CS 5002: Discrete Structures Fall 2018

Lecture 7: October 18, 2018 !

Instructors: Adrienne Slaughter, Tamara Bonaci

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Intro to Linear Data Structures

Readings for this week:
Rosen, Chapter 2.1, 2.2, 2.5, 2.6
Sets, Set Operations, Cardinality of Sets, Matrices

7.1 Overview

Objective: Introduce data structures.

1. How do computers work? (very high level)
2. What is a data structure?
3. Intro to a piece of data we’ll use for lecture: a deck of playing cards
4. How we might want to order cards
e Stack (ie, shuffled deck ready to be dealt)
e Queue (ordered in hand, ready to play?)
e “Random” (maybe in some order, but want to find the best at points in time)
Lists
6. Storing of lists
e Contiguous memory
e Non-contiguous
7. Array
8. Linked List

o

Kinds of problems we can do:

e Given this kind of thing, what kind of data structure?
e Given a compound/crazy data structure, what would it be good for? What are its pros and cons?

7.2 Introduction:

Today we’re talking about data structures. Your reading introduced you to arrays, linked lists, stacks, and
queues; we’ll introduce a map, and talk about them.

To really understand why data structures are important, we need to know just a little bit about how a
computer works. Figure 7.2 shows a diagram of a computer system architecture.

7-1

7-2 Lecture 7: October 18, 2018

CPU

Register file

ALU

System bus Memory bus

] 110 l Main
REA
1/0 bus u u u

Expansion slots for

\ other devices such
Disk as network adapters
controller

Graphics

UsB
adapter

controller

Mouse Keyboard Display) hello executable
w stored on disk

The brain of the computer is the CPU, which contains the program, or set of instructions, that’s running.
The CPU can only act on data in memory. However, data in memory is volatile: it doesn’t last. In order
to make sure we don’t lose data, we have to store it on the disk drive, which allows us to persist the data.
When a CPU needs to do something with data on the disk, it’s first copied from the disk into main memory.
You might ask why doesn’t everything just live in memory: the short answer is that it’s expensive. There
are tradeoffs between cost ($$8$), size (how many pieces of data the memory can hold), and speed. If it gets
too big, in order to stay fast, it’s expensive. So, we get around that by only storing the data we need in
memory when we need it.

You can think of memory like a chest of drawers, and each drawer has an address (or
name, or some other way to distinguish one from another). You can put one thing in

each drawer. To put something new into a drawer, you have to take whatever is in the
drawer out first. In fact, as far as computers go, you can think of it like this: when you
run a program, the variables you use each live in one drawer. When the program is over, S

the computer takes everything out of all the drawers you used and throws it away. If =1
you wanted to keep any of those variables, you have to be sure to take it out and put it
somewhere safe (that is, copy it onto the disk drive).] | |

This is hopefully a useful model to help us start thinking about different data structures
and why they matter.

7.3 Collections of Items

When we’re writing programs, we're usually dealing with collections of items. Maybe we have a bunch of
points that describe a polygon, or maybe we are implementing chess, and have the board and the pieces. Or
cards, for a card game.

In all of these cases, we have things— items, elements, nodes— that we are using, and need to manipulate.
The most basic container or collection of items we have is called the lzst.

With each program and list of elements, there are a number of things we may want to do with it:

1. Get or access the kth element: get (thelList, whichElem)
2. Insert a node before the kth element: insert (thelList, newElem, whichNode)

3. Delete or remove the kth element: delete(thelist, whichElem) Or delete(myList, 5) to delete
element number 5.

Lecture 7: October 18, 2018 7-3

=~

Combine two lists into one: combine (theFirstList, theSecondList)

5. Split a list into two or more: split (theList, whereToSplit) Or split (myList, 5) to split the list
into a section of the first 5, and then the rest.

6. Make a copy of a list: newList = copy (oldList)

7. Determine the number of elements (length) in a list: length (theList)

8. Sort the elements into ascending/descending order, depending on certain attributes of the elements:

sort (thelList, ascending)

9. Search the list for a element with a particular value in a specified field: find(theList, queenOfHearts)

A computer program rarely needs to do all of these things all the time; there are usually 1-2 operations
that are considered primary and will be utilized far more than the other operations. The way we structure
or store our data elements has an impact on how easy or efficient the above operations are. Therefore, we
choose a data structure and organization based on the specific needs of the data.

Let’s consider a deck of playing cards: we frequently shuffle the cards at the start of a game, and then from
then on the cards stay in the same order. A hand is dealt from the top of the deck, one by one, while all the
cards stay in the same order.

Question: Which operations is this? Remove/delete the first node. (that is, k = 1)

Another example: when I come across a book I want to read, I put it on my table. When I'm done with my
current book, I put it on my bookshelf, then take the next book from the pile on my table. This is a special
kind of ordering, called a LIFO structure: Last In, First Out. In this case, I always read the top book, but
I do fear I never get to the bottom!

