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1 Week 1: Logic, Number Representations

1.1 Logic: Propositions, Operators, Logical Equivalence and Quantifiers

A proposition is defined as a statement that is true or false, but not both. Such a proposition has a truth
value. The truth value of a proposition is true (T) if it is a true proposition and false (F) if it is false.

We introduced several logic operators:

• Negation, ¬ – the proposition ¬p is false when p is true, and true when p is false.
• Conjunction, ∧ – the proposition p and q is p ∧ q and is true when p and q are true, and false

otherwise.
• Disjunction or inclusive OR, ∨ – the proposition p or q (written by p ∨ q) is false when p and q

are false, and true otherwise.
• Exclusive OR, or XOR, ⊕ – the proposition p xor q (written by p⊕ q) is true when p is true OR q

is true, but not when p and q are either both true or both false.
• Implication or conditional, → – the proposition p → q is false when p is true and q is false, and

true otherwise.
• Biconditional, ↔ – the proposition p↔ q is true when p is true and q is true,

or p is false and q is false, false otherwise.

We can create compound propositions by grouping and ordering propositions. We can then evaluate
logical equivalence of two or more such (compound) propositions by comparing the truth tables of each of
them.

Predicates are statements that involve variables and cannot be determined to be true or false without
specifying the value of the variable(s). Quantifiers help us express when a predicate is true over a range of
values. The universe of discourse (or domain of discourse) is the set of possible items the predicate
applies to.

We pulled out two special quantifiers:

• Universal quantifier ∀: For every value in the universe of discourse, some predicate P is true.
• Existential quantifier ∃: There exists a value in the universe of discourse such that some predicate

P is true.

1.2 Number Representations

In general we use decimal notation to express integers. However, we don’t always have to use base 10. We
can actually use any base, such as for example 5. There are general rules to represent some number n into
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some arbitrary base b.

Theorem 1.1 If b is a positive integer greater than 1, and n is a positive integer, it can be expressed in the
form:

n10 = akb
k + ak−1b

k−1 + ... + a1b + a0

where k is a nonnegative integer, the number of digits in n

Some popular bases that we will be dealing with in computer sciences in general are:

• Binary base – base b = 2
• Octal base – base b = 8
• Hexadecimal base – base b = 16

To construct the base b expansion of integer n, first divide n by b to obtain a quotient and remainder. That
is:

n = bq0 + a0, 0 ≤ a0 < b

The remainder (a0) is the rightmost (least significant) digit in the base b expansion on n. Next, divide q0
by b to obtain

q0 = bq1 + a1, 0 ≤ a1 < b

a1 is the second digit from the right in the base b expansion of n. Continue this until you obtain a quotient
equal to 0.

We then briefly talked on the number of possible values that we can represent in some base. We observed
that for some base b and digit length k, the maximum number of values that can be represented is bk.

1.3 Representing Negative Numbers

We have only talked about positive numbers, but in real life, numbers can be negative. We indicate that by
putting a negative sign in front of the number.

However, what do we do in machine world to represent negative numbers? There are several approaches:
We can designate a particular bit, normally the left-most, to indicate the sign. One problem with this
approach is that the procedures for adding the resulting numbers is somewhat complicated. Another is that
the representation of zero is not unique.

One popular approach that resolves these two issues, is referred to as two’s complement. In this approach,
the negative sign is encoded within the number representation itself.

Definition 1.2 (Two’s Complement) Given a positive integer a, the two’s complement of a relative
to the fixed bit length n is the n-bit binary representation of 2n − a.
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Two’s complement - Explanation There is a convenient way to compute two’s complements that involves
less arithmetic then the direct application of the definition above. For example, let’s consider an 8-bit
representation. The representation is based on three facts:

1. 28 − a = [(28 − 1)− a] + 1
2. The binary representation of 28 − 1 is 111111112
3. Subtracting an 8-bit binary number a from 111111112 is equivalent to just switching all 0’s to 1’s, and

vice versa. The resulting number is callend the one’s complement of the given number.

Example 1: Find an 8-bit two’s complement of a = 27. Start by representing a = 27 in the binary base as
a = 2710 = 000110112:

11111111 = 28 − 1

− 00011011 = 272

11100100 = (28 − 1)− 27

+ 00000001 = 1

11100101 = 28 − 27 (1)

In general, to find an n-bit complement of a positive integer a:

1. Write an n-bit representation of a.
2. Flip the bits (that is, switch all 1’s to 0’s, and all 0’s to 1’s).
3. Add 1 to binary representation.

