is just the number of vertices in the graph. The adjacency

matrix of G = (V,E) is a |V | × |V | matrix, adj = (aij) where

aij =

{
1 if there is an edge{vi, vj} ∈ E.
0 otherwise

Example 16.11

Here is the same simple graph as in example 16.8 , this time with its adjacency matrix.

 
A 

B 

D 

C 
F 

I 

E 

H 

A B C D E F H I

A

B

C

D

E

F

H

I



0 1 0 1 0 1 0 0

1 0 0 0 0 0 1 0

0 0 0 1 1 0 0 0

1 0 1 0 1 0 0 1

0 0 1 1 0 0 0 0

1 0 0 0 0 0 1 1

0 1 0 0 0 1 0 0

0 0 0 1 0 1 0 0


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Notice that the elements of adj along the main diagonal, aii, i = 1 . . . n, are all 0. That’s

because there are no edges from a vertex to itself. Also notice that the matrix is symmetric

about its main diagonal, aij = aji for i, j = 1 . . . n. That is because any edge {u, v} is and edge

from u to v and an edge from v to u.

For a weighted graph, we put the weight of the edge in the matrix instead of a 1. The adjacency

matrix of a weighted graph G = (V,E,w) is a |V | × |V | matrix, adj = (aij) where

aij =

{
w({vi, vj}) if there is an edge{vi, vj} ∈ E

0 otherwise

Example 16.12

Here is the weighted graph of example 16.9 with its adjacency matrix.

 

5 

7 

9
4 

2 5 

6 1 8 

A B 

C D E 

F G 

A B C D E F G

A

B

C

D

E

F

G



0 7 5 0 0 0 0

7 0 0 4 9 0 0

5 0 0 2 0 6 1

0 4 2 0 5 0 0

0 9 0 5 0 0 0

0 0 6 0 0 0 0

0 0 1 0 8 0 0



16.4 Graph Problems

We will now introduce some problems involving graphs that we solve with computers in order

to manage networks or to study properties of any phenomena that are modeled by graphs.

We present these problems informally and without detailed methods or proofs. You will meet

these problems again in your programming courses where you will implement solutions and in

analysis of algorithms where you will see formal solutions and proofs.
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16.4.1 Graph Traversal

To traverse a graph, you must visit all the vertices of the graph by following edges. We want

to be able to do this in a systematic and efficient way. A solution to this problem would allow

an airline inspector to fly to every airport a company flies to, a subway aficionado to take the

train to every stop in a city, or a network administrator to send a message to every computer

on a network.

Can you start at any vertex and visit all the other vertices by following edges? Not in

general; in the graph of example 16.4 you cannot start at vertex A and visit vertex H. You

can only visit the vertices in the connected component of the starting vertex. To visit all the

vertices, every vertex must be reachable from every other vertex. In this case, we say the graph

is connected . We will look at two methods for traversing a connected graph. Both of these

search methods can be used for traversals or for finding paths between two vertices.

Depth First Search

The idea of depth first search is to move forward from the starting vertex as far a you can go

without repeating a vertex, then backup one edge and look for another vertex to visit, again

using a depth first search. As you can see the process is recursive.

Example 16.13

We’ll show a depth first traversal of the graph of example 16.8 and use its adjacency list to

guide the search. Note that the vertices in the adjacency lists are in alphabetical order so it is

easy to remember which comes next.

 
A 

B 

D 

C 
F 

I 

E 

H 

This traversal starts at vertex A and proceeds to the first vertex on A′s adjacency list B

and then to the only vertex on B′s list H. The first vertex on H ′s list is B which has already

been visited so the traversal proceeds to the next vertex in H ′s list, F , then I, then D. The

first vertex on D′s list is A which has already been visited so the traversal goes on to C and
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then to E. There is no place left to go from E so the traversal is complete. The vertices are

visited in this order: A, B, H, F , I, D, C, E.

Example 16.14

This time we start from vertex B.

 
A 

B 

D 

C 
F 

I 

E 

H 

This traversal proceeds A and continues from there as in example 16.13 until it reaches

vertex I. There is nowhere to go from I that has not already been visited so it goes back until

it reaches a vertex whose adjacency list contains an unvisited vertex. It has to go all the way

back to vertex D and then goes on to the first unvisited vertex C in D′s list. From there it

goes to C and with no place left to visit, the traversal is complete. The vertices are visited in

this order: D, A, B, H, F , I, C, E.

Example 16.15

Now let’s start with a slightly different graph, shown on the left. A depth first traversal starting

from A is shown on the right. The vertices are visited in this order: A, B, H, F , I, C, D.

 
A 

B 

D 

C 
F 

I 

E 

H 
 

A 
B 

D 

C 
F 

I 

E 

H 
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Breadth First Search

In breadth first search you visit all the vertices adjacent to the starting vertex and then do a

breadth first search from each of those vertices.

Example 16.16

Here is a breadth first traversal of the graph of example 16.8 using its adjacency list to guide

the search.

 
A 

B 

D 

C 
F 

I 

E 

H 

Starting from A, we first visit all of A′s neighbors in the order they appear on A′s adjacency

list, i.e. B, D, F . We then visit the neighbors of B that have not yet been visited; that’s just

vertex H. Then the unvisited neighbors of D, in the order they appear on D′s list, C, E, I.

At this point, all the vertices have been visited and the traversal is complete. The vertices are

visited in this order: A, B, D, F , H, C, E, I.

Example 16.17

This figure shows a breadth first traversal starting from vertex F .

 
A 

B 

D 

C 
F 

I 

E 

H 

After F , we visit F ′s neighbors, A, H, I, then the unvisited neighbors of A, i.e. B and D.

At that point all the neighbors of H and I are visited so we visit the remaining neighbors of

D, the vertices C and E. The vertices are visited in this order: F , A, H, I, B, D, C, E.
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16.4.2 Any Path

Sometimes, we are given two vertices in a graph and we need to find any path that connects

them. This is like answering the question, ”Can you show me any route to drive from Worcester,

Massachusetts to Logan airport?” I might show you a nice direct route or I might show you a

route via Hartford, Connecticut. Either will do in this case.

We start a depth first or breadth first search at one of our two vertices and follow the search

until we reach the second vertex. Then we know a path exists but we won’t know what the

path is. A slight modification of either search will give us the path too. Instead of just marking

a vertex as having been visited, mark it with the name of the vertex you just came from. This

is like leaving a trail of bread crumbs. We can follow the trail back to reconstruct the path.

If the graph is not connected, the search might never get to the second vertex. This is a

case of, “You can’t get there from here.”

Example 16.18

This is the graph and search of example 16.14 with labels added to the vertices to show how

we got there. The arrow points to vertex D where the search started.

 
A 

B 

D 

C 
F 

I 

E 

H A 
B 

H 

F 

D 

D 

C 

If we want a path from D to F , we start the search at D and when we arrive at F , we

can read the labels to create a path,〈F,H,B,A,D〉 from F to D, or writing in reverse, a path

〈D,A,B,H, F 〉 from D to F .

16.4.3 Shortest Path

The shortest path problem is to find the path with the smallest number of edges that connects

two given vertices in a graph. When you ask Orbitz for a flight between Madison, Wisconsin and

Manhattan, Kansas with as few stops as possible, you are actually asking the Orbitz program

to solve a shortest path problem. To find the shortest path in a graph from vertex u to vertex
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v, just do what we suggested for “any path” but use a breath first search. The path you find

will be a shortest path!

Example 16.19

On the left is the graph of example 16.8 showing a breadth first search from vertex F with

labels added showing where you came from to get to each vertex. On the right is the same

graph (without the labels) rearranged to show how far away each vertex is from the starting

vertex. Breadth first search first visits all the vertices you can get to by one edge, then all those

you can get to by two edges but not by one edge, and so on. You always get to a vertex by a

path with as few edges as possible.

 
A 

B 
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C 
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H 
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F 

F 
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D 

D 

 

F 

H A I 

B D 

C E 

16.4.4 Cheapest Path

Given a weighted graph, G = (V,E,w) and two vertices, u, v ∈ V , the cheapest path problem

is to find a path connecting u to v that has the lowest weight among all paths connecting u

and v. A cheapest path may also be a shortest path but this is not always true. When I buy

an airline ticket, I generally look for the cheapest one I can find even if it means an extra stop,

i.e. a longer route. The flight finder program must solve a cheapest path problem to offer me

a route.

The cheapest path problem is the same as the shortest path problem if all the weights are

1 so the two problems are often grouped together and just called the “shortest path problem.”

We have treated them separately because the “all the weights are 1” problem is pretty easy

to solve just using breadth first search. Dijkstra’s Shortest Path Algorithm solves the more

difficult problem with arbitrary weights. You will learn this algorithm in your programming

and algorithms courses.
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Example 16.20

In the graph of example 16.9 , the shortest path from A to E is 〈A,B,E〉 which has length 2

and weight 16. The cheapest path from A to E is 〈A,C,D,E〉 which has length 3 and weight

12.

16.4.5 Spanning Tree

Given a simple graph G = (V,E) a spanning tree is a connected graph T = (V,E′) with E′ ⊆ E
such that T is a tree, that is a graph with no cycles. The size of the spanning tree is the number

of edges |E′|.
For a weighted graph, the edges in E′ keep the same weights they had in T . The weight of

the spanning tree is the sum of the weights of all the edges in E′.

We look for a spanning tree of minimal weight to find a set of highways with minimal total

distance that connect a group of major cities.

You will study Kruskal’s and Prim’s algorithms for finding minimal spanning trees in your

programming and algorithms courses.

Example 16.21

Each of the images below shows, in thickened edges, a spanning tree for the weighted graph of

example 16.9 . The one on the left has weight 40 and the one on the right has weight 23.
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16.5 Graph Theory

GraphTheory is a field of pure mathematics devoted to the study of graphs for their own

sake. The theorems that come out of this theoretical study often have applications to computer

science. Euler’s solution of the Köonigsberg bridge problem is considered to be the first theorem

of graph theory. It all started with seven real bridges in the city of Königsberg.

The Seven Bridges of Königsberg

the actual map modified by Bogdan Giusca

Is it possible to take a walk that crosses each bridge exactly once and return to your starting

point? In 1736, Leonhard Euler proved that is impossible. He used a graph with four vertices

to represent the four land masses and seven edges to represent the seven bridges. He proved:

Theorem 9 You can traverse a connected simple graph, following each edge exactly once and

returning to the starting point, if and only if there are no vertices of odd degree.

Recall that the degree of a vertex deg(v) is the number of edges incident to that vertex. The

graph representing the Bridges of Königsberg has one vertex of degree 5 and three of degree 3.

There are many theorems about graphs that involve the vertex degree. This theorem relates

the vertex degrees to the number of edges in a graph.

Theorem 10 Given a simple graph G = (V,E), the sum of the degrees of the vertices is twice

the number of edges. ∑
v∈V

deg(v) = 2|E|

Proof: Each edge contributes to the degree of two vertices, that is it adds 2 to the sum on the

left. 2

http://en.wikipedia.org/wiki/Image:Konigsberg_bridges.png
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16.6 Directed Graphs

In the graphs we have looked at in this chapter the edges are undirected like two way streets.

Clearly we cannot model real highway systems or wireless networks with transmitters and

receivers with such graphs. Directed graphs are just the structure we need to model these

problems. You will work with directed graphs in your algorithms course so we will only introduce

them here. Much of our discussion of simple graphs applies to these graphs too with just minor

changes.

A directed graph G = (V,E) is a set of vertices V connected by edges E. What distinguishes

a directed graph from a simple graph is that the edges are one-way. An edge e ∈ E is an ordered

pair of vertices, e = (u, v). The edge e = (u, v) goes from u to v.

Example 16.22

Here is a directed graph and its adjacency list.
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Exercises

Simple Graph Basics

Exercise 16.1

Refer to the graph of example 16.1 for the following questions.

a. List all the paths with no repeated vertices from vertex F to vertex C.

b. Give the degree of each vertex.

c. What is the length of the longest cycle in this graph?

d. What is the length of the shortest cycle in this graph?
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Exercise 16.2

Answer the questions of exercise 16.1 using the graph of example 16.8.

Does this graph have a cycle that goes through all the vertices?

Weighted Graphs

Exercise 16.3

Refer to the graph of example 16.7 for the following questions.

a. What is the weight of the path 〈A,D,H,K,O〉?

b. How many paths of length 3 or less are there from vertex A to vertex J? What is the

weight of each of these paths?

c. Find simple paths from vertex H to vertex N of length 1, 2, 3, 4, and 5. What is the

weight of each of these paths?

d. What is the length of the longest path from vertex A to vertex N? Is there more than

one path of this length?

e. What is the shortest path from vertex F to vertex I? Which path from vertex F to vertex

I has the lowest weight?

Adjacency Lists

Exercise 16.4

Give the adjacency list for the graph of example 16.4.

Exercise 16.5

Draw the graphs described by each of these adjacency lists.

a.

 A 
B 

C 
D 
E 
F 

G 
H 

B 

A 

A 

C 

E 

E 
A 

C 

A 

C 

A 

B 

D 

E 

G 

C 

G 
F 

F E 

G H 

D E 

G 

H 
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b.

 A 
B 

C 
D 
E 
F 

G 
H 
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F 

A 

A 

C 
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D 

B 

D 

E 

D 

F 

D 

F 
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E 
H 

G 
H 

C E 
E F 

G H 

Adjacency Matrices

Exercise 16.6

a. Give the adjacency matrix for the graph of example 16.4.

b. Give the adjacency matrix for the graph described by an adjacency list in part a of

exercise 16.5.

c. Give the adjacency matrix for the graph described by an adjacency list in part b of

exercise 16.5.

Depth First Search

Exercise 16.7

Give the order in which the vertices are visited. for each of these searches.

a. Use the graph and adjacency list of example 16.8 to do a depth first search from vertex

I.

b. Using the same graph and adjacency list, do a depth first search from vertex E.

c. Use the adjacency list and corresponding graph of exercise 16.5.a to do a depth from

vertex A.

d. Use the adjacency list and corresponding graph of exercise 16.5.b to do a depth from

vertex A.
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Breadth First Search

Exercise 16.8

Repeat exercise 16.7 using breadth first search instead of depth first search.