A better approach might be this: Instead of a table to stack my books, I’ll dedicate a shelf to “books I want
to read”. When I get a new book, put it on the right side of the shelf. When I”m ready for the next book, I
take it from the left side. What does that get me? A chance to get to the end! This is an example of a
FIFO structure: First In, First Out. This way, I'll be sure to get through the books I want to, in the order
I find them and add them to the shelf.

Okay, so I've tried this shelf approach, but I find that sometimes I'm so excited that I really want to read
the book I just put on the shelf, so I go ahead and take that one instead. That makes my shelf a mix or
combination of LIFO and FIFO.

The first data structure we call a stack, and the second we call a queue. The third structure, as long as I
restrict myself to only taking from the left or right (beginning or end), is called a deque, or a “double-ended”
queue.

Container Data Structures

These data structures are sometimes called a container data structure. A container data structure is a
structure that permits storage and retrieval of data items, independent of content.

This means we can put items in and take them out, and it doesn’t matter the actual content of the item.
Containers can be characterized by how items are inserted and retrieved:

e LIFO: Last In, First Out.
e FIFO: First In, First Out.

In the next few sections, we’ll go over each of these data structures and introduce terminology and operations
specific to each. We’ll see how these different data structures are each better for some list operations that we
identified earlier, while making other operations more difficult. As I’ve noted, since most programs prioritize
one or two operations, we want those programs to use data structures that make those operations easy, while
avoiding those that make the required operations more difficult.

7-4 Lecture 7: October 18, 2018

7.4 Stack

Our stack is a FIFO data structure. It’s similar to a stack of books or plates: you start stacking them up,
and then you use the one on the top of the pile first.

What is a Stack?

ush () pop ()
Head == Ulysses

Head == Hamlet Hamlet == Hamlet
Moby Dick Moby Dick
The Odyssey The Odyssey

Moby Dick
The Odyssey

Add a new element to an existing

stack. The head pointer is moved up to When we pop an element from the

the new element. stack, we take the top element off.

Stack Operations (Abstract)

There are a number of typical or standard operations for a stack:

e pop() : Get the top item from the stack, removing that item
e push() : Put a new item on the stack

e peek () : Look to see what the top element is

e create() : Create the stack

e destroy() : Destroy the stack

7.5 Queue

Alyssa Abernathy

Head =»» Alyssa Abernathy =3 Alyssa Abernathy dequeue ()
i Joe Smith
o Alyssa Abernathy
i itdi Ben Bitdiddle
Tail = Ben Bitdiddle : Hoad —
Tail =»| Charlie Carpenter i
enqueue () Ben Bitdiddle
Tail =» Charlie Carpenter

‘ Charlie Carpenter

When we remove an element from
a queue, we remove it from the
The tail pointer is updated. front.

When we add an element to a
queue, it goes at the end (tail).

Queue Operations (Abstract)

e enqueue () : Put an element at the back of the queue

Lecture 7: October 18, 2018 7-5

e dequeue() : Get the element that is at the front of the queue
e rfront () : Look at the element at the front

e back() : Look at the element at the back/last inserted

e create() : Create the queue

® destroy() : Destroy the queue

7.6 Deque (Optional)

Sometimes you’ll see a deque, or a double-ended queue. A double-ended queue lets you put things in the
queue at either the front or the back, and take things out via the front or the back.

Deque Operations (Abstract)

e insertFront () : Put an element at the front of the deque
e insertBack() : Put an element at the back of the deque

e removeFront () : Get the element at the front of the deque
e front () : Look at the element at the front

e back() : Look at the element at the back/last inserted

e create() : Create the queue

e destroy() : Destroy the queue

7.7 Exercises/Examples

An input-restricted deque is a list that allows items to be inserted only at one end, but can be
removed from either end. An input-restricted deque could act as either a stack or a queue.
Could an output-restricted deque also act as either a stack or queue?

Imagine we have 4 railroad cars on the input side of a track organized like a stack. We perform this sequence
of operations:

PUSH(CAR 1)
PUSH(CAR 2)
POP(CAR 2)
PUSH(CAR 3)
PUSH(CAR 4)
POP(CAR 4)
POP(CAR 3)
POP(CAR 1)

When we do this, we change the order of the cars from 1-2-3-4 to 2-4-3-1.

Example: If we have 6 cars, numbered 1-6, can they be changed to the order 3-2-5-6-4-1, using just a stack?
If so, show the order of operations.

7-6 Lecture 7: October 18, 2018

Example: Can they be permuted into 1-5-4-6-2-3 using a stack? If so, show the order of operations.