1.4 Logic in Computers

Definition 1.3 (Boolean variable) A Boolean variable is a variable that can take on only two values,
either true or false. Such a variable can be represented using a bit (binary digit).

Computers represent information using bits, where a bit is defined as a symbol with two possible values,
0 (zero) and 1 (one). A bit can also be used to represent a truth value, and typically, we use a 1 bit to
represent true, and a 0 bit to represent false.

This allows us to establish the correspondence between computer bit operations, as follows:

p q NOT p p AND q p OR q p XOR q

1 1 0 1 1 0

1 0 0 1 1

0 1 1 0 1 1

0 0 0 0 0

One can now ask is: what if we have more than one bit of information to represent?

Once again, not a problem. We will use a bit (binary) string, defined as follows.

Definition 1.4 (Bit string) A bit string is a sequence of zero or more bits, and its length is equal to the
number of bits in this string.
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We can now use bit strings, and extend binary operations to bit strings as follows.

Bitwise OR, bitwise AND, and BITWISE XOR of two strings of the same length are the resulting bit
strings, of the same length, that have as their bits the OR,AND or XOR of the corresponding bits in the
starting strings.

Let’s take a look at an example.

Example 2: Consider bit strings 0110 1101 1000 and 1100 0111 0110. Find the bitwise OR, bitwise AND
and bitwise XOR of these strings.

011011011000

110001110110

111011111110 (bitwise OR)

000001010000 (bitwise AND)

111011101110 (bitwise XOR)

1.5 Vocabulary

Logic

• Proposition
• Truth value
• Truth table
• Logical operators
• negation
• conjunction
• disjunction
• xor
• inclusive or
• exclusive or
• conditional
• implication
• biconditional

• compound propositions
• logical equivalence
• predicates
• quantifiers
• universal quantifier
• existential quantifier
• universe of discourse
• using binary as T/F
• bitwise operations

Number Representations

• decimal
• fundamental theorem of

arithmetic (?)
• base expansion
• binary expansion
• binary, hexadecimal, octal
• base b expansion
• value limits given number of

digits
• 2’s complement
• 1’s complement
• max/min values of data

types

2 Week 2: Variables and Functions

How does one express mathematical statements?

There exist several different ways to express mathematical statements. Three of the most important math-
ematical statements are:

• Universal statements, stating the property that is true for all elements in some set. (For example:
All students in this class are ALIGN students.)

• Conditional statement, stating that if one thing is true, then it has to be the case that some other
thing is also true. (For example If a student is required to take CS 5002, then tht student is an ALIGN
student.)
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• Existential statement, which states that, given some property, there exists at least one element of
the set for which the given property is true. (For example: It will be sunny at least one day this week.)

Such mathematical statements can be expressed in a variety of different ways. We are interested in a way
that is efficient and practical for computer systems. One such a way relies on variables and functions.

Definition 2.5 A variable is any characteristic, number or quantity whose value:

• Is arbitrary, or
• Is not fully specified, or
• Is unknow, or
• Changes over time

When thinking about variables, we typically distinguish between two types:

• Independent variables - variables that can take different values independent of other variables we
may care to measure

• Dependent variables - variables that change value in relation (response) to other variables in our
system

In algebra, a function is seen a relationship between one or more inputs (input variables), and one or
more outputs (output variables).

f︸︷︷︸
name of a function

( x︸︷︷︸
input variable

) = y︸︷︷︸
output variable

(2)

Definition 2.6 Let A and B be some nonempty sets (sets containing at least one element). A function
f : A → B from A to B is an assignment of exactly one element of B to each element of A. We write
f(a) = b if b is a unique element of B, assigned by the function f to the element a ∈ A.

Definition 2.7 If f is a function from A to B, we refer to A as a domain of f and B as a codomain.

Definition 2.8 If f(a) = b, we say that b is the image of a, and a is the preimage of b. The range or
image of f is the set of all image of elements of A.

Two functions are said to be equal if the have:

• The same domain,
• The same codomain, and
• Map each element of their common domain to the same element of their common codomain.