Any Path

Exercise 16.9

For each of the following, give the path that you find from the first vertex to the second vertex

using the graph, adjacency list, and search indicated.

a. Graph and adjacency list of example 16.8 , depth first search, vertex I to vertex A. (see

exercise 16.7.a.

b. Graph and adjacency list of example 16.8 , depth first search, vertex E to vertex A. (see

exercise 16.7.b.

c. Graph and adjacency list of example 16.8 , breadth first search, vertex I to vertex A. (see

exercise 16.8.a.

d. Graph and adjacency list of example 16.8 , breadth first search, vertex E to vertex A.

(see exercise 16.8.b.

e. What happens when you try to use a depth first or breadth first search to find a path

from vertex A to vertex H in the graph of example16.4?

Shortest Path

Exercise 16.10

In this exercise, shortest path means the path with the smallest number of edges.

a. Use the breadth first search you did in exercise 16.8.a to redraw the graph in a manner

similar to the graph shown on the right in example 16.19 but with vertex I at the top.

b. Use part a to give a shortest path from vertex I to each of the other vertices in the graph,

A, B, C, D, E, F , and H.

c. Use the breadth first search you did in exercise 16.8.b to redraw the graph in a manner

similar to the graph shown on the right in example 16.19 but with vertex E at the top.

d. Use part c to give a shortest path from vertex E to each of the other vertices in the graph,

A, B, C, D, F , H, and I.
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Cheapest Path

Exercise 16.11

Refer to the graph of example 16.7.

a. Find a cheapest path from vertex M to vertex C. (We haven’t given you a method for

doing this but it is a small enough graph that you can probably find a solution anyway.)

b. Find two examples in this graph where the cheapest path is not the shortest path.

Spanning Tree

Exercise 16.12

a. Find a spanning tree for the graph of example 16.7.

b. Find the weight of your spanning tree.

c. Can you find a spanning tree with a lower weight? Compare your solution with those of

your classmates to see who has the lowest weight spanning tree.

Exercise 16.13

Find all the spanning trees for this graph.

 
A B 

C B 

Graph Theory

Exercise 16.14

What is the longest possible length of a simple path in a connected simple graph with n

vertices? Justify your result.

Exercise 16.15

For each of the following, give an example of a simple graph G with the indicated properties.

a. G is connected and has exactly one vertex of degree 5 and 5 vertices of degree 3.

b. G has 8 vertices, 3 connected components, exactly 7 vertices of degree 2 and one of degree

0.
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c. G is connected and has 8 vertices, exactly two vertices of degree 3 and 6 vertices of degree

2.
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C h a p t e r 17

Relations

Susan is the mother of Tim and Jill. Susan is related to Tim by the relation, “mother of.”

Susan is also related to Jill by the relation, “mother of.” We can also say that Tim is related

to Susan by the relation “son of” but we cannot say the same about Jill and Susan. Tim is a

student at Northeastern University. Tim is related to Northeastern University by the relation

“student at.” Seven is less than the twelve. Seven is related to twelve by the relation “less

than” and usually, we use the symbol the symbol < to denote this relation, i.e we write 7 < 12.

Relations are ubiquitous in computing and we will soon look at many examples. First, let us

formalize what we mean by a relation. We see, from the above examples, that a relation might

be between two things of similar type, e.g. two people or two numbers, or between things of

different type, e.g. a person and a university. A relation expresses a connection between the

objects of two sets where the two sets may be the same.

A relation from set A to set B is a set of ordered pairs (a, b) where a ∈ A and

b ∈ B.1

When A and B are the same, we just say a relation on A.

This definition means that a relation from A to B is just a subset of the Cartesian product

A × B. Think about that next time you go to a family reunion. Let’s look at some relations

that arise in computing.

1Really, this is a binary relation, that is, it relates two objects. Mathematicians talk about more general
relations that relate n objects. These are represented by n−tuples, or subsets of cross product of n sets where
n is an integer greater that 1.
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17.1 Examples

17.1.1 Equality and Inequality

We regularly define conditional expressions by using the relations, <,>,≤,≥, 6=, and = R to R

(or from N to N). Let us look at these relations as subsets of R×R. As with functions, these

drawings are called graphs of the relations.

 
 

x = y x ≥ y x ≠ y x < y 

The black in each image (graph) shows the subset of R×R that corresponds

to the relation indicated. From left to right and top to bottom: “=” is the

single line of points y = x; “≥” is the entire region below and including the

line y = x; “ 6=” is everything but the line of points y = x; “<” is everything

above but not including the line y = x.

17.1.2 Divides

In our study of integers and division, we have already used the relations | (divides), - (does

not divide), and their reverse relations multiple of and not multiple of . These relations can be

defined between any two sets of integers, e.g. Z to Z or {primes} to N. Here is a graph of the

relation divides on N×N.
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17.1.3 Set Relations

When we work with sets, we often ask whether one set is a subset of another. The relations ⊂
(subset of) and ( (proper subset of) are defined on sets. If S = {1, 2}, The relation ( on 2S

includes these ordered pairs: (∅, {1}), (∅, {2}), (∅, {1, 2}), ({1}, {1, 2}), ({2}, {1, 2}). Note that

this relation is a subset of the Cartesian product 2S × 2S .

We say a set A intersects a set B if A ∩ B 6= ∅. The relation intersects on 2S includes the

ordered pairs ({1}, {1}), ({2}, {2}), ({1}, {1, 2}), ({2}, {1, 2}), ({1, 2}, {1, 2}).

17.1.4 Congruence mod n

Arithmetic mod n gives us an important relation on the integers. If a and b are integers, we

say a is congruent modulo n to b if (a− b) mod n = 0. We write this as

a ≡ b(modn)

Remember that (a − b) mod n = 0 means that n | (a − b). This is equivalent saying that

a mod n = b mod n which means that a and b give the same remainder when you divide by n.

For, example, 0 ≡ 21(mod7), 322 ≡ 91(mod3), and 26 ≡ −9(mod5).

Here is a graph of the relation ≡ (mod5) on Z to Z.
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17.1.5 Triangles

In high school geometry, you studied two relations on the set of all triangles, congruence and

similarity

17.1.6 People to People

When we talk of relations to people outside of discrete structures class, we are usually talking

about mothers, fathers, siblings aunts, uncles, cousins, inlaws, etc. Indeed, each of these can be

thought of as a mathematical relation on the set of people, e.g. “is the father of,” “is a sibling

of,” or “is a first-cousin once removed of.” Genealogy software models these relations in code

to allow users to generate family trees.

Relations between people are also very important in the business place. Consider the set

of all people at Northeastern University. Relations that are important in this setting include,

“is a student of,” “is a roommate of,” “is in the same major as,” “is the secretary of,” “is

in the same coop sequence as,” “is a teammate of.” Some of these relations are important

to the educational aspect of the university, some to social connections, others to the business

operation. They must all be modeled in the varied database programs that are used to keep

track of life at Northeastern.
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17.1.7 People to Things

We often need to talk about relations between people and things. At a university, there are

many relations from {students} to {courses}, e.g, “is registered for, “has credit for,” “flunked,”

“owes tuition for,” or “received an‘A’ in.”

In a business, there are relations from {employees} to {banks} and from {employees} to

{insurance plans} and in a hospital, from {patients} to {medications}. An employee probably

has their paycheck sent to only one bank and probably subscribe to only one medical plan

so these relations are actually functions. A patient, however, is likely to have more than one

medication so we need a relation in this situation.

17.1.8 Programming Languages

{strings} → {programming languages}

is a reserved word in

is a syntactically valid program in

17.1.9 functions

Any function f : A→ B defines a relation from A to B by x ∈ A is related to y ∈ B if y = f(x).

The graph of the function is a subset of A×B and is the same as the graph of the relation.

If y =
√
x then x “is the positive square root of” y is a relation on R.

There is another relation that arises from a function. If f : A→ B is a function, then

{(a1, a2)|f(a1) = f(a2)}

is a relation on A. That is, two elements of A are related it they have the same function value.

If f(x) = x2, x ∈ R then a and −a are related for every a ∈ R.

We often use latitude (0 ≤ ϕ ≤ π) and longitude (0 ≤ θ ≤ 2π) to represent places on earth.

If h(ϕ, θ) = the height above sealevel2 at (ϕ, θ) then two places are related if they are at the

same altitude. Level curves on a map go through points that are related under this relation.

17.1.10 Partitions

A partition is a subdivision of a set into disjoint subsets. A partition on S defines a relation

on S by x is related to y if x and y are in the same subset of the partition. For example, I can

define a partition on CSU200 students by grouping students according to their grades on the

2negative if below sealevel
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last exam. Groups will correspond to graded of less than 60; 61 to 80, and 81 to 100. There

is no overlap in these groups so they define a partition of CSU200 students. One student is

related to another if their grades are in the same group.

We have seen that congruence mod n defines a relation on the integers. Modular arithmetic

also defines a partition of the integers. The disjoint sets are

{k ∈ Z|k mod n = 0}, {k ∈ Z|k mod n = 1}, . . . , {k ∈ Z|k mod n = n− 1}

.

and, if a and b are integers, then a ≡ b(modn) if and only if a mod n = b mod n.

17.1.11 Networks and Graphs

Networks are commonly modeled by graphs consisting of a collection of vertices (or nodes) and

a collection of edges. Sometimes we specify that the edges are directed, like a flight between

two cities. Sometimes the edges are undirected to indicate, e.g. that data or cars can move

in both directions. Sometimes we add weights (or costs) to the edges, like the price of a plane

ticket or the length of the edge. There are relations that naturally arise on the vertices of a

graph. One relation answers the question, “Can you get there from here?” Vertex a is related

to vertex b if there is a path in the graph from a to b. In the graph below, the vertices a, e, f, g,

and h are all related to each other under this relation as are the vertices b, c, and d.

 
a 

d 
e 

h

c 

f 
g 

b 

We can define a relation on the nodes of a graph based on any property the nodes may have.

For example, when you book a flight on-line, you may be asked whether nearby airports are ok.

Beneath this is a graph algorithm that that says one node is related to another if the airports

they represent are closer that 50 miles.

17.2 Properties of Relations

When we talk about general properties that function may have, we usually give names to our

functions like f , g, h, f6, and so on. We can then make and prove statements like If f(x) < g(x)
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and h(x) < k(x) for all x ∈ R then f(x) = h(x) < g(x) + k(x) for all x ∈ R.

For relations, we usually use names like R, R1, R2 and so on. The expression xRy is read

as “x R y” and means x is related to y by the relation R. If x and y are numbers, then R might

mean < or divides or is the square of . If x and y are people, the R might mean is a niece of

or plays tennis with. We can talk about a relations R without having a particular relation in

mind.

There are three important properties that a relation may or may not have. A relation may be

reflexive, symmetric, and/or transitive. We will define these properties and reconsider many of

the example above with respect to these properties.

17.2.1 Reflexive

A relation R on S is reflexive if xRx for every x ∈ S.

The relation = (is equal to) is a reflexive relation on any set. Anything is equal to itself. The

relation ≤ on Z is also a reflexive relation as n ≤ n for any n ∈ Z. However, the relation < is

not reflexive on Z.

Two other numerical relations discussed above are reflexive on Z, | (divides) and ≡ ( mod n).

For and n ∈ Z, n | n and n ≡ n(modn).

A relation is reflexive if and only if its graph contains the line y = x.

17.2.2 Symmetric

A relation R on S is symmetric if xRy implies yRx for every x, y ∈ S.

The relation = is symmetric on any set as if x = y then y = x is a basic property of equality.

The relation ≤ on Z is not symmetric as 3 ≤ 6 but 6 
 3. Similarly, the relation | (divides) is

not symmetric on Z. The relation ≡ ( mod n) is symmetric on Z as n | (a−b) implies n | (b−a).

The relations “is a sibling of,” “is married to,” and “is a roommate of” are symmetric

relations on people.

A relation is symmetric if and only if its graph is symmetric about the line y = x.

17.2.3 Transitive

A relation R on S is transitive if xRy and yRz implies xRz for every x, y, z ∈ S.

The relation = is transitive on any set as if x = y and y = z then x = z is a basic property of

equality. The relations <, ≤, >, and ≥ are all transitive on Z or R. The relations | (divides)

and ≡ (modn) are both transitive on Z.
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17.3 Equivalence Relations

An equivalence relation is a relation that is reflexive, symmetric, and transitive.

The most obvious equivalence relation is the relation = on any set. From the comments above,

we see that the relation ≡ (modn) is an equivalence relation on Z. Congruence and similarity

are equivalence relations on the set of triangles.

A relation on a set that is derived from a partition of that set is always an equivalence

relation. Actually, there is a correspondence between the equivalence relations on a set and the

partitions of that set (see the theorem below). This is an important fact. When we partition

a set, we are usually grouping elements of the set together that we want to identify because

they have some common property. For some application, we might want to treat students as

equivalent is they have the same major (ignore the possibility of double majors). We might

identify days of the year that fall on the same day of the week, for Tuesday night potluck

dinners or Friday night beer parties. This is really just identifying (or relating) days of the year

modulo 7.

Theorem: Every equivalence relation on a set S defines a partition of S and conversely, every

partition of S defines an equivalence relation on S.

Proof: First assume that we have an equivalence relation ∼ on a set S. For each a ∈ S let

Ea = {b ∈ S|a ∼ b},

The set, Ea is called the equivalence class of a. The collection of equivalence classes forms a

partition of S. From the definition of an equivalence class and the fact that an equivalence

relation is reflexive we know that every element of S is in the equivalence class Ea. We must

show that the classes are disjoint to prove that we have a partition. To prove the classes are

disjoint, we show that if two classes intersect that they are equal to each other. Suppose, as in

the figure below, that c ∈ Ea ∩ Eb.

 a

c bEa 
Eb 

Since c ∈ Ea and c ∈ Eb, we know that a ∼ c and that b ∼ c. Since the relation ∼ is symmetric,

b ∼ c implies that c ∼ b. Since ∼ is transitive, a ∼ c and c ∼ b implies that a ∼ b so b is in Ea.