Example: If we have 6 cars, numbered 1-6, can we use a queue to change the order to 3-2-5-6-4-17 If so,
show the order of operations.

Example: Can they be permuted into 1-5-4-6-2-3 using a queue? If so, show the order of operations.

7.8 Deeper Example: Playing Cards

Now that we know about a stacks and queues, we’ll introduce a more complex example. In fact, we’ll start
talking about what all of this looks like in code.

I'm using Python pseudo-code for the rest of these notes.

We're using playing cards. I'll define a playing card as the following class:

class Card:
address = "\0’
suit = ’Hearts’
value = 'A’'
isFaceUp
nextCard

false
4 \OI

Lecture 7: October 18, 2018 7-7

Terminology:

Loc(A): which “drawer” A is in; the address of A.

CONTENTS(d11): the “thing” in drawer 11.

di1 : drawer 11 (for today, we’ll use ‘d’ to indicate we're referring to a drawer, or a specific location
in memory.

card: The name of a “thing” that we’re manipulating. We’re going to call it an object, and a
particular value of that object an instance. (A real-world equivalent: A playing card is a card, it has
a suit and face value; a card is an object, the Queen of Hearts is an instance) Also generally referred
to as a data element, node, item, etc.

® queenoOfHearts : An instance of a “thing”: In this case, the Queen of Hearts is a specific card.

e A.fieldName : the value of fieldName in “thing” A.
Our cards:
What to do with our cards:

e Count the number of cards in the deck
e Alg A: Take the top card off, turn up the next one.
— TopCard =

What are the steps to undo algorithm A?

7.9 Data Structure Implementation: Storage Issues

Up until now, we’ve talked about our most basic data structures. The next thing to talk about is the storage
of these data structures. What does this mean? Remember, earlier I said that memory is like a set of drawers
(see 7.1. Thinking about the storage of these data structures is like thinking about how to put the elements
in these data structures in the drawers.

Let’s say I have a bunch of data items. If I want to put them in storage (i.e., the set of drawers), I might
start at the top, putting an element in the first drawer, then the next element in the second drawer, and so
on. If I have n data elements, I'll put them in the first n drawers in the dresser. When I'm looking one data
element, I know exactly where the next element is (it’s in drawer n + 1). T also know exactly what element
is before it (it’s in drawer n — 1). This is pretty convenient!

7-8

Lecture 7: October 18, 2018

Figure 7.2: Our memory storage. Here, the red line indicates that we set aside 5 blocks
for kids books, and the blue indicates that we set aside 5 blocks for other books.

d1:
d2:
d3:

bookl
book2
book3

d4:

d5:
d6:

dr:

ds:

d9:

d10:

di1:
d12:

Let’s look at a real-world equivalent: Believe it or
not, every once in a while I get rid of some books.
So now, I've got a big pile of books to get rid of.
The problem is, some of them are kids’ books, and
while all the rest are technical books. I want to put
all the kids’ books together, and all the tech books
together, all in storage— in my “dresser”. We've al-
ready established that we can put a bunch of like
elements together in memory; what happens when
we have two kinds of elements?

As 1 go through this pile of books, I pick up one
book, determine if it’s a kids book or not, and put
it in the right place. Well, to know where the right
place is, I have to ahead of time decide which group
of drawers I'm setting aside for kids books, and
what group of drawers I'm setting aside for the other
books.

We really have to do something like this:

Guess how many kids books I have, n
Set the first n drawers aside for kids books.
Estimate how many other books I have, x

Pick up a book

Figure 7.1: A representation of our memory
storage. Each slot has an address and can

hold one thing.

dl:
d2:
d3:
d4:

d6:
d7:

Set the n 4 1 through n + 1 + = drawers (slots) aside for other books.

thingl

thing2

thing3

— If the book is a kids book, put it in the next empty slot in the “kids book” area.

Lecture 7: October 18, 2018

7-9

Figure 7.3: Our memory storage. Here, the red line indicates that we set aside 5 blocks

for kids books, and the blue indicates that we set aside 5 blocks for other books.

dl: | KidsBookl1 | d3

d2:

d4:

book2

d3: | KidsBook2
d6

db:
d6:

dr:

ds:
do9:
d10:
d11:
d12:

— Otherwise, put it in the next empty slot in the “other” books area.

TODO: psuedocode?

What could go wrong?

\

book3

| KidsBook3 | \ |

\

| —

This is fine as long as I have no more books than I plan for. What happens if I have 10 kids books though?

I fill up all the kids books slots, and then have to put some more somewhere else.

Instead of just putting a book in a slot, let’s instead put a book in a slot, and then also store where the next

is:

dl:

book1

d2

d2:

book2

Here, bookl is in slot d1, and book2 is in slot d2. But bookl keeps track of where the next book is, by
storing the address of the next book along with it.

This allows us to do something like this:

TODO: introduce topic of overflow?