Definition 2.9 Let f1 and f2 be functions from A to R. Then f1 + f2 and f1f2 are also functions from A
to R, defined for all x ∈ A as follows:

(f1 + f2)(x) = f1(x) + f2(x) (3)

(f1f2)(x) = f1(x)f2(x) (4)

Definition 2.10 Let f be a function from A to B, and let S be a subset from A. The image of S under the
function f is the subset of B that consists of images of elements of S. We typically denote the image of S
as f(S)
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f(S) = {t|∃s ∈ S(t = f(s))} (5)

Definition 2.11 Some function f is said to be an injection or one-to-one if and only if f(a) = f(b)
implies that a = b for all a and b in the domain of f .

Remark: We can express that f is one-to-one using quantifiers:

∀a∀b(f(a) = f(b))→ a = b

or equivalently:
∀a∀b(a 6= b→ f(a) 6= f(b))

where the universe of discourse if the domain of the function.

Definition 2.12 Some function f is said to be an surjection or onto if and only if for every element
b ∈ B there is an element a ∈ A, such that f(a) = b.

Definition 2.13 Some function f is said to be an bijection or one-to-one correspondance if and only
if it is both injection (one-to-one) and surjection (onto).

Summary

• To show that f is injective: Show that if f(x) = f(y) for arbitrary x, y ∈ A with x 6= y, then x = y.
• To show that f is not injective: Find particular elements x, y ∈ A such that x 6= y, but f(x) = f(y).
• To show that f is surjective: Consider an arbitrary y ∈ B, and find an element x inA such that

f(x) = y.
• To show that f is not surjective: Find a particular element y ∈ B such that f(x) 6= y∀x ∈ A.

Definition 2.14 A function f whose domain and codomain are subsets of the set of real numbers is called:

• Increasing function, if f(x) ≥ f(y) whenever x < y and x and y are both in the domain of f .
• Strictly increasing function, if f(x) < f(y) whenever x < y and x and y are both in the domain of

f .
• Decreasing function, if f(x) ≤ f(y) whenever xy and x and y are both in the domain of f .
• Strictly decreasing function, if f(x) > f(y) whenever x < y and x and y are both in the domain

of f .

Definition 2.15 Let f be a one-to-one correspondance (bijection) from some set A to some set B. The
inverse function of f is the function that assigns to an element b belonging to B the unique element a ∈ A
such that f(a) = b. The inverse function of f is typically denoted as f−1.

Definition 2.16 Let g be a function from the set A to the set B, and let f be a function from the set B to
the set C. The composition of the functions f and g, denoted fro all a ∈ A by f ◦ g, is defined as:

(f ◦ g)(a) = f(g(a)) (6)

Definition 2.17 A partial function f from a set A to a set B is an assignment of each element a in a
subset of A, called the domain of definition of f , of a unique element b ∈ B. The sets A and B are still
called the domain and the codomain of f , but we say that f is undefined for elements in A that are not in
the domain fo definition of f .
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The question of whether a partial function is a function or not frequently comes up. In mathematics, a
partial function is NOT considered a function, but in computer science, a partial function IS considered a
function. When asked whether a partial function is a function, your response should be: it depends. (Or, if
you truly consider yourself a computer scientist, respond “Of course it is!” But know that if you’re talking
to a mathematician, you may have to prove them wrong).

2.1 Vocabulary

• variable
• independent variable
• dependent variable
• function
• input variable
• output variable
• identity function
• eraser function
• function as mapping or

transformation
• domain

• codomain
• image
• preimage
• real-value function
• integer-value function
• one-to-one function
• onto function
• injection
• surjection
• bijection
• equal functions

• increasing function
• strictly increasing
• decreasing
• strictly decreasing
• function graph
• inverse function
• composition of functions
• floor function
• ceiling function

3 Sums and Sequences, Recurrences

In this section, we introduced the concepts of sums, sequences and recurrences. In particular, these three
concepts allowed us to do things like understand and calculate values that build upon previous values, such
as compounding interest.

Definition 3.18 A sequence is a collection of ordered elements.

We use an to denote the nth term of the sequence.

In addition to a sequence being a collection of ordered numbers, we treat strings as sequences of ordered
letters.

Definition 3.19 A geometric sequence or geometric progression can be expressed as

a, ar, ar2, ar3, . . . , arn

where initial term a and ratio r are real numbers.

A geometric sequence is the discrete analog of the continuous exponential function: f(x) = arx.

Definition 3.20 An arithmetic sequence or arithmetic progression can be expressed as:

a, a + d, a + 3d, a + 4d, . . . a + nd

where initial term a and difference d are real numbers.

An arithmetic sequence is the discrete analog of the continuous linear function: f(x) = a + dx.
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Definition 3.21 A recurrence relation for a sequence is one in which a given term an is defined in terms
of one or more previous terms in the sequence.