Then, if d is any element of Eb, b ∼ d and that along with a ∼ b and transitivity implies that
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d is any element of Ea. This means that Eb ⊆ Ea. Similarly, Ea ⊆ Eb so the two sets must be

equal. The collection of equivalence classes form a partition of S.

Now assume that we have a partition of the set S. We already know how to define a relation

based on this partition. We leave it to the reader to prove that this relation is an equivalence

relation.

The relation “is connected to” on the nodes of an undirected graph is an equivalence relation.

The equivalence classes are the connected components of the graph. Here is another kind of

graph equivalence relation.

A company might represent the internal email traffic by a directed graph with a weighted

edge (how many emails) from each person (node) to each other person. The graph below shows

the email traffic at Acme Designs on Jun 5, 2006. A number next to an edge indicates how

many emails were sent while an edge without a number indicates a single email.
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Notice that some nodes are white (female employees) while others are cyan (male employees).

Gender creates a partition of the nodes and hence a relation (actually an equivalence relation

as we’ll see below). The sets of males and females are equivalence classes of the relation “has

the same gender as.” We can group together the members of each class to get a graph that

shows the flow of email between genders.
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C h a p t e r A

Variables and Expressions

A variable is a letter (or identifier) that stands an unspecified value from a set. The set of

possible values for the variable is called the domain of the variable.

An expression is a combination of variables, constants, and operators (and parentheses if

necessary) that represents a number. To evaluate an expression, you must substitute a number

for each variable.

Example 1.1

Evaluate x2 + 3x− 17 at x = 2.

x2 + 3x− 17 = 22 + 3× 2− 17 = −7

Example 1.2

Evaluate x2 + y3 − xy + 2 at x = 3 and y = 5.

x2 + y3 − xy + 2 = 32 + 53 − 3× 5 + 2 = 3× 3 + 5× 5× 5− 3× 5 + 2 = 9 + 125− 15 + 2 = 121

We often use a center dot · in place of × to indicate multiplication so 5 × 5 × 5 = 5 · 5 · 5. In

computer programs, we use ∗ to indicate multiplication so we would write 5 ∗ 5 ∗ 5 instead of

5 × 5 × 5. When we write an expression with products of variables or numbers and variables,

we usually omit the multiplication symbol altogether as in xy or 5z.
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The expressions above use the exponentiation operation as well as + and ?. Here are some

operations we commonly use on real numbers.

Subtraction: x− y means x+ (−y)

where −y is the unique number such y + (−y) = 0.

Division: x/y means x× (1/y)

where 1/y is the unique number such that y × (1/y) = 1.

Exponentiation: xn means x times itself n times.

When we evaluate an arithmetic expression, we adhere to the following sequence of operations:

1. Evaluate anything in parentheses first.

2. Perform all exponentiation next.

3. Do all multiplication and division from left to right.

4. Do all addition and subtraction from left to right.

A.1 Further Reading

This material is based of section 1-3 of ”Algebra and Trigonometry: Functions and Applica-

tions” by Paul A.Foerster [3].

Exercises

Variables and Expressions

Exercise 1.1

Reduce the following expressions to their simplest form.

a. 3x2 − 5x+ 7 when x = 5 b. 3x2 − 5x+ 7 when x = −5

c. x3 − x2 + x+ 1 when x = 2 d. x3 − x2 + x+ 1 when x = −2

e.
(

4x4y3

12x−5y6

)2
f.

(
15x−2y25

5x−5y26

)3
g. (a7b3c−2)(a−5b6c−1)(a2bc3) h. (p2mqnrm

2
)(pmq−nr−m)



C h a p t e r B

Composite Expressions

A mathematical function has one independent variable and one or more dependent variable(s).

For example, if

y = f(x) = x3

then x is the independent variable and y is the dependent variable. Once we choose a value for

x, the value of y is determined. A function may have more than one independent variable, for

example, if

z = G(u, v) =
3u2

1 + v2

then z is the independent variable and u and v are the dependent variables.

Often, the “independent” variable(s) actually depends on other variable(s). The cost C of a

100 mile car trip depends on the number of gallons of gas consumed N and the cost of a gallon

of gas g.

C = N × g.

But N in turn depends on miles per gallon, mpg.

C = N × g =
100

mpg
g.

We might also observe that the number of miles per gallon mpg is inversely proportional to the

wind resistance r which is directly proportional to the square of the speed s or the car.
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mpg =
K1

r
=

K1

K2 × s2
=
K

s2
,

where K1 and K2 are constants and K = K1
K2

. So

C = N × g =
100

mpg
× g =

100
K
s2

× g =
100s2g

K
.

We also know that cost of a gallon of gas is dependent on events in Iraq and New Orleans but

these dependencies are difficult to express mathematically. 1.

Now, let’s return to the mathematical functions we introduced above. With our first func-

tion, y = x3, we might have x = 2t+ 1. Then

y = x3 = (2t+ 1)3 = 8t3 + 12t2 + 6t+ 1.

When x = 2,

y = x3 = 23 = 8.

When t = 2,

y = (2t+ 1)3 = (2× 2 + 1)3 = 53 = 125.

Similarly for our second function, z = G(u, v) = 3u2

1+v2
, the variables u and v might each

depend on other variables. If u = r5 and v = s3 then

z =
3u2

1 + v2
=

3(r5)2

1 + (s3)2
=

3r10

1 + s6
.

It is also possible that u and v both depend on the same variable, for example, they might both

vary with a time variable t. If u = t− 1 and v = 1/t then

z =
3u2

1 + v2
=

2(t− 1)2

1 + (1/t)2
=

3(t2 − 2t+ 1)t2

t2 + 1
=

3(t4 − 2t3 + t2)

t2 + 1

We can now think of z as a function of u and v or as a function of r and s or as a function of

a single variable t.

When u = 2 ans V = 3,

z =
3u2

1 + v2
=

3× 22

1 + 32
=

12

10
=

6

5
.

1Paul A. Foerster, Algebra and Trigonometry: Functions and Applications [3, Exercise 9, page 242]
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When r = 2 and s = 3,

z =
3r10

1 + s6
=

3× 210

1 + 36
=

300

1 + 729
=

300

730
=

30

73
.

When t = 2,

z =
3(t4 − 2t3 + t2)

t2 + 1
=

3(24 − 2× 23 + 22)

22 + 1
=

3(16− 16 + 4)

5
=

12

5
.

Exercises

Composite Expressions

Exercise 2.1

Evaluate each of the following.

a. 3x2 − 5x+ 7 when x = 2t− 1 and t = 3

b. 3x2 − 5x+ 7 when when x = 2t+ 1 and t = 3

c. z = 3u2

1+v2
when u = 3 and v = 2

d. z = 3u2

1+v2
when u = v = 2

e. z = 3u2

1+v2
when u = r5, v = s3, r = 3, and s = 2

f. z = 3u2

1+v2
when u = t− 1, v = 1/t, u = 3, and v = 2

g. z = 3u2

1+v2
when u = t− 1, v = 1/t, and t = 3





C h a p t e r C

Exponentials and Logarithms

C.1 Exponential Functions

An exponential function has an equation of the form

y = a · bx b > 0

where a is the constant of proportionality and b is the base. Exponential functions are defined

for all real x. Let’s look at the example, y = 2x, before we state the general rules. (You have

probably seen the function y = (10)x in high school and y = ex if you did AP calculus, but

y = 2x is very important in computer science.) It is easy to define 2x for integer values of x.

2x =


2 · 2 · · · 2︸ ︷︷ ︸
x times

if x is a positive integer

1 if x = 0
1

2−x if x is a negative integer

239
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Figure C.1: y = 2x plotted at integer values of x, −3 ≤ x ≤ 2 and extended smoothly. Grid
lines are at integer values.

We define y = 2x at all rational values of x as follows. Set x = m
n where m and n are integers

and n is positive, so the sign of x is the same as the sign of m.

y = (
n
√

2)m

This agrees with the definition above when x is an integer. These values fit along the graph we

have already drawn.

Values of y = 2x can be defined rigorously at irrational values of x using limits of values

at rational approximations to x. We won’t be that rigorous here (This is material for a math-

ematical analysis course.) but if we want to compute y = 2π, for example, we know that we

could approximate is as closely as we like by computing

23, 23.1, 23.14, 23.142, 23.1416, 23.14159, and so on.

If b is a positive real number and n is a positive integer then, as for b = 2 above, we define

bx = b · b · · · b︸ ︷︷ ︸
x times

.

Note: Later this semester, you will learn about recursion in your programming course and in

this course. We can define bn recursively for positive integers n by

bn =

{
b if n = 1

b · bn−1 if n > 1
(C.1)

Then, if n is a negative integer, define bn = 1
bn .
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C.1.1 Properties of Exponentiation

Product of two powers with the same base

bx · by = bx+y

To multiply powers of the same base, add the exponents.

Quotient of two powers with the same base

bx

by
= bx−y

To divide powers of the same base, subtract the exponent of the numerator from the expo-

nent of the denominator.

Power of a Power
(bx)y = bxy

To raise a power to a power, multiply the exponents.

Power of a Product
(ab)x = axbx

To raise a product to a power, raise each factor to that power.

Power of a Quotient (a
b

)x
=
ax

bx
To raise a quotient to a power, raise the numerator and denominator to that power.

C.2 Logarithms

The logarithm base b is defined by

y = logb x if by = x.

The functions logb x and bx are inverse functions which means: If y = bx, then logb y = x.

If y = logb x, then by = x.

C.2.1 Properties of Logarithms

Logarithm of a product
logb(xy) = logb x+ logb y

To compute the logarithm of a product, add the logarithms of the factors.

Logarithm of a quotient
logb

x

y
= logb x− logb y
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To compute the logarithm of a quotient, subtract the logarithm of the denominator from

the logarithm of the numerator.

Logarithm of a Power
logb(x

c) = c(logbx)

To compute the logarithm of a power multiply the logarithm of the base of the argument

by the exponent of the argument. (xc is the argument.)

C.3 Further Reading

The authors referred to Foerster [3] when writing this but that book is out of print. Paul A.

Foerster has published many excellent high school and beginning college mathematics texts, see

http://www.keypress.com/x2511.xml. For further reading on exponential and logarithmic

functions, we suggest Foerster [4, Chapter 7] or Hein [5, pages 85-87].

Exercises

Exponents and Exponential Functions

Exercise 3.1

Assume that b is a positive real number and n is a positive integer. Try to prove these facts

about exponents using only the definition C.1 and the five properties of exponentiation above.

a. b0 = 1

b. b−n = 1
bn

c. b
1
n = n

√
b

d. b
m
n =

(
n
√
b
)m

Logarithms and Logarithmic Functions

Exercise 3.2

Evaluate the following without a calculator.

a. log2(1) b. log2(2) c. log2(4)

d. log2(32) e. log2(256) f. log2(1024)

g. log2(.5) h. log2(9)

log2( 1
9)

i. log2(10241024)

http://www.keypress.com/x2511.xml


C h a p t e r D

Special Functions

We define here some functions of numbers that you will frequently use in computing practice

and theory. The Scheme examples are from “The Scheme Programming Language, Second

Edition” [2], http://www.scheme.com/tspl2d/.

D.1 Factorial Function

If n is a positive integer, the factorial function n! is defined to be

n! = n(n− 1) · · · 2 · 1

So, for example

3! = 3 · 2 · 1 = 6

6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

We also define

0! = 1

This fits with the combinatorial formulas we will derive later in the semester. We can define

the factorial function recursively by:

n! =

{
1 n = 0

n · (n− 1)! n > 0

243
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This recursion can be expressed in Scheme by:

(define factorial

(lambda (n)

(let fact ((i n))

(if (= i 0)

1

(* i (fact (- i 1)))))))

D.2 Floor and Ceiling

The functions floor and ceiling (or ceil) are functions that take real arguments and give integer

values.

floor(x) = bxc = the greatest integer less than or equal to x.

ceiling(x) = dxe = the smallest integer greater than or equal to x.

The following definitions and examples are from “The Scheme Programming Language, Second

Edition” [2], http://www.scheme.com/tspl2d/.

procedure: (floor real) procedure: (ceiling real)

returns: the integer closest to real toward −∞ returns: the integer closest to real toward +∞
(floor 19) ⇒ 19 (ceiling 19) ⇒ 19

(floor 2/3) ⇒ 0 (ceiling 2/3) ⇒ 1

(floor -2/3) ⇒ -1 (ceiling -2/3) ⇒ 0

(floor 17.3) ⇒ 17.0 (ceiling 17.3) ⇒ 18.0

(floor -17/2) ⇒ -9 (ceiling -17/2) ⇒ -8

D.3 Truncate and Round

The functions truncate (or trunc) and round are also functions that take real arguments and

give integer values. You probably learned about round back in elementary school but the round

implemented in Scheme and other programming languages is slightly different if a real is exactly

between two integers, the closest even integer is returned.

The following definitions and examples are from “The Scheme Programming Language, Second

Edition” [2], http://www.scheme.com/tspl2d/.

http://www.scheme.com/tspl2d/
http://www.scheme.com/tspl2d/
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procedure: (round real) procedure: (truncate real)

returns: the integer closest to real returns: the integer closest to real toward zero

If real is exactly between two integers,

the closest even integer is returned.

(round 19) ⇒ 19 (truncate 19) ⇒ 19

(round 2/3) ⇒ 1 (truncate 2/3) ⇒ 0

(round -2/3) ⇒ -1 (truncate -2/3) ⇒ 0

(round 17.3) ⇒ 17.0 (truncate 17.3) ⇒ 17.0

(round -17/2) ⇒ -8 (truncate -17/2) ⇒ -8

(round 2.5) ⇒ 2.0

(round 3.5) ⇒ 4.0

D.4 Absolute Value

The absolute value of a real number is defined by

abs(x) = |x| =

{
x if x ≥ 0

−x if x < 0

The following definition and these examples are from “The Scheme Programming Language,

Second Edition” [2], http://www.scheme.com/tspl2d/.

procedure: (abs real)

returns: the absolute value of real

abs is equivalent to

(lambda (x) (if (< x 0) (- x) x)).

abs and magnitude are identical for real inputs.