The distinction between these two ways to store our data is contiguous versus linked. There are two
data structures that are used to implement all other data structures, with the main distinctions being the

difference of contiguous versus linked. Those are the array and linked list.

Contiguous vs Linked Structures

7-10 Lecture 7: October 18, 2018

e Contiguously-Allocated: Composed of a single chunk of memory. Examples: arrays, matrices,
heaps, hash tables.

e Linked data structure: Composed of distinct chunks of memory connected by pointers. Examples:
Lists, trees, graphs adjacency lists.

7.9.1 Arrays

An array is simply a contiguous chunk of memory set aside for storage. Generally arrays can only contain
one type of data (e.g., an int, or a float, or a char). When you declare an array, you need to specify how
big it is, and that’s all you get. The nice thing is that it’s one chunk in memory, so if you know where one
element is, you know where the previous and next one are.

One nice thing about arrays is that we have direct access to elements: If I want the 5" element, I can easily
get it: array[4) (arrays tend to be zero-based).

Th |36 |QV|AN

We’ve got a couple standard operations:

insert
delete
length

e find
Advantages:

e Constant time access
e Space efficiency
e Memory locality

Disadvantages:

e Can’t adjust size at runtime
— Well, you can, but it’s expensive. (time-wise)

7.9.2 Linked Lists

Create an array with 3 elements
myCards = ["Q_Hearts", "K_Spades", "3_Diamonds"]

Refer to the first element
first = myCards[0]

Determine how many elements there are in the array
numCards = len (myCards)

Iterate through the array and print out each element
for card in myCards:

print (card)

Add a new element to the array
myCards.append ("A_Spades")

Removes an element from the array (by index)

Lecture 7: October 18, 2018 7-11

Data

Pointer to next Node

Pointer to prev Node

Figure 7.4: A node in a Linked List

| |A.|m{.|./m;}|./@/m?.| |

Figure 7.5: A doubly-linked list

myCards.pop (2) ## Removes third element

Removes an element from the array (by value)
myCards.remove ("Q_Hearts")

class LIL_node:
data = aCard
nextNode
prevNode

Create a linked list
list_head = LL_node

Put the first element in the list
list_head.data = QHearts

Add an element to the list

def add_elem(head_of_list, new_data):
cur_node = head_of_list
while (cur_node.nextNode != "\0’):

cur_node = cur_node.nextNode

new_node = LL_node ()
new_node.data = new_data
new_node.prevNode = cur_node
cur_node.nextNode = new_node

add_elem(list_head, QSpades)

Determine how many elements there are in the array
numCards = len (myCards)
def len_list (head_of_1list):

cur_node = head_of_list

length = 0
while (cur_node.nextNode != "\0’):
cur_node = cur_node.nextNode

length +=1
return length

7-12 Lecture 7: October 18, 2018

7.9.3 Comparison: Arrays vs Linked Lists

Comparing
Arrays: Linked Lists:
e Linked structures require the overhead of stor- e It never fills up, unless we’ve run out of memory
ing pointers. e Insertions and deletions are simpler
e Efficient, random access to items o If the items (structs) are large, moving pointers
e Better memory locality is easier/faster than moving elements

7.10 Evaluating and Comparing Data Structures

Summary
Array Linked Stack Queue Tree
List
Type Linear Linear Linear Linear Tree/graph
Insert Puts Puts ele- Puts ele- Puts el- Puts ele-
action ment on ment on ement in ment where
top top back specified
Insert a[n] = i; insert() push() enqueue() .
Opera-
tion
Remove a Returns ele- Returns
Action ment at top element at
front
Remove pop() dequeue()
opera-
tion
Notes LIFO FIFO

7.10.1 Memory

7.10.2 Runtime for typical operations

What’s a Linked List?

TR AT T

7.11 Summary

What is a Data Structure?

Data structures are used to structure data we’re using. There are two reasons data structures matter:
memory and efficiency. We want to know how much memory is used for storing data in one structure versus
another, and also how fast or slow the data structure is for what we want to do.

What’s coming up?

Lecture 7: October 18, 2018 7-13

e Dictionaries
e Trees
e Graphs

Readings for NEXT week:

Rosen, Chapter 4.1, 4.2, 4.3, 4.4
Divisibility and Modular Arithmetic, Integer Representations and Algorithms,

Primes and Greatest Common Divisors, Solving Congruences Solving Congruences

	Overview
	Introduction:
	Collections of Items
	Stack
	Queue
	Deque (Optional)
	Exercises/Examples
	Deeper Example: Playing Cards
	Data Structure Implementation: Storage Issues
	Arrays
	Linked Lists
	Comparison: Arrays vs Linked Lists

	Evaluating and Comparing Data Structures
	Memory
	Runtime for typical operations

	Summary