A sequence is a solution of a recurrence if its terms satisfy the recurrence relation.

A recurrence can have multiple solutions that satisfies it; however, there is only one solution to a recurrence
given a specific initial condition.

When we have a recurrence, we can either “provide a solution”, which is determining a solution that satisfies
the recurrence, or we can solve the recurrence. Solving the recurrence requires finding the closed formula
for a recurrence.

Definition 3.22 The closed formula of a recurrence is an expression of the recurrence solely in terms of
n.

The closed form of a recurrence can not be expressed with previous terms in the sequence; it must be
expressed only in terms of the current term, n. We cannot determine the closed formula for a recurrence
without the initial condition(s) being specified.

We use iteration or substitution to determine the closed form. When performing this process, we can
either go forward or backward.

To perform forward substitution, we start with a0. We then write down a1 according to the recurrence
(which will be defined in terms of a0, or the initial condition(s)), and then we substitute in a0. Next, write
down a2 according to the recurrence, and substitute in a1 that we determined in the previous step, which is
already expressed in terms of a0. Continue this process until you see a pattern, and derive the close form.

Backward substitution is the same process, except we start with an. Write down an according to the
recurrence. Then, re-write an replacing the an−1 terms with the equivalent according to the recurrence.
Then, re-write an replacing the an−2 terms. Continue until you see a pattern. In this approach, at each
step, you write an in terms of only a single previous term, such as an−3.

Definition 3.23 (Summation Notation) Summation notation allows us to express the sum of the
terms am, am+1, am+2, . . . an as

n∑
j=m

aj ⇒ am + am+1 + am+2 . . . + an (7)

Summations also usually have a closed form, but we did not cover how to derive the closed form of a
summation. We can, however, use existing tables to look up the closed form of common summations. To do
this, we need to be aware of the indices of summation: make sure that the indexes of the original summation
match the indices of the form we’re comparing to. You may have to shift the summation a bit:

5∑
j=1

j ⇔
4∑
k=0

(k + 1) (8)

Another helpful approach may be to pull out the first term:

n∑
j=a

f(j) = f(a) +

n∑
j=a+1

f(j) (9)
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3.1 Vocabulary

• sequence
• summation
• geometric sequence
• arithmetic sequence

• recurrence relation
• closed formula
• iteration
• substitution

• initial condition
• fibonacci sequence

4 Sets and Matrices

A set is a group of objects, usually with some relationship or similar property. The objects in the set are
called elements or members of the set. We use the symbol ∈ to indicate that an element is or is not in a
set:

x ∈ A: x is in set A

x 6∈ A: x is not in set A

Definition 4.24 (Venn Diagrams) A Venn diagram is a graphical representation of a set.

A
B

A ⊆ B

Definition 4.25 (Subsets) The set A is a subset of B if and only if every element of A is also an element
of the set B. We use the notation: A ⊆ B.

Definition 4.26 (Set Cardinality) Let S be a set. If there are n distinct elements in S (and n is an
integer greater than or equal to 0), S is a finite set, and n is the cardinality or S. The cardinality of S
is written |S|.

Set Operations

• Union: Let A and B be sets. The union of the sets A and B, denoted A∪B is the set that contains
the elements in either A or in B, or in both.

• Intersection: Let A and B be sets. The intersection of the sets A and B, denoted A∩B is the set
that contains the elements in both A and B.

• Set complement: The complement of a set A, denoted Ac is the set of elements that belong to U
but which do not belong to A.

• Difference of sets: The relative complement or difference of a set B with respect to A, denoted
A \B (said A minus B) is the set of elements that belong to A, but which do not belong to B.
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4.1 Matrices and Arrays

Last lecture, we defined a matrix as a rectangular array of numbers, and we said that a matrix with m rows
and n columns is called an m× n matrix. Let’s recall some matrix operation and properties we mentioned
last time.

Matrix Operations and Properties

An identity matrix, denoted as I ∈ Rn×n is a square matrix with ones on the diagonal and zeros everywhere
else:

Iij =

{
1, i = j

0, i 6= j

A diagonal matrix is a matrix where all off-diagonal elements are equal to 0, D = diag(d1, d2, . . . , dn) and

Dij =

{
di, i = j

0, i 6= j

Note: I = diag(1, 1, . . . , 1).