(abs 1) ⇒ 1

(abs -3/4) ⇒ 3/4

(abs 1.83) ⇒ 1.83

(abs -0.093) ⇒ 0.093

Exercises

Special Functions

Exercise 4.1

Carefully sketch a graph of each of these functions for −3 ≤ x ≤ 3. Use ◦ to show an endpoint

http://www.scheme.com/tspl2d/
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that is not in the graph and • to show an endpoint that is in the graph. For example, here is

a graph of ceiling(x) for −3 ≤ x ≤ 3.

a. floor(x)

b. ceiling(2x)

c. round(x)

d. truncate(x)

e. |x|

f. (b|x|c)!
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Chapter 1 Solutions

Changing Bases

Exercise 1.1

You can convert from binary to decimal by adding the appropriate powers of 2, e.g.

101101102 = 1 ·27+0 ·26+1 ·25+1 ·24+0 ·23+1 ·22+1 ·21+0 ·20 = 128+32+16+4+2 = 182.

a. 10102 = 1010 b. 101002 = 2010 c. 101012 = 2110 d. 101102 = 2210

e. 111011102 = 23810 f. 101010112 = 17110 g. 111112 = 3110 h. 100002 = 1610

i. 111001112 = 23110 j. 111111112 = 25510 k. 100000012 = 12910 l. 101111112 = 19110

Exercise 1.2

These are small integers so you can easily calculate the binary representation of each N by

finding the largest power of 2 less than or equal to N , say 2k, and then finding the binary

representation of N − 2k.

a. 1710 = 24 + 20 = 100012 b. 1910 = 24 + 21 + 20 = 100112

c. 2410 = 24 + 23 = 110002 d. 2910 = 24 + 23 + 22 + 20 = 111012

e. 3510 = 25 + 21 + 20 = 1000112 f. 4210 = 25 + 23 + 21 = 1010102

g. 5610 == 25 + 24 + 23 = 1110002 h. 6110 = 25 + 24 + 23 + 22 + 20 = 1111012

i. 7310 = 26 + 23 + 20 = 10010012 k. 9910 = 26 + 25 + 21 + 20 = 11000112

k. 11510 = 26 + 25 + 24 + 21 + 20 = 11100112 k. 14310 = 27 + 23 + 22 + 21 + 20 = 100011112

247
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Exercise 1.3

a.

34092 = 17046 · 2 + 0

17046 = 8523 · 2 + 0

8523 = 4261 · 2 + 1

4261 = 2130 · 2 + 1

2130 = 1065 · 2 + 0

1065 = 532 · 2 + 1

532 = 266 · 2 + 0

266 = 133 · 2 + 0

133 = 66 · 2 + 1

66 = 33 · 2 + 0

33 = 16 · 2 + 1

16 = 8 · 2 + 0

8 = 4 · 2 + 0

4 = 2 · 2 + 0

2 = 1 · 2 + 0

1 = 0 · 2 + 1

So, reading from the bottom up, 3409210 = 10000101001011002.
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b.

4997 = 2498 · 2 + 1

2498 = 1249 · 2 + 0

1249 = 624 · 2 + 1

624 = 312 · 2 + 0

312 = 156 · 2 + 0

156 = 78 · 2 + 0

78 = 39 · 2 + 0

39 = 19 · 2 + 1

19 = 9 · 2 + 1

9 = 4 · 2 + 1

4 = 2 · 2 + 0

2 = 1 · 2 + 0

1 = 0 · 2 + 1

So, reading from the bottom up, 499710 = 10011100001012.
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c.

20507 = 10253 · 2 + 1

10253 = 5126 · 2 + 1

5126 = 2563 · 2 + 0

2563 = 1281 · 2 + 1

1281 = 640 · 2 + 1

640 = 320 · 2 + 0

320 = 160 · 2 + 0

160 = 80 · 2 + 0

80 = 40 · 2 + 0

40 = 20 · 2 + 0

20 = 10 · 2 + 0

10 = 5 · 2 + 0

5 = 2 · 2 + 1

2 = 1 · 2 + 0

1 = 0 · 2 + 1

So, reading from the bottom up, 2050710 = 1010000000110112.

Exercise 1.4

a. To convert binary integers to octal integers, work from the right-hand side and convert

each 3 bits to a single octal digit.

a. 1 0102 = 128 b. 10 1002 = 248 c. 10 1012 = 258 d. 10 1102 = 268

e. 11 101 1102 = 3568 f. 10 101 0112 = 2538 g. 11 1112 = 378 h. 10 0002 = 208

i. 11 100 1112 = 3478 j. 11 111 1112 = 3778 k. 10 000 0012 = 2018 l. 10 111 1112 = 2778

b. To convert binary integers to hexadecimal integers, work from the right-hand side and

convert each 4 bits to a single hex digit.

a. 10102 = A16 b. 1 01002 = 1416 c. 1 01012 = 1516 d. 11 01102 = 1616

e. 1110 11102 = EE16 f. 1010 10112 = AB16 g. 1 11112 = 1F16 h. 11 00002 = 1016

i. 1110 01112 = E716 j. 1111 11112 = FF16 k. 1000 00012 = 8116 l. 1101 11112 = BF16

Exercise 1.5

Write the binary representation of the first hex digit followed by the 4-bit binary representation
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of the second hex digit. That is, you must include leading zeros for the second hex digit. There

is a small space between the two pieces in the answers so you can see the conversion for each

hex digit.

a. 17 = 1 0111 b. 19 = 1 1001 c. 24 = 10 0100 d. 29 = 10 1001

e. 3A = 11 1010 f. B2 = 1011 0010 g. CF = 1100 1111 h. 60 = 110 0000

i. F3 = 1111 0011 j. 99 = 1001 1001 k. DD = 1101 1101 c. A3 = 1010 0011

Multiplication

Exercise 1.6

a. 27× 6 = 162

1 1 0 1 1

× 1 1 0

1 1 0 1 1

1 1 0 1 1

1 0 1 0 0 0 1 0

b. 23× 11 = 253

1 0 1 1 1

× 1 0 1 1

1 0 1 1 1

1 0 1 1 1

1 0 1 1 1

1 1 1 1 1 1 0 1

c. 11× 23 = 253

1 0 1 1

× 1 0 1 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 1 1 1 1 0 1

d. 46× 7 = 322
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1 0 1 1 1 0

× 1 1 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 0 0 0 0 1 0

Patterns

Exercise 1.7

a. The first pattern is represented in hex digits by: 03, 1B, D8, C0, 03. 1B, D8, C0.

The second pattern is represented in hex digits by: CC, CC, 33, 33, CC, CC, 33, 33.

The third pattern is represented in hex digits by: 01, 02, 04, 28, 70, D8, F0, 60.

The fourth pattern is represented in hex digits by: 90, 05, 50, 02, 88, 21, 08, 42.

b. Convert each hex digit to a 4-bit binary number and then use black for each 1 and white

for each 0. The pattern given by 39, 7B, 42, 88, 88, 24, B7, 93 is shown below

39 = 0 0 1 1 1 0 0 1 corresponds to ��������
7B = 0 1 1 1 1 0 1 1 ��������
42 = 0 1 0 0 0 0 1 0 ��������
88 = 1 0 0 0 1 0 0 0 ��������
88 = 1 0 0 0 1 0 0 0 ��������
24 = 0 0 1 0 0 1 0 0 ��������
B7 = 1 0 1 1 0 1 1 1 ��������
93 = 1 0 0 1 0 0 1 1 ��������

BD = 1 0 1 1 1 1 0 1 corresponds to ��������
A3 = 1 0 1 0 0 0 1 1 ��������
DB = 1 1 0 1 1 0 1 1 ��������
3A = 0 0 1 1 1 0 1 0 ��������
BD = 1 0 1 1 1 1 0 1 ��������
A3 = 1 0 1 0 0 0 1 1 ��������
DB = 1 1 0 1 1 0 1 1 ��������
3A = 0 0 1 1 1 0 1 0 ��������

Two’s Complement

Exercise 1.8

a. For positive numbers, we transform them into binary form and pad with 0s on the left to

obtain 8 total bits.

34 =⇒ 100010 =⇒ 00100010

66 =⇒ 1000010 =⇒ 01000010

For negative number, we compute a binary representation of the magnitude of the number

(appropriately padded with 0s), then flip all the bits, and finally add 1.
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−71 =⇒ 1000111 =⇒ 01000111 =⇒ 10111000 =⇒ 10111001

−27 =⇒ 11011 =⇒ 00011011 =⇒ 11100100 =⇒ 11100101

b. If the first bit of the two’s complement representation is 0, then the value is a positive

number in standard binary form. In this case, we simply transform the binary representa-

tion to its equivalent decimal form. If the first bit of the two’s complement representation

is 1, then the value is a negative number. In this case, we flip all the bits, add 1, and

interpret the resulting bits as the magnitude of the negative value.

01100110 =⇒ 2 + 4 + 32152 + 64 =⇒ 102

10011001 =⇒ 01100110 =⇒ 01100111 =⇒ 1 + 2 + 4 + 32 + 64 =⇒ −103

01010101 =⇒ 1 + 4 + 16 + 64 =⇒ 85

11011101 =⇒ 00100010 =⇒ 00100011 =⇒ 1 + 2 + 32 =⇒ −35

c. Here are the equivalent equations, in decimal and two’s complement forms:

66 + (−27) = 39

01000010 + 11100101 = 00100111

Note that binary 00100111 is equivalent to decimal 39, as required.

(−71) + (−27) = −98

10111001 + 11100101 = 10011110

10011110 =⇒ 01100001 =⇒ 01100010 =⇒ 2 + 32 + 64 =⇒ −98

Chapter 2 Solutions

Circuits

Exercise 2.1

Convert the circuit into a truth table.

a.

A B Out

0 0 0

0 1 1

1 0 1

1 1 1
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b. This circuit is equivalent to an or gate.

Exercise 2.2

A	
  
	
  
	
  
B	
  
	
  
	
  
C	
  

Chapter 3 Solutions

Logic

Exercise 3.1

a. Fill in the following truth table:

X X NAND X

0 1

1 0

What logical operation does X NAND X correspond to? NOT

b. Fill in the following truth table:
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X Y ¬X NAND ¬Y
0 0 0

0 1 1

1 0 1

1 1 1

What logical operation does ¬X NAND ¬Y correspond to? OR

c. Using only NAND gates, draw circuit diagrams corresponding to the AND, OR, and NOT

gates.

AND

	
  
X	
  
	
  
	
  
	
  
Y	
  
	
  

OR



256 Solutions to Selected Exercises

	
  
X	
  
	
  
	
  
	
  
Y	
  

NOT

	
  
	
  
X	
  

Exercise 3.2

Fill in the following table with the missing truth tables, Boolean formulae, and circuits.
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Chapter 5 Solutions

Caesar Cipher and Encoding

Exercise 5.1

a. EXIT UNDER STAIRS =⇒ HALW XWGHU VWDLUV

c. EXIT UNDER STAIRS =⇒ 04230819 2013030417 181900081718

The mod Function

Exercise 5.2
a. 19 mod 7 = 5 b. 7 mod 19 = 7 c. 27 mod 7 = 6

g. 14 mod 24 = 14 h. 51 mod 11 = 7 i. 212 mod 3 = 2

Exercise 5.3
a. −19 mod 7 = 2 b. −7 mod 19 = 12 c. −27 mod 7 = 1

g. −14 mod 24 = 10 h. −51 mod 11 = 4 i. −212 mod 3 = 1

Exercise 5.4

a.

337 mod 3 = 1 9962 mod 3 = 2

(9962 + 337) mod 3 = (1 + 2) mod 3 = 0 (337× 9962) mod 3 = (1× 2) mod 3 = 2

−337 mod 3 = 3− (337 mod 3) = 2 (9962− 337) mod 3 = (2 + 2) mod 3 = 1

Simple Substitution Ciphers

Exercise ??

a.

Plaintext B E H I N D B I G C L O C K

Coded 01 04 07 08 13 03 01 08 06 02 11 14 02 10

Shifted 12 15 18 19 24 14 12 19 17 13 22 25 13 21

Ciphertext M P S T Y O M T R N W Z N V

Encoded Message: MPSTYOMTRNWZNV

b.

Plaintext L N I N E R S E V E N L F O U R

Coded 11 13 08 13 04 17 18 04 21 04 13 11 05 14 20 17

Shifted 00 02 23 02 19 06 07 19 10 19 02 00 20 03 09 06

Ciphertext A C X C T G H T K T C A U D J G

Encoded Message: ACXCTGHTKTCAUDJG
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Exercise 5.6

a. UBTFURNQGUERRCZBEQREOHGGREORRE, shift 13

Use 26− 13 = 13 to decipher. The result is

HOGSHEADTHREEPMORDERBUTTERBEER

or HOGS HEAD THREE PM ORDER BUTTERBEER with spaces added.

b. DRIBKNRZEYFLJVYRIKWFIUTKJLEURP, shift 17

Use 26− 17 = 09 to decipher. The result is

MARKTWAINHOUSEARTFORDCTSUNDAY

MARK TWAIN HOUSE ART FOR DCT SUNDAY with spaces added.

Linear Encryption

Exercise 5.7

a. r e b D ng w D q l D gh j D p

b. r→ 17

e→ 4

b→ 1

D→ 3

ng→ 12

w→ 23

D→ 3

q→ 15

l→ 9

D→ 3

gh→ 5

j→ 8

D→ 3

p→ 14
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c. 26 = 15 * 1 + 11

15 = 11 * 1 + 4

11 = 4 * 2 + 3

4 = 3 * 1 + 1

3 = 1 * 3 + 0

So, going back ...

1 = 4 - 3 * 1

1 = 4 - (11 - 4 * 2) * 1

1 = -11 + 4 * 3

1 = -11 + (15 - 11 * 1) * 3

1 = 15 * 3 - 11 * 4

1 = 15 * 3 - (26 - 15 * 1) * 4

1 = 15 * 7 - 26 *4

If we mod everything by 26 we get: 1 = 15 * 7 (mod 26)

The multiplicative inverse of 15 is 7 in arithmetic mod 26.

d.

0 1 2 3 4 5 6 7 8 9 10 11 12

a b ch D e gh H I j l m n ng

23 24 25 0 1 2 3 4 5 6 7 8 9

5 12 19 0 7 14 21 2 9 16 23 4 11

gh ng t a I p u ch l Q w e n

13 14 15 16 17 18 19 20 21 22 23 24 25

o p q Q r S t tlh u v w y ’

10 11 12 13 14 15 16 17 18 19 20 21 22

18 25 6 13 20 1 8 15 22 3 10 17 24

S ’ H o tlh b j q v D m r y

The first line is the corresponding decimal code for the symbols of the cipher.

On the second line are the symbols of the cipher text.

The third line represents the values after adding the additive inverse of 3.

The forth line represents the values after multiplying with the multiplicative inverse of

15.
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On the fifth line are the deciphered codes.

e. tlhIngan maH Qapla’

f. The spy speaks Klingon.

The translation is: We are Klingons. Success!

Modular Arithmetic

Exercise 5.8

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

* 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

Exercise 5.9

a. Give the additive inverse of each number mod8:

Additive inverse of 0 mod8 is 0: (0 + 0) mod 8 = 0

Additive inverse of 1 mod8 is 7: (1 + 7) mod 8 = 0
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Additive inverse of 2 mod8 is 6: (2 + 6) mod 8 = 0

Additive inverse of 3 mod8 is 5: (3 + 5) mod 8 = 0

Additive inverse of 4 mod8 is 4: (4 + 4) mod 8 = 0

Additive inverse of 5 mod8 is 3: (5 + 3) mod 8 = 0

Additive inverse of 6 mod8 is 2: (6 + 2) mod 8 = 0

Additive inverse of 7 mod8 is 1: (7 + 1) mod 8 = 0

b. Give the multiplicative inverse of each number mod8:

0 doesn’t have a multiplicative inverse mod8.

Multiplicative inverse of 1 mod8 is 1: (1 ∗ 1) mod 8 = 1

2 doesn’t have a multiplicative inverse mod8.

Multiplicative inverse of 3 mod8 is 3: (3 ∗ 3) mod 8 = 1

4 doesn’t have a multiplicative inverse mod8.

Multiplicative inverse of 5 mod8 is 5: (5 ∗ 5) mod 8 = 1

6 doesn’t have a multiplicative inverse mod8.

Multiplicative inverse of 7 mod8 is 7: (7 ∗ 7) mod 8 = 1

c. Which numbers are zero divisors mod8?

0 is a zero-divisor mod8. (0 ∗ 1) mod 8 = 0

1 is not a zero-divisor mod8.

2 is a zero-divisor mod8. (2 ∗ 4) mod 8 = 0

3 is not a zero-divisor mod8.

4 is a zero-divisor mod8. (4 ∗ 2) mod 8 = 0

5 is not a zero-divisor mod8.

6 is a zero-divisor mod8. (6 ∗ 4) mod 8 = 0

7 is not a zero-divisor mod8.

Powers mod n

Exercise 5.10
a. 48 mod 5 = 3 b. 482 mod 5 = 32 mod 5 = 4 b. 484 mod 5 = 42 mod 5 = 1

d. 488 mod 5 = 12 mod 5 = 1 e. 4816 mod 5 = 1 f. 4832 mod 5 = 1

g. 4864 mod 5 = 1 h. 48128 mod 5 = 1 i. 48256 mod 5 = 1
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j. 4879 mod 5 = 4864+8+4+2+1 mod 5 = 4864 · 488 · 484 · 482 · 481 mod 5 = 1 · 1 · 1 · 4 · 3 mod 5 = 2

Exercise ??

a. 48 mod 11 = 4 b. 482 mod 11 = 42 mod 11 = 5 c. 484 mod 11 = 52 mod 11 = 3

d. 488 mod 11 = 32 mod 11 = 9 e. 4816 mod 11 = 92 mod 11 = 4 f. 4832 mod 11 = 42 mod 11 = 5

g. 4864 mod 11 = 52 mod 11 = 3 h. 48128bmod11 = 32 mod 11 = 9 i. 48256 mod 11 = 92 mod 11 = 4

j. 4879 mod 5 = 4864+8+4+2+1 mod 11 = 4864 ·488 ·484 ·482 ·481 mod 11 = 3·9·3·5·4 mod 11 = 3

Chapter 6 Solutions

Prime Number Decomposition

Exercise 6.1
a. 162 = 2 · 81 = 2 · 34 c. 363 = 3 · 121 = 3 · 112

e. 1000 = 103 = 23 · 53 g. 102400 = 1024 · 100 = 210 · 102 = 210 · 22 · 52 = 102 · 52

i. 29 = 19 k. 256 · 81 = 28 · 34

Exercise 6.2

Give the prime number decomposition for each of the following. You should not need a calcu-

lator.

a. 8! = 8 · 7 · 6 · 5 · 4 · 3 · 2 = 23 · 7 · 2 · 3 · 5 · 22 · 3 · 2 = 27 · 32 · 5 · 7

b. 9! = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 = 32 · 23 · 7 · 2 · 3 · 5 · 22 · 3 · 2 = 27 · 34 · 5 · 7

c. 10! = 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 = 2 · 5 · 32 · 23 · 7 · 2 · 3 · 5 · 22 · 3 · 2 = 28 · 34 · 52 · 7

d. 6!
24

= 24·32·5
24

= 32 · 5

e. 10!
24·33 = 28·34·52·7

24·33 = 24 · 3 · 52 · 7

f. (6!)3 = (24 · 32 · 5)3 = 212 · 36 · 53

g. 8!
4! = 8·7·6·5·4·3·2

4·3·2 = 8 · 7 · 6 · 5 = 23 · 7 · 2 · 3 · 5 = 24 · 3 · 5 · 7

h. 8!
4! = 27·32·5·7

(23·3)2 = 27·32·5·7
26·32 = 2 · 5 · 7

i. 10!
3! = 10·9·8·7·6·5·4·3·2

3·2 = 10 · 9 · 8 · 7 · 6 · 5 · 4 = 2 · 5 · 32 · 23 · 7 · 2 · 3 · 5 · 22 = 27 · 33 · 52 · 7

j. 10!
7! = 10·9·8·7·6·5·4·3·2

7·6·5·4·3·2 = 10 · 9 · 8 = 24 · 32 · 5
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k. 10!
3!7! = 10·9·8·7·6·5·4·3·2

3·2·7·6·5·4·3·2 = 10·9·8
3·2 = 10 · 3 · 4 = 120

l. 25·37·59·76
22·34·76 = 23 · 33 · 59

Greatest Common Divisor and Least Common Multiple

Exercise 6.3

Evaluate the following. You should not need a calculator.

a. gcd(60, 80) = gcd(60, 20) = gcd(20, 0) = 20

c. gcd(256, 162) = gcd(28, 2 · 131) = 2

e. lcm(512, 1024) = 1024

g. lcm(6!, 8!) = 8!

i. lcm(23 · 35 · 54, 22 · 37 · 52) = 23 · 37 · 54

Exercise 6.4

Use the Euclidean Algorithm to find each of the following. Show your work.

a. gcd(612, 584) = gcd(584, 28) = gcd(28, 24) = gcd(24, 2) = gcd(2, 0) = 2.

b. gcd(488, 183) = gcd(183, 122) = gcd(122, 61) = gcd(61, 0) = 61.

c. gcd(217, 124) = gcd(124, 93) = gcd(93, 31) = gcd(31, 0) = 31.

Exercise 6.5

Use the Extended Euclidean method Algorithm to solve ax + by = gcd(a, b). If the gcd is 1,

also give the multiplicative inverse of a mod b as a number from 1 to b− 1.

a. gcd(24, 119)

119− 4 · 24 = 23

24− 1 · 23 = 1

23− 23 · 1 = 0

gcd(119, 24) = 1

Now work backwards
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24− 1 · (119− 4 · 24) = 1

5 · 24− 1 · 119 = 1

So....

a · 5− b · 1 = 1

Or using table method...

a b d q

0 1 119

1 0 24 4

-4 1 23 1

5 -1 1

a · 5− b · 1 = 1

Multiplicative inverse of 24 mod 119 is 5.

b. gcd(20, 151)

151− 7 · 20 = 11

20− 1 · 11 = 9

11− 1 · 9 = 2

9− 4 · 2 = 1

2− 2 · 1 = 0

gcd(20, 151) = 1

Working backwards

9− 4 · (11− 1 · 9) = 1

5 · 9− 4 · 11 = 1

5 · (20− 1 · 11)− 4 · 11 = 1

5 · 20− 9 · 11 = 1

5 · 20− 9 · (151− 7 · 20) = 1

68 · 20− 9 · 151 = 1
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So....

a · 68− b · 9 = 1

Or using table method...

a b d q

0 1 151

1 0 20 7

-7 1 11 1

8 -1 9 1

-15 2 2 4

68 -9 1

a · 68− b · 9 = 1

Multiplicative inverse of 20 mod 151 is 68.

Chapter 7 Solutions

Set Builder Notation

Exercise 7.1

a. A = {n ∈ Z | 1 ≤ |2× n| ≤ 6} = {−3,−2,−1, 1, 2, 3}

c. C = {n ∈ Z | n ≤ 4} = {· · · ,−2,−1, 0, 1, 2, 3, 4}

e. E = {n2 ∈ Z | |n| ≤ 4} = {0, 1, 4, 9, 16}

g. G = {n ∈ R | n2 ≤ 4} = [−2, 2]

Venn Diagrams

Exercise 7.2
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a. A ∪B ∪ C

c. A ∩ (B ∪ C)

Set Operations

Exercise 7.3
a. {0, 2, 3, 4, 6, 7, 9} b. {7} c. {2, 3, 4, 9} d. {0, 6} e. {0, 2, 3, 4, 6, 9}
f. {0, 4, 6, 7, 9} g. {0} h. {4, 9} i. {6, 7} j. {4, 6, 7, 9}
k. {0, 2, 3, 4, 7, 9} l. {4, 9} m. {2, 3, 7} n. {0} o. {0, 2, 3, 7}

Exercise ??

a. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} b. {} c. {0, 1, 2, 3, 4} d. {5, 6, 7, 8, 9} e. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
f. {3, 4, 5, 6, 7, 8, 9} g. {5, 6} h. {3, 4} i. {7, 8, 9} j. {3, 4, 7, 8, 9}
k. {0, 1, 2, 3, 4, 5, 6} l. {3, 4} m. {0, 1, 2} n. {5, 6} o. {0, 1, 2, 5, 6}

Exercise ??

a. {0, 1, 2, 3, 4, 5, 6} b. {} c. {0, 1, 2} d. {3, 4, 5, 6} e. {0, 1, 2, 3, 4, 5, 6}
f. {3, 4, 5, 6, 7, 8, 9} g. {} h. {7, 8, 9} i. {3, 4, 5, 6} j. {3, 4, 5, 6, 7, 8, 9}
k. {0, 1, 2, 7, 8, 9} l. {} m. {0, 1, 2} n. {7, 8, 9} o. {0, 1, 2, 7, 8, 9}

Power Set

Exercise 7.6

a. {∅, {1}}
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b. {∅, {X}}

c. {∅, {21}}

d. {∅, {α}}

e. {∅, {1}, {2}, {1, 2}}

f. {∅, {X}, {Y }, {X,Y }}

g. {∅, {21}, {33}, {21, 33}}

h. {∅, {α}, {β}, {α, β}}

i. {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}

j. {∅, {X}, {Y }, {Z}, {X,Y }, {X,Z}, {Y,Z}, {X,Y, Z}}

k. {∅, {21}, {33}, {42}, {21, 33}, {21, 42}, {33, 42}, {21, 33, 42}}

l. {∅, {α}, {β}, {γ}, {α, β}, {α, γ}, {β, γ}, {α, β, γ}}

m. {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

n. {∅, {W}, {X}, {Y }, {Z}, {W,X}, {W,Y }, {W,Z}, {X,Y }, {X,Z}, {Y,Z},
{W,X, Y }, {W,X,Z}, {W,Y,Z}, {X,Y, Z}, {W,X, Y, Z}}

o. {∅, {21}, {33}, {42}, {56}, {21, 33}, {21, 42}, {21, 56}, {33, 42}, {33, 56}, {42, 56},
{21, 33, 42}, {21, 33, 56}, {21, 42, 56}, {33, 42, 56}, {21, 33, 42, 56}}

p. {∅, {α}, {β}, {γ}, {δ}, {α, β}, {α, γ}, {α, δ}, {β, γ}, {β, δ}, {γ, δ}, {α, β, γ},
{α, β, δ}, {α, γ, δ}, {β, γ, δ}, {α, β, γ, δ}}

q. {∅, {∅}, {{1}}, {∅, {1}}}

r. {∅, {∅}, {{X}}, {∅, {X}}}

s. {∅, {∅}, {{21}}, {∅, {21}}}

t. {∅, {∅}, {{α}}, {∅, {α}}}

u. {∅, {∅}, {{X}}, {{Y }}, {{X,Y }}, {∅, {X}}, {∅, {Y }}, {∅, {X,Y }},
{∅, {1}, {2}}, {∅, {1}, {1, 2}}, {∅, {1, 2}, {2}}, {{1}, {2}, {1, 2}},
{∅, {1}, {2}, {1, 2}}}
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v. {∅, {∅}, {{X}}, {{Y }}, {{X,Y }}, {∅, {X}}, {∅, {Y }}, {∅, {X,Y }},
{∅, {X}, {Y }}, {∅, {X}, {X,Y }}, {∅, {X,Y }, {Y }}, {{X}, {Y }, {X,Y }},
{∅, {X}, {Y }, {X,Y }}}

w. {∅, {∅}, {{X}}, {{Y }}, {{X,Y }}, {∅, {X}}, {∅, {Y }}, {∅, {X,Y }},
{∅, {21}, {33}}, {∅, {21}, {21, 33}}, {∅, {21, 33}, {33}}, {{21}, {33}, {21, 33}},
{∅, {21}, {33}, {21, 33}}}

x. {∅, {∅}, {{α}}, {{β}}, {{α, β}}, {∅, {α}}, {∅, {β}}, {∅, {α, β}},
{∅, {α}, {β}}, {∅, {α}, {α, β}}, {∅, {α, β}, {β}}, {{α}, {β}, {α, β}},
{∅, {α}, {β}, {α, β}}}