Given a matrix A ∈ Zm×n, its transpose, denoted AT ∈ Zn×m, is the n × m matrix whose entries are
obtained by “flipping” the rows and the columns of matrix A:

(AT )ij = Aji

The following properties of transpose can be easily verified:

• (AT )T = A
• (AB)T = BTAT

• (A + B)T = AT + BT

A square matrix A ∈ Zn×n is a symmetric matrix if it holds that:

A = AT

A square matrix A is anti-symmetric if:
A = −AT

Definition 4.27 (Matrix Manipulation) The product of two matrices A ∈ Zm×n and B ∈ Zn×p is a new
matrix, C, defined as:

C = AB :=

n∑
k=1

AikBkj ∈ Rm×p

Note: In order for matrix C to exist, the number of columns of matrix A must be equal to the number of
rows of matrix B.

Example 1: Please find matrix product AB, if matrices A and B are equal to A =

[
2 3
4 1

]
and B =[

2 4 2
1 5 3

]
.
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AB =

[
2 3
4 1

] [
2 4 2
1 5 3

]
=

[
2 · 2 + 3 · 1 2 · 4 + 3 · 5 2 · 2 + 3 · 3
4 · 2 + 1 · 1 4 · 4 + 1 · 5 4 · 2 + 1 · 3

]
=

[
7 23 13
8 21 11

]

Properties of Matrix Manipulation:

• Matrix manipulation is associative: (AB)C = A(BC)
• Matrix manipulation is distributive: A(B + C) = AB + Ac
• Matrix manipulation in general is not commutative, i.e., in general, AB 6= BA

Definition 4.28 (Matrix Inverse) The inverse of a square matrix A ∈ Zn×n is denoted as A−1, and it
is a unique matrix such that:

A−1A = AA−1 = I (10)

Note: Not all matrices have an inverse. In particular, we say that matrix A is invertible or non-singular
if its inverse A−1 exits.

4.2 Vocabulary

• set
• elements
• members
• set builder notation
• N,R, . . .
• universal set
• Venn diagram
• subset
• proper subset
• equality of sets
• finite set
• infinite set
• cardinality
• power set

• empty set
• n-tuple
• Ordered n-tuple
• ordered pair
• cartesian product
• union
• intersection
• disjoint
• inclusion-exclusion principle
• complement
• difference
• relative complement
• symmetric difference
• set operations applied to

many sets
• membership table
• DeMorgan’s law
• set identities
• matrix
• matrix addition
• scalar multiplication
• matrix multiplication
• transpose
• vectors
• zero-one matrix
• column vector
• row vector
•

5 Number Theory

Last time, we introduce the notion of divisibility, and we said that, if a and b are integers such that a 6= 0,
we say that a divides b if if there exist an integer c such that:

b = ac

or equivalently, b
a is an integer. We introduce the division algorithm as follows.

Let a be some integer, and d some positive integer. Then there always exist unique integers q and r, where
0 ≤ r < d, such that:

a = dq + r (11)

In equation (11), positive integer d is typically referred to as divisor, integer a as dividend, and integers q
and r as quotient and remainder, respectively.
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We next introduced congruences, and defined them as follows.

Let a and b be integers, a, b ∈ Z and let m be a positive integer, m ∈ N. If m divides (a− b), we can write:

a ≡ b mod m, or (12)

m|(a− b) (13)

The operator ≡ is called congruence and a ≡ b mod m is read: “a is congruent to b modulo m.” The
positive integer m is known as the modulus.

We next defined prime numbers as those integers greater than one, whose only positive factors are 1 and
p, and we answered the following questions about prime numbers:

• How do we show that some positive integer is a prime? Trivial division
• If an integer isn’t a prime, how do we find all of its divisors (factors)? Unique prime factorization
• How many primes are there anyway? Infinitely many

We further introduced the concept of a greatest common divisor as follows:

Given two integers a 6= 0 and b 6= 0, the greatest common divisor of a and b (denoted gcd (a, b)) is equal
to the largest integer c that divides both a and b.

We defined that two integers a ≥ 1 and m ≥ 2 are said to be relatively prime or coprime if their greatest
common divisor is equal to gcd(a,m) = 1.

We then answered the following questions?

• Given some positive integer a, how many integers from the set Za = {1, 2, . . . , a− 1} are coprime with
a? Euler’s totient function

• How would we generally check whether or not two integers a and b are coprime? Eucliedan algorithm

We showed that fact that the greatest common divisor of some integers a and b can be expressed as a linear
combination of a and b, and their corresponding linear coefficients

ax + by = d (14)

where integers x and y are called Bezout’s coefficients.