Cartesian Product

Exercise 7.7

a. {(1, X), (1, Y ), (1, Z), (2, X), (2, Y ), (2, Z)}

b. {(X, 1), (Y, 1), (Z, 1), (X, 2), (Y, 2), (Z, 2)}

c. {(X,α), (X,β), (X, γ), (Y, α), (Y, β), (Y, γ), (Z,α), (Z, β), (Z, γ)}

d. {(α,X), (β,X), (γ,X), (α, Y ), (β, Y ), (γ, Y ), (α,Z), (β, Z), (γ, Z)}

e. {(1, α), (1, β), (1, γ), (2, α), (2, β), (2, γ)}

f. {(α, 1), (β, 1), (γ, 1), (α, 2), (β, 2), (γ, 2)}

g. {(1, 1), (1, 2), (2, 1), (2, 2)}

h. {(1, X, 1), (1, X, 2), (1, Y, 1), (1, Y, 2), (1, Z, 1), (1, Z, 2), (2, X, 1), (2, X, 2), (2, Y, 1), (2, Y, 2), (2, Z, 1), (2, Z, 2)}

i. {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}

j. {∅}

k. {(X, ∅), (Y, ∅), (Z, ∅)}

l. {(∅, X), (∅, Y ), (∅, Z), (0, X), (0, Y ), (0, Z)}

Cardinality

Exercise 7.8
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a. 2× 3 = 6 b. 2× 2× = 8 c. 3× 3× 3 = 27

d. 2× 22 = 8 e. 22 × 22 = 16 f. 22 × 23 = 32

g. 2(2
2) = 24 = 16 h. 2(2

3) = 25 = 32 i. 2(2
(2×3)) = 2(2

6) = 264

j. 22
2×23 = 232 k. 2(2

0) × 3 = 21 × 3 = 6 l. 22
2×223 = 210

Computer Representation of Sets

Exercise 7.9

Let the universal set U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. LetA = {1, 3, 5, 7, 8, 9} andB = {0, 2, 4, 6, 8, 9}.
Using the representation of sets shown in section 7.5, give the representation for each of these

sets.
a. 0101010111 b. 1010101011 c. 1111111111

d. 0000000011 e. 1010101000 f. 0101010100

g. 1111111100 h. 0000000000 i. 0101010111

j. 1111111111 k. 1010101011 l. 0000000000

Chapter 8 Solutions

Simple Counting

Exercise 8.1

a. Both dice must show 1 for the total to be 2. There is only one way to do this.

b. There are 3 ways to roll a 4.
red 1 2 3

black 3 2 1

c. There are 6 ways to roll a 7.
red 1 2 3 4 5 6

black 6 5 4 3 2 1

d. There are 3 ways to roll a 10.
red 4 5 6

black 6 5 4

e. There are 4 ways to roll a 5, 5 ways to roll a 6, 6 ways to roll a 7, and 5 ways to roll an

8. That makes 4 + 5 + 6 + 5 = 20 ways to roll a total between 5 and 8, 5 and 8 included.

f. The total is always between 2 and 12, 2 and 12 included, so 36 possible rolls.

g. The black die can have any value from 1 to 6 so 6 possible rolls.

h. There is 1 way: The red die is 3 and the black die is 6.
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i. There are 0 ways to roll a 1, 1 way to roll a 2, 2 ways to roll a 3, 3 ways to roll a 4 so

there are 1 + 2 + 3 = 6 ways to roll a total less than 5.

j. The only ways for the red die to be less than the black are 5

red 1 1,2 1,2,3 1,2,3,4 1,2,3,4,5

black 2 3 4 5 6
so 1 + 2 + 3 + 4 + 5 = 15 possible ways.

k. There are exactly 6 ways for the two dice to be equal, both 1, both 2, ...

l. There are 36− 6 = 30 ways for the two dice to be different.

Exercise 8.2

a. Both dice must show 1 for the total to be 2. There is only one way to do this.

b. There are 3 ways to roll a 4.
red 1 2 3

black 3 2 1

c. There are 6 ways to roll a 7.
red 1 2 3 4 5 6

black 6 5 4 3 2 1

d. There are 5 ways to roll a 10.
red 4 5 6 7 8

black 6 5 4 3 2

e. There are 4 ways to roll a 5, 5 ways to roll a 6, 6 ways to roll a 7, and 7 ways to roll an

8. That makes 4 + 5 + 6 + 7 = 22 ways to roll a total between 5 and 8, 5 and 8 included.

f. There is 1 way to roll a 2, 2 ways to roll a 3, 3 ways to roll a 4, 4 ways to roll a 5, 5 ways to

roll a 6, 6 ways to roll a 7, 7 ways to roll an 8, 8 ways to roll a 9, 7 ways to roll a 10, 6 ways

to roll an 11 and 5 ways to roll a 12. That makes 1+2+3+4+5+6+7+8+7+6+5 = 54

ways to roll a total between 5 and 8, 5 and 8 included.

g. The black die can have any value from 1 to 8 so 8 possible rolls.

h. There is 1 way: The red die is 3 and the black die is 6.

i. There are 0 ways to roll a 1, 1 way to roll a 2, 2 ways to roll a 3, 3 ways to roll a 4 so

there are 1 + 2 + 3 = 6 ways to roll a total less than 5.

j. The only ways for the red die to be less than the black are

red 1 1,2 1,2,3 1,2,3,4 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,6,7

black 2 3 4 5 6 7 8

so 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 possible ways.
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k. There are exactly 8 ways for the two dice to be equal, both 1, both 2, ...

l. There are 64− 8 = 30 ways for the two dice to be different.

Exercise 8.3

If you draw a card from a standard deck of 52 cards, how many different ways are there to do

each of the following?

a. There are 52 ways to draw a card

b. There are 4 jacks so 4 ways to draw a jack.

c. 13

d. The face cards are those that show a person, i.e jack, queen, or king. There are 4 suits

so a total of 12 ways to draw a face card.

e. 1

f. 1

g. 52− 12 = 40

h. There are no jokers in a standard deck of 52 cards so the answer is 0.

i. Half the card are black so 52/2 = 26

j. There are 4 tens and 4 eights so 8 ways to draw a 10 or an 8.

Sum and Product Rules

Exercise 8.4

a. By the sum rule, Eloise’s daughter has 45 + 10 = 55 choices for a gift.

b. By the product rule, Eloise has 45× 10 = 450 choices for her gift.

Exercise 8.5

a. By the sum rule, students have 7 + 15 = 55 choices for the assignment.

b. By the product rule, students have 7× 15 = 105 choices for the assignment.
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Exercise 8.6

a. By the product rule, there are 7× 3× 2× 11× 5 = 2310 different 5-course meals.

b. By the sum rule, there are 3 + 5 + 2 + 1 = 11 different lunches.

Exercise 8.7

There are 52 letters (upper and lowercase) and 10 numbers for a total of 62 characters.

Here is how you count the number of 6- character passwords.

There are 622 6-character passwords with no restrictions.

There are 526 6-character passwords that have 0 digits.

There are 10× 525 × 6 6-character passwords that have exactly 1 digit.

There are 106 6-character passwords that have 0 letters.

There are 52× 105 × 6 6-character passwords that have exactly 1 letter.

There are 622 − 526 − (10× 525 × 6)− 106 − (52× 105 × 6)

6-character passwords with at least 2 letters and at least 2 digits.

A similar approach will give you the counts for 7, 8, 9, and 10 character passwords.

Add up all these values to get the result.

Exercise 8.8

There are 103263 = 17, 576, 000 plates with three digits followed by three letters. There are

104262 = 6, 760, 000 plates with four digits followed by two letters. In all, there are 17, 576, 000+

6, 760, 000 = 24, 336, 000 possible license plates.

Exercise 8.9

Members of the Secret Superwoman Society each have a password composed of different letters

from the word “SUPERWOMAN.”

a. The 10 letters in “SUPERWOMAN” so any rearrangement (permutation) of them is a

possible password, for a total of P (10, 10) = 10!.

b. There are 10 choices for the first letter, 9 for the second, 8 for the third, 7 for the fourth,

and 6 for the fifth, for a total of 10× 9× 8× 7× 6 = P (10, 5) = 10!/5! .

c. How many 5-letter passwords can they form if the middle letter must be a vowel?

There are 4 choices (U, E, O, A) for the middle letter. Then there are 9 choices left

for the first letter, 8 for the second, 7 for the fourth, and 6 for the fifth so there are

4× 9× 8× 7× 6 = 12096 passwords satisfying these constraints.

d. There are 9× 8× 7× 6 = 3024 possible passwords if the first letter must be “W.”



274 Solutions to Selected Exercises

e. How many 5-letter passwords can they form if the first letter must be “W” and the middle

letter must be a vowel?

There is 1 choice for the first letter and 4 choices for the third letter. The other three

letters can be chosen from the 8, then 7, then 6 remaining letters for a total of 4×8×7×6.

Inclusion-Exclusion Principle

Exercise 8.10

Still referring to the Secret Superwoman Society above 8.9, how many 5-letter passwords can

they form if the first letter must be “W” or the middle letter must be a vowel?

Number with first letter W = 3024, number with middle letter vowel = 12096, number with

first letter W and middle letter vowel 1× 4× 8× 7× 6 = 1344 so the number first letter must

be “W” or the middle letter must be a vowel is 3024 + 12096− 1344 = 13776.

Exercise 8.11
320 computer science 35 computer science and math

145 math 20 business and math

580 business 90 business and computer science

10 all three subjects

a. computer science or math: 320 + 145− 35 = 430

b. computer science or business: 320 + 580− 90 = 810

c. business or math: 580 + 145− 20 = 705

d. computer science, business, or math: 320 + 580 + 145− 35− 20− 90 + 10 = 910

Pigeonhole Principle

Exercise 8.12

a. 75 students could each have their own room, filling all available rooms. Adding an addi-

tional student would require two students to share a room, so 76.

b. 150 students could each have only one roommate, filling all available rooms. Adding an

additional student would require three students to share a room, so 151.

c. Assuming each room is filled with 2 students before any room has 3, we can be sure.

However, the problem says the assignment is done by taking the student ID mod 75. We

have no control over the student ID numbers. There might well be three or more students

whose ID numbers mod 75 are the same.
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d. If the assignment is done fairly and equally, no more than 2 people will have to occupy

one room. However, as in the last part, the assignment is out of our control. It is even

possible that all 150 students have ID numbers that are the same mod 75 , not a very

comfy arrangement.

Exercise 8.13

a. N =
⌈
1111
6

⌉
= 186.

b. N =
⌈
1111
5

⌉
= 223.

Permutations

Exercise 8.15

a. 5 · 4 = 20 b. 5 · 4 · 3 = 60 c. 5 · 4 · 3 · 2 = 120

d. 6 · 5 = 30 e. 6 · 5 · 4 = 120 f. 6 · 5 · 4 · 3 = 360

g. 10 · 9 = 90 h. 10 · 9 · 8 = 720 i. 11 · 10 · 9 = 990

j. 1 k. 1234 l. 10000 · 9999 = 99990000

Exercise 8.16

a. He has 6 choices for the first city, 5 for the second, and so on. He has 6! = 6·5·4·3·2·1 = 720

possible itineraries.

b. 1 · 5 · 4 · 3 · 2 · 1 = 120 possible itineraries.

c. 1 · 4 · 3 · 2 · 1 · 1 = 24 possible itineraries.

Exercise 8.17

a. You can choose one of 8 letters for the first position, 7 for the second, and so on. 8! =

40320.

b. P (8, 5) = 8 · 7 · 6 · 5 · 4 = 6720.

c. P (8, 3) = 8 · 7 · 6 = 336.
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Exercise 8.18

There are 4 different prizes. A student can win at most one prize. 130 students can win the

first prize, 129 the second prize, and so on. There are 130 · 129 · 128 · 127 = 272, 613, 120 ways

might the prizes might be distributed.

Combinations

Exercise 8.19

a. 5!
3!·2! = 5·4·3·2

3·2·2 = 5·4
2 = 10 b. 5!

2!·3! = 5·4·3·2
2·3·2 = 5·4

2 = 10

c. 5!
4!·1! = 5·4·3·2

4·3·2 = 5 d. 6!
4!·2! = 6·5·4·3·2

4·3·2·2 = 6·5
2 = 15

e. 6!
3!·3! = 6·5·4·3·2

3·2·3·2 = 6·5·4
3·2 = 20 f. 6!

2!·4! = 6·5·4·3·2
2·4·3·2 = 6·5

2 = 15

g. 10!
8!·2! = 10·9·8·7·6·5·4·3·2

8·7·6·5·4·3·2·2 = 10·9
2 = 45 h. 10!

7!·3! = 10·9·8·7·6·5·4·3·2
7·6·5·4·3·2·3·2 = 10·9·8

3·2 = 120

i. 11!
8!·3! = 11·10·9·8·7·6·5·4·3·2

8·7·6·5·4·3·2·3·2 = 11·10·9
3·2 = 165 j. 1

k. 1234 l. 10000!
9999!·2! = 10000

2 = 5000

Exercise 8.20

a. C(60, 6) = 60·59·58·57·56·55
6·5·4·3·2 = 50, 063, 860

b. C(60, 12) = 60·59·58·57·56·55·54·53·52·51·50·49
12·11·10·9·8·7·6·5·4·3·2 = 1, 399, 358, 844, 975

Exercise 8.21

a. C(52, 5) = 52·51·50·49·48
5·4·3·2 = 2598960

b. You must have the Ace of Spades, then choose 4 more cards. C51, 4 = 51·50·49·48
4·3·2 = 249900

c. You must have all 4 aces, and then choose 1 more card. C(48, 1) = 48

d. There are 16 of these cards to choose from. C(16, 5) = 16·15·14·13·12
5·4·3·2 = 4368

e. There are 36 of these cards to choose from. C(36, 5) = 36·35·34·33·32
5·4·3·2 = 376992

Exercise 8.22

C(130, 4) = 130·129·128·127
4·3·2 = 11358880

Binomial Theorem
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Exercise 8.23
a. (x+ y)3 = x3 + 3x2y + 3xy2 + y3

c. (x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

e. (x+ 3y)4 = x4 + 12x3y + 54x2y2 + 108xy3 + 81y4

g. (x− y)5 = x5 − 5x4y + 10x3y2 − 10x2y3 + 5xy4 − y5

i. (x2 + y−2)5 = (x2)5 + 5(x2)4(y−2) + 10(x2)3(y−2)2 + 10(x2)2(y−2)3 + 5(x2)(y−2)4 + (y−2)5

= x10 + 5x8y−2 + 10x6y−4 + 10x4y−6 + 5x2y−8 + y−10

Exercise 8.24

Use the Binomial Theorem to show the following.

a.

1 ·
(n

0

)
+ 2 ·

(n
1

)
+ 4 ·

(n
2

)
+ 8 ·

(n
3

)
+ · · ·+ 2n ·

(n
n

)
= (1 + 2)n = 3n.

Pascal’s Triangle

Exercise 8.25

We show just past the middle as the result is symmetric.
1 15 105 455 1365 3003 5005 6435 6435

1 16 120 560 1820 4368 8008 11440 12870

1 17 136 680 2380 6188 12376 19448 24310 24310

Balls in Bins

Exercise 8.27

I have a box with 50 Snickers candy bars. 8 kids come over on Halloween night, to trick-or-treat.

a. How many ways can I distribute all 50 Snickers candy bars to the 8 kids?(
n+m−1

n

)
=
(
50+7
50

)
=
(
57
50

)
b. How many ways can I distribute all 50 Snickers candy bars to the 8 kids if every kid gets

at least 2 candy bars?

After each child gets 2 Snickers bars, there are 34 bars left to distribute and the number

of ways to do this is
(
n+m−1

n

)
=
(
34+7
34

)
=
(
41
34

)

Chapter 9 Solutions

Dice

Exercise 9.1

Recall that if two dice are rolled, the size of the sample space is 36.
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a. There are exactly 3 ways that the two dice result in a total of 4

Black 1 2 3

Red 3 2 1

so the probability of rolling a 4 is 3
36 = 1

12 .

b. There are exactly 6 ways that the two dice result in a total of 7

Black 1 2 3 4 5 6

Red 6 5 4 3 2 1

so the probability of rolling a 7 is 6
36 = 1

6 .

c. There are 5 ways to roll a 6, 4 ways to roll a 5, 3 ways to roll a 4, 2 ways to roll a 3, and 1

way to roll a 2. So there are 15 ways to roll a total that is less than 7 and the probability

of rolling a total less than 7 is 15
36 = 5

12 .

d. The possible ways for the red die to be higher than the black die are shown in this table.

Red 1 2 3 4 5 6

Black - 1 1, 2 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4, 5

Total 0 1 2 3 4 5

so the total number of possible rolls with the red die higher than the black die is 15 and

the probability of such a roll is 15
36 = 5

12 .

e. The total is even only if both dice come up even or both dice come up odd. There are 9

ways for them both to come up even and 9 ways for them both to come up odd so the

probability of an even roll is 18
36 = 1

2 .

Exercise 9.2

The size of the sample space is 8 · 8 = 64.

a. As in the last problem, there are exactly 3 ways that the two dice result in a total of 4

but the probability of rolling a 4 is now 3
64 .

b. As in the last problem, there are exactly 6 ways that the two dice result in a total of 7

but the probability of rolling a 7 is now 6
64 = 3

32 .

c. As in the last problem, there are 5 ways to roll a 6, 4 ways to roll a 5, 3 ways to roll a 4,

2 ways to roll a 3, and 1 way to roll a 2. So there are 15 ways to roll a total that is less

than 7 but the probability of rolling a total less than 7 is now 15
64 .
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d. The possible ways for the red die to be higher than the black die are shown in this table.

Red 1 2 3 4 5 6 7 8

Black - 1 1, 2 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4, 5 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6, 7

Total 0 1 2 3 4 5 6 7

so the total number of possible rolls with the red die higher than the black die is 28 and

the probability of such a roll is 28
64 = 7

16 .

e. The total is even only if both dice come up even or both dice come up odd. There are 16

ways for them both to come up even and 16 ways for them both to come up odd so the

probability of an even roll is 32
64 = 1

2 .

Lottery

Exercise 9.7

a. There are 10 possible outcomes and only 1 successful outcome so the probability is 1
10 .

b. Here we are sampling with and without replacement, respectively.

i. There are 103 = 1000 possible outcomes. There are 93 = 729 outcomes that do

not have an 8 in any draw. That leaves 271 outcomes that do contain an 8 so the

probability is 271/1000.

ii. There are 10 ·9 ·8 = 720 possible outcomes. There are 9 ·8 ·7 = 504 possible outcomes

that do not include an 8 in any of the three draws. That leaves 720 − 504 = 216

outcomes that do include an 8 so the probability is 216/720 = 3/10.

c. Again, we are sampling with and without replacement, respectively.

i. There is one successful out come out of 1000 possible outcomes; the probability is

1/1000.

ii. There is one successful outcome out of 10 · 9 · 8 = 720 possible outcomes; the proba-

bility is 1/720.

d. Again, we are sampling with and without replacement, respectively.

i. There are six successful outcomes (952, 925, 592, 529, 259, 295) out of 1000 possible

outcomes; the probability is 6/1000 = 3/500.

ii. There are six successful outcomes out of 720 possible outcomes; the probability is

6/720 = 1/120.
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Chapter 11 Solutions

Arithmetic Sequences

Exercise 11.1

a. next term = 18, an = 2 · n+ 4, ak = 2 · k + 6

c. next term = −4, an = 2(n− 9), ak = 2(k − 8)

e. next term = 12, an = 3(n− 3), ak = 3(k − 2)

g. next term = 35, an = 5 · n, ak = 5(k + 1)

i. next term = 7.7, an = 1.1 · n, ak = 1.1(k + 1)

Geometric Sequences

Exercise 11.2

a. next term = 4096, an = 4n, ak = 4(k+1)

c. next term = −4096, an = (−1)n−14n, ak = (−1)k4k+1

e. next term = 1
3 , an = (13)n−5, ak = (13)k−4

g. next term = −6, an = (−1)n−1, ak = (−1)k

i. next term = 432, an = 2 · 3n−1, ak = 2 · 3k

Quadratic Sequences

Exercise 11.3

a. next term = 31, first differences: 2, 4, 6, 8, . . ., second difference = 2

an = n2 − n+ 1, ak = k2 + k + 1

c. next term = 23, first differences: 1, 3, 5, 7 . . ., second difference = 2

an = n2 − 2n− 1, ak = k2 − 2

e. next term = −5, first differences: −1,−2,−3,−4, . . ., second difference = −1

an = −1
2n

2 + 1
2n+ 10, ak = −1

2k
2 − 1

2k + 10
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g. next term = −3, first differences: 3, 1,−1,−3 . . ., second difference = −2

an = −n2 + 6n− 3, ak = −k2 + 4k + 2

i. 15, 6, 0,−3,−3, . . . next term = 0, first differences: −9,−6,−3, 0 . . ., second difference = 3

an = 3
2n

2 − 27
2 n+ 27, ak = 3

2k
2 − 21

2 k + 15

Miscelaneous Sequences

Exercise 11.4

a. arithmetic: difference = −2, next term = -3, ak = 7− 2 · k

c. geometric: ratio = 2, next term = 160, ak = 5 · 2k

e. geometric + constant, next term = 344, ak = 3k + 1

g. −6, 1, 22, 57, 106, . . . quadratic: first differences 7, 21, 35, 49, . . ., second difference = 14,

next term = 169, ak = 7k2 − 6

i. Fibonacci, each term is the sum of the last two terms, next term = 11 + 18 = 29

j. 4, 14, 23, 34, 42, . . . - Don’t get frustrated. This one is a joke. Ask someone from New York

City or see http://www.nycsubway.org/lines/8thave.html

Summation Notation

Exercise 11.5

a.
6∑

k=1

3k = 3 · 1 + 3 · 2 + 3 · 3 + 3 · 4 + 3 · 5 + 3 · 6 = 3 + 6 + 9 + 12 + 15 + 18 = 63

c.
6∑

k=1

1

k
= 1

1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 = 49

20 = 2.45

e.
10∑
m=2

m

2
= 2

10 + 3
10 + 4

10 + 5
10 + 6

10 + 7
10 + 8

10 + 9
10 + 10

10 = 54
10 = 5.4

g.

3∑
j=−3

j2 = (−3)2 + (−2)2 + (−1)2 + 02 + 12 + 22 + 32 = 9 + 4 + 1 + 0 + 1 + 4 + 9 = 28

i.

5∑
k=1

k2 − k + 1 = (12 − 1 + 1) + (22 − 2 + 1) + (32 − 3 + 1) + (42 − 4 + 1) + (52 − 5 + 1) =

1 + 3 + 7 + 13 + 21 = 44

http://www.nycsubway.org/lines/8thave.html
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Exercise 11.6

Write each of the following sums using summation notation. Try to make you answers as simple

as possible.

a. 7 + 12 + 17 + 22 + · · ·+ 177 =
35∑
k=1

(2 + 5k)

c. 1 + 11 + 21 + 31 + · · ·+ 251 =

25∑
m=0

(1 + 10m)

e. 2 + 6 + 18 + 54 + · · ·+ 2, 324, 522, 934 =
19∑
n=0

2 · 3n

Arithmetic Sums

Exercise 11.7

a. first + last = 7 + 177 = 184, there are 1 + 170/5 = 35 terms, sum = 184·35
2 = 3, 220

c. first + last = 1 + 251 = 252, there are 1 + 250/10 = 26 terms, sum = 252·26
2 = 3, 276

e. 1+ 3+ 5+7 + · · ·+1001 first + last = 1+ 1001 = 1002, there are 1+ 1000/2 = 501 terms,

sum = 1002·501
2 = 251, 001

Exercise 11.8

a. first + last = 3 + 600 = 603, there are 200 terms, sum = 603·200
2 = 60, 300

c. first + last = 9 + 450 = 459, there are 50 terms, sum = 459·50
2 = 11, 475

e. first + last = 7 + 259 = 266, there are 37 terms, sum = 266·37
2 = 4, 921

g. first + last = 21 + 249 = 270, there are 83− 6 = 77 terms, sum = 270·77
2 = 10, 395

i.
450∑
k=43

9k first + last = 387 + 4, 050 = 4, 437, there are 452− 42 = 408 terms,

sum = 4,437·408
2 = 905, 148

Exercise 11.9
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a. The difference between two consecutive terms, d = 3, is our factor a, and we also have

n = 41. We must now determine b. The first term in our series, 5, corresponds to k = 1.

We must therefore have

a · k + b = 5

⇔ 3 · 1 + b = 5

⇔ b = 5− 3

⇔ b = 2.

Thus, we can write this series as a summation in the following form:

41∑
k=1

(3 · k + 2).

b. Since b is a constant, the value of
n∑
k=1

b

is just n · b. For our values of n = 41 and b = 2, the value of the summation is 41 · 2 = 82.

Apply the standard arithmetic summation formula to evaluate the following summation:

n∑
k=1

k =
n · (n+ 1)

2
.

For our value of n = 41, the value of the summation is

41 · (41 + 1)

2
=

41 · 42

2
= 861.

Since we already have the value of a = 3, now we could evaluate the original expression

by using the values of these summations.

a ·
n∑
k=1

k +
n∑
k=1

b = 3 · 861 + 82 = 2665.

Thus, we obtain the same value as in part ii above.

Geometric Sums

Exercise 11.10
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a. S = 1+2+4+8+· · ·+1024, r = 2, 2S = 2+4+8+16+· · ·+1024+2048, 2S−S = 2048−1,

S = 2047

c. S = 1 + 1
2 + 1

4 + 1
8 + · · · + 1

1024 , r = 1
2 , 1

2S = 1
2 + 1

4 + 1
8 + 1

16 + · · · + 1
1024 + 1

2048 ,
1
2S = S − 1

2S = 1− 1
2048 , S = 2(1− 1

2048) = 2− 1
1024 = 2047

1024

e. S = 1+ 1
3 + 1

9 + 1
27 + · · ·+ 1

59,049 = 1+ 1
3 + 1

9 + 1
27 + · · ·+ 1

310
, 3S = 3+1+ 1

3 + 1
9 + 1

27 + · · ·+ 1
39

,

2S = 3S − S = 3− 1
310

, S = 3
2 −

1
2·310 = 311−1

2·310 = 1.49999153246

g. S = 510 + 59 + 58 + · · ·+ 1 + 1
5 + · · ·+ 1

510
, 5S = 511 + 510 + 59 + · · ·+ 1 + 1

5 + · · ·+ 1
59

,

4S = 5S − S = 511 − 1
510

, S = 511

4 −
1

4·510 = 12, 207, 031.25

Exercise 11.11

a. S =

200∑
k=1

3k, 3S =

201∑
k=2

3k, 2S = 3S − S = 3201 − 3, S = 3201−3
2

c. S =

50∑
k=1

2 · 5−k, 5S =

49∑
k=0

2 · 5−k, 4S = 5S − S = 2− 550, S = 2−550
4

e. S =
37∑
k=1

7k, 7S =
38∑
k=2

7k, 6S = 7S − S = 738 − 7, S = 738−7
6

g. S =
N∑
k=1

3k, 3S =
N+1∑
k=2

3k, 2S = 3S − S = 3N+1 − 3, S = 3N+1−3
2

i. S =
2N∑
k=1

10k, 10S =
2N+1∑
k=2

10k, 9S = 10S − S = 102N+1 − 10, 102N+1−10
9

Miscelaneous Sums

Exercise 11.12

a. Show that
n∑
k=1

(ak − ak+1) = a1 − an+1.

One could informally argue that this statement is true by expanding the sum and canceling

terms; we instead prove the statement true for all n ≥ 1 by induction. For the base case

n = 1, we have:
1∑

k=1

(ak − ak+1) = a1 − a2
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which is a1 − an+1 for n = 1. Thus, our base case is correct. For the inductive step,

assume that the statement is true for n = i, i.e.,

i∑
k=1

(ak − ak+1) = a1 − ai+1.