We further defined a linear congruence as a congruence of the form:

ax ≡ b (mod m)

where m is a positive integer, a and b are integers, and x is a variable, and we showed how and when can
we solve such linear congruences.

To do so, we introduce the notion of a modular multiplicative inverse of an integer a ∈ Zm modulo m,
denoted as a−1 mod m, as an element a′ ∈ Zm such that:

a · a′ ≡ a′ · a ≡ 1 mod m (15)

And we showed that, given the modular multiplicative inverse, some congruence ax ≡ b mod m can be solved
for x as follows:

ax ≡ b mod m

a−1(ax)︸ ︷︷ ︸
x

≡ a−1(b) mod m
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We answered the following questions about modular multiplicative inverses:

• When does an integer a ∈ Zm have a modular multiplicative inverse under modulo m?
• If an integer a ∈ Zm have a modular multiplicative inverse under modulo m, how do we find it?

Extended Euclidean algorithm

Theorem 5.29 (Fermat’s Little Theorem) Let’s consider two integers a and p. If p is a prime, and p
does not divide a, then:

ap−1 = 1 mod p (16)

5.1 Vocabulary

• divides
• factor
• divisor
• multiple
• div
• mod
• quotient
• remainder
• congruent
• modulo
• modulus
• prime

• composite
• fundamental theorem of

arithmetic
• prime factorization
• coprime
• relatively prime
• greatest common divisor/gcd
• least common multiple/lcm
• Euler-phi
• Euclidean algorithm
• Bezout’s theorem
• linear congruence

• Euler’s theorem
• Fermat’s little theorem
• Chinese Remainder theorem

Math symbols

• ≡
• modm
• a|b
• a 6 |b
• aφ(n)

• Za

6 Relations

Relations indicate the relationship between two or more sets. When the relation applies to two sets, it’s
called binary relation; if it’s more than 2, it’s a n-ary relation.

Definition 6.30 (Binary Relation) A and B are sets. A binary relation from A to B is a subset of the
Cartesian product A×B.

The binary relation is a set of ordered pairs where the first element is in set A, and the second element is
in set B. We write a binary relation as: aRb that means ordered pair (a, b) ∈ R. We can also write a 6 Rb,
which means ordered pair (a, b) 6∈ R.

We particularly use relations that are from some set A to itself:

Definition 6.31 (Relation on a set) A relation on a set is a relation from set A to set A.

For example, we may have a relation on Z or ZRZ, which means a relation on the integers to the integers.

Functions are a special kind of relation.

Relations can have specific properties:

Definition 6.32 (Reflexivity) A relation R on a set A is called reflexive if(a, a) ∈ R for every element
a ∈ A.
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Definition 6.33 (Symmetry) A relation R on a set A is called symmetric if (b, a) ∈ R whenever (a, b) ∈
R for all a, b ∈ A.

Definition 6.34 (Anti-symmetry) A relation R on a set A is called anti-symmetric when it holds that
for all a, b ∈ A such that (a, b) ∈ R, if (b, a) ∈ R, then it follows that a = b.

Definition 6.35 (Transitivity) A relation R on a set A is called transitive if whenever (a, b) ∈ R and
(b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A.

More informally, reflexivity, symmetry and transitivity properties say the following:

• Reflexivity: Each element of a set is related to itself.
• Symmetry: If any one element is related to any other element, then the second element is also related

to the first.
• Transitivity: If any one element is related to a second, and that second element is related to some

third element, then the first element is related to the third element too.

Or:

• R is reflexive ⇐⇒ ∀x ∈ A, (x, x) ∈ R
• S is symmetric ⇐⇒ ∀x, y ∈ A, if (x, y) ∈ R, then (y, x) ∈ R
• R is transitive ⇐⇒ ∀x, y, z ∈ A, such that (x, y) ∈ R and (y, z) ∈ R , then (x, z) ∈ R

6.1 Vocabulary

• relation
• binary relations
• n-ary relations
• Cartesian product
• relation properties
• reflexive
• symmeteric
• anti-symmetric
• transitive
• composite relations

• zero-one matrix
• closure
• symmetric closure
• transitive closure
• reflexive closure
• equivalence relation
• equivalence class
• partial ordering
• comparable elements
• total order

• linear order
• chain
• well-ordered set
• lexicographic order

Symbols

• �
• A R B
• aRb
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