Our task is then to show that the statement is true for n = i+ 1, i.e.,

i+1∑
k=1

(ak − ak+1) = a1 − ai+2.

Start with
∑i+1

k=1(ak − ak+1) and break out the last term so that the inductive hypothesis

can be applied:

i+1∑
k=1

(ak − ak+1) =
i∑

k=1

(ak − ak+1) + (ai+1 − ai+2)

= a1 − ai+1 + (ai+1 − ai+2)

= a1 − ai+2

Thus, our inductive step holds and the statement is proven.

b. Show that
n∑
k=1

1
k(k+1) is a telescoping series. What is the form of ak for any k?

1

k(k + 1)
=

(k + 1)− k
k(k + 1)

=
k + 1

k(k + 1)
− k

k(k + 1)

=
1

k
− 1

k + 1

Therefore,
n∑
k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
.

This is a telescoping series where ak = 1/k.

c. Using parts i and ii above, show that

n∑
k=1

1

k(k + 1)
= 1− 1

n+ 1
.

Explain.
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From parts i and ii above, we have:

n∑
k=1

(ak − ak+1) = a1 − an+1

and

n∑
k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)

=
n∑
k=1

(ak − ak+1)

where ak = 1/k. Applying these facts, we obtain:

n∑
k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
=

1

1
− 1

n+ 1

= 1− 1

n+ 1

Thus, the statement is proven.

Chapter 16 Solutions

Simple Graph Basics

Exercise 16.1

a. 〈F,B,C〉, 〈F,D,A,C〉, 〈F,E,D,A,C〉

b. deg(A) = 2, deg(B) = 2, deg(C) = 2, deg(D) = 3, deg(E) = 2, deg(F ) = 3,

c. 6

d. 1, There is a trivial cycle, of length 0, from each vertex to itself, e.g. 〈A〉. The shortest

non-trivial cycle has length 3, 〈D,E, F,D〉.

Weighted Graphs
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Exercise 16.3

a. 5 + 2 + 4 + 5 = 16

c. 〈H,N〉 weight = 3

〈H,J,N〉 weight = 6 + 5 = 11

〈H,G, J,N〉 weight = 5 + 3 + 5 = 13

〈H,G, J,M,N〉 weight = 5 + 3 + 2 + 7 = 17

〈H,D,A,G, J,N〉 weight = 2 + 5 + 3 + 3 + 5 = 18

e. 〈F, I〉 has weight = 7.

〈F,L, I〉 has weight = 4 + 1 = 5.

Adjacency Lists

Exercise 16.4

Exercise 16.5

b.
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Adjacency Matrices

Exercise 16.6

b.
0 1 1 0 1 0 1 1

1 0 1 0 0 0 0 0

1 1 0 1 1 0 0 0

0 0 1 0 1 0 0 0

1 0 1 1 0 1 1 0

0 0 0 0 1 0 1 0

1 0 0 0 1 1 0 1

1 0 0 0 0 0 1 0

Depth First Search

Exercise 16.7

a. 〈I,D,A,B,H, F,C,E〉

c. 〈A,B,C,D,E, F,G,H〉

Breadth First Search

Exercise 16.8

a. 〈I,D, F,A,C,E,H,B〉

c. 〈A,B,C,E,G,H,D, F 〉

Any Path

Exercise 16.9

a. 〈I,D,A〉

c. 〈I,D, F,A〉

e. You traverse the connected component of vertex A, following the path 〈A,C,B, F,D,E〉.
The search then ends without ever visiting the vertex H.
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Shortest Path

Exercise 16.10

a.

b. 〈I,D,A〉
〈I,D,A,B〉
〈I,D,C〉
〈I,D〉
〈I,D,E〉
〈I, F 〉
〈I, F,H〉

Cheapest Path

Exercise 16.11

a. weight(〈M,J,H, I, C〉) = 2 + 6 + 8 + 1 = 17.

b. weight(〈I, F 〉) = 7 but weight(〈I, L, F 〉) = 1 + 4 = 5

weight(〈C,F 〉) = 9 but weight(〈C, I, L, F 〉) = 1 + 1 + 4 = 6

Spanning Tree

Exercise 16.12

a. The fat edges in this image show a spanning tree.
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b. weight = 39.

Graph Theory

Exercise 16.14

The longest possible simple path goes through each vertex exactly once and has length n− 1.

There may not be such a path.

Exercise 16.15

b. Make one component with 3 vertices at the corners of a triangle, one component with 4

vertices at the corners of a square, and one component with the remaining vertex.

Chapter A Solutions

Variables and Expressions

Exercise 1.1

a. 3x2 − 5x+ 7 = 3(52)− 5 · 5 + 7 = 3 · 25− 25 + 7 = 57 when x = 5

c. x3 − x2 + x+ 1 = 23 − 22 + 2 + 1 = 8− 4 + 2 + 1 = 7 when x = 2

e.
(

4x4y3

12x−5y6

)2
= 4

12
x4+5

y6−3 = x9

3y3

g. (a7b3c−2)(a−5b6c−1)(a2bc3) = a7−5+2b3+6+1c−2−1+3 = a4b10c0 = a4b10
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Chapter B Solutions

Composite Expressions

Exercise 2.1

a. 3x2−5x+7 = 3(2t−1)2−5(2t−1)+7 = 3(4t2−4t+1)−5t+5+7 = 12t2−12t+3−5t+12 =

12t2 − 17t+ 15 when x = 2t− 1. 12t2 − 17t+ 15 = 12(32)− 12 · 3 + 3 = 72− 36 + 3 = 39

when t = 3.

c. z = 3u2

1+v2
= 3(32)

1+22
= 3·9

5 = 27
5 when u = 3 and v = 2

e. z = 3u2

1+v2
= 3(r5)2

1+(s3)2
= 3r10

1+s6
when u = r5 and v = s3 3(310)

1+26
= 177,147

65 when r = 3, and

s = 2.

g. z = 3u2

1+v2
= 3(t−1)2

1+(1/t)2
when u = t− 1 and v = 1/t 3(t−1)2

1+(1/t)2
= 3(3−1)2

1+(1/3)2
= 3(2)2

1+(1/9) = 12
10/9 = 2

15

when t = 3

Chapter C Solutions

Exponents and Exponential Functions

Exercise 3.1

a. b0 = 1

By the definition C.1, b1 = b.

The Quotient of two powers with the same base property of exponentiation says bx

by = bx−y.

So by substitution, 1 = b
b = b1

b1
= b1−1 = b0.

c. b
1
n = n

√
b

By definition, n
√
b is the unique real number x such that xn = b.

The Power of a Power property of exponentiation says (bx)y = bxy.

So (b
1
n )n = b

n
n = b1 = b.

Logarithms and Logarithmic Functions

Exercise 3.2

a. 0 c. 4 e. 8 g. -1 i. 10240
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additive identity, 61

additive inverse, 61

adjacency list, 201

adjacency matrix, 203

algorithms, 145

analysis, 145, 148

AND gate, 20

arithmetic sequence, 160

ASCII, 9, 57

associative law, 30

associativity, 61

balls in bins, 116

base

2, 3

8, 10

10, 3

of expansion, 4

binary, 3

representation, 4

binary arithmetic, 5, 24

binary numbers

arithmetic, 5

bytes, 8

binary search, 147

analysis, 152

binomial coefficient, 112, 114

binomial theorem, 113

bit strings, 102

bits, 3

Boolean algebra, 27

Boolean formula, 29

breadth first search, 207

Bridges of Königsberg, 211

byte, 8, 132

Caesar cipher, 56

cardinality, 88

cards, 129

Cartesian product, 94

tuple, n-tuple, 94

central processing unit, 19

cheapest path, 209

chunk search, 147

analysis, 150

cipher

Caesar, 56

linear, 60, 72

rot13, 56

shift, 55, 59
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substitution, 59

circuits, 19, 39

closure, 61

combinations, 111

binomial coefficient, 112, 114

combinatorics, 99

commutative law, 30

commutativity, 61

complement, 92

composite, 69

computer representation of sets, 95

conjunction, 29

connected, 205

connected component, 199

counting, 99

CPU, 39

architecture, 39

addition, 39

jump if zero, 40

loading, 40

negation, 40

demultiplexers, 42

design, 43

add, 47

extract instruction, 46

increment PC, 46

jump-if-zero, 50

load, 49

negate, 48

registers, 45

multiplexers, 42

programming, 41

cpu, 19

cryptography, 55

cycle, 200

decimal, 3

demultiplexers, 42

depth first search, 205

Descartes, 94

De Morgan’s law, 30

dice, 128

digits, 3

disjoint, 90

disjunction, 29

distributive law, 30, 61, 114

div, 71

dividend, 70

divides, 67

division, 67

algorithm, 12, 70

scheme functions, 70

divisor, 70

edge, see graph, 198

element, 87

matrix, 203

empty set, 88

equivalence

logical, 29

equivalence gate, 24

equivalence relation, see relation, 228

Eratosthenes, 68

sieve of, 68

Euclidean algorithm, 73

extended, 75

scheme function, 74

Euler, Leonhard, 211

event, 127

exclusive NOR, 24

exclusive OR, 23

experiment, 127

exponential function, 239

expression, 233, 235
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factor, 67

Fermat, Pierre de, 127

field, 61

fractions, 72

reduced, 72

functions

growth of, 185

fundamental theorem of arithmetic, 69

gambling, 127

gates, 39

Gauss’s Trick, 163

Gauss, Carl Friedrich , 163

gcd, 71

applications, 72

geometric sequence, 161

geometric series, 163

geometric sums, 163

graph, 197

adjacency list, 201

adjacency matrix, 203

any path, 208

breadth first search, 207

cheapest path, 209

depth first search, 205

path connected, 199

path length, 198

path weight, 200

shortest path, 208

spanning tree, 210

connected, 205

connected component, 199

cycle, 200

edge, 198

incident, 198

path, 198

reachable, 199

traversal, 205

vertex, 198

greatest common divisor, see gcd

growth of functions, 185

half adder, 23

hex, 9

hexadecimal representation, 9

identity

additive, 61

multiplicative, 61

incident, 198

inclusion-exclusion principle, 104, 128

induction, 173

definition, 173

insertion sort, 153

integers, 67

intersection, 91

inverse

additive, 61

multiplicative, 61

Laplace, Pierre-Simon, 127

lcm, 71

applications, 72

least common multiple, see lcm

linear cipher, 60, 72

linear search, 150

logarithm, 239

logic, 27

logic design, 29

logic gates, 19, 20

AND, 20

NAND, 22

NOR, 22

NOT, 21
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OR, 21

XOR, 23, 24

logical equivalence, 29

logical formula, 29

logical operators, 29

lottery, 142

matrix, 202

merge sort, 155

mod, 58, 61, 71

inverses,modular multiplicative inverse, 78

powers, 62

properties, 58

modular arithmetic, 61

multiplexers, 42

multiplicative identity, 61

multiplicative inverse, 61

NAND gate, 22

negation, 29

nibble, 9

NOR gate, 22

NOT gate, 21

number representation, 3

octal representation, 10

operators

logical, 29

OR gate, 21

order notation, 181

ordered linear search, 146

analysis, 150

outcomes, 127

partial sums, 162

partition, 225

Pascal’s triangle, ii, 115

Pascal, Blaise, 127

passwords, 102, 104

path, see graph, 198

length, 198

simple, 199

path connected, see graph, 199

path weight, 200

PCR, 189

permutations, 109

personal identification number, 101

pigeonhole principle, 106

generalized, 108

PIN, see personal identification number

power set, 93

prime, 68

Prime Number Decomposition, 69

primes, 68

finding, 68

infinitely many, 70

probability, 127

product rule, 100

quadratic sequence, 161

quotient, 70

random experiment, 127

reachable, 199

reachable , see graph

recurrences, 179

solving, 181

specifying, 179

relation, 221

equivalence relation, 228

partition, 225

properties of, 226

reflexive, 227

symmetric, 227

transitive, 227
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remainder, 70

representation

binary, 4

hexadecimal, 9

negative numbers, 12

number, 3

octal, 10

signed magnitude, 13

two’s complement, 12

ripple carry adder, 24

rot13, 56

RSA, 62

RSA, Rivest-Shamir-Adelman, Rivest, Shamir,

Adelman, 79

sample space, 127

scheme functions

Euclidean algorithm, 74

modulo, 70

quotient, 70

remainder, 70

search, see searching

binary, 147

analysis, 152

chunk, 147

analysis, 150

linear, 150

ordered linear, 146

analysis, 150

unordered linear, 146

analysis, 150

searching, 145

selection sort, 154

sequences, 159

arithmetic, 160

examples, 159

geometic, 161

quadratic, 161

series, 159, 162

geometric, 163

set, 87

cardinality, 88

Cartesian product, 94

computer representation, 95

disjoint, 90

element, 87

empty set, 88

notation, 88

partition, 225

power set, 93

set builder notation, 88

set operations, 90

complement, 92

difference, 92

intersection, 91

symmetric difference, 93

union, 91

sets of numbers, 87

universe, universal set, 89

Venn Diagrams, 89

set builder notation, 88

set difference, 92

set operations, 90

shift cipher, 55, 59

shortest path, 208

sieve of Eratosthenes, 68

signed magnitude, 13

simple graph, 198

sort, see sorting

sorting, 145, 153

insertion, 153

merge, 155

selection, 154
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spanning tree, 210

sum rule, 101

sums, 159

arithmetic, 163

Gauss’s Trick, 163

geometric, 163

partial, 162

special, 165

switch, 19

symbolic logic, 27

symmetric difference, 93

transistor, 19

traversal, graph, 205

truth table, 20, 29

to formula,truth table

to circuit, 33

truth value, 27

tuple, n-tuple, 94

two’s complement, 12

unicode, 9

union, 91

universe, universal set, 89

unordered linear search, 146

analysis, 150

urns, 130

variable, 233

Venn Diagrams, 89

vertex, 198

degree, 198

vertex , see graph

word, 8

XNOR gate, 24

XOR gate, 23
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