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Number Theory

Readings for this week:
Rosen, Chapter 4.1, 4.2, 4.3, 4.4

5.1 Overview

1. Review: set theory
2. Review: matrices and arrays
3. Number theory: divisibility and modular arithmetic
4. Number theory: prime numbers and greatest common divisor (gcd)
5. Number theory: solving congruences
6. Number theory: modular exponentiation and Fermat’s little theorem

5.2 Introduction

In today’s lecture, we will dive into the branch of mathematics, studying the set of integers and their
properties, known as number theory. Number theory has very important practical implications
in computer science, but also in our every day life. For example, secure online communication, as
we know it today, would not be possible without number theory because many of the encryption
algorithms used to enable secure communication rely heavily of some famous (and in some cases,
very old) results from number theory.

We will first introduce the notion of divisibility of integers. From there, we will introduce modular
arithmetic, and explore and prove some important results about modular arithmetic. We will then
discuss prime numbers, and show that there are infinitely many primes. Finaly, we will explain
how to solve linear congruences, and systems of linear congruences.
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5.3 Review

5.3.1 Set Theory

In the last lecture, we talked about sets, and some of their properties. Here’s the quick summary.

A set is a group of objects, usually with some relationship or similar property. The objects in the
set are called elements or members of the set. We use the symbol ∈ to indicate that an element
is or is not in a set:

x ∈ A: x is in set A

x 6∈ A: x is not in set A

Venn Diagrams

A Venn diagram is a graphical representation of a set.

A
B

A ⊆ B

Subsets

The set A is a subset of B if and only if every element of A is also an element of the set B. We
use the notation: A ⊆ B.

Set Cardinality

Let S be a set. If there are n distinct elements in S (and n is an integer greater than or equal to
0), S is a finite set, and n is the cardinality or S. The cardinality of S is written |S|.

5.3.1.1 Set Operations

• Union: Let A and B be sets. The union of the sets A and B, denoted A∪B is the set that
contains the elements in either A or in B, or in both.
• Intersection: Let A and B be sets. The intersection of the sets A and B, denoted A ∩B

is the set that contains the elements in both A and B.
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• Set complement: The complement of a set A, denoted Ac is the set of elements that
belong to U but which do not belong to A.
• Difference of sets: The relative complement or difference of a set B with respect to
A, denoted A \B (said A minus B) is the set of elements that belong to A, but which do not
belong to B.

5.3.2 Matrices and Arrays

Last lecture, we defined a matrix as a rectangular array of numbers, and we said that a matrix
with m rows and n columns is called an m × n matrix. Let’s recall some matrix operation and
properties we mentioned last time.

Matrix Operations and Properties

An identity matrix, denoted as I ∈ Rn×n is a square matrix with ones on the diagonal and zeros
everywhere else:

Iij =

{
1, i = j

0, i 6= j

A diagonal matrix is a matrix where all off-diagonal elements are equal to 0, D = diag(d1, d2, . . . , dn)
and

Dij =

{
di, i = j

0, i 6= j

Note: I = diag(1, 1, . . . , 1).

Given a matrix A ∈ Zm×n, its transpose, denoted AT ∈ Zn×m, is the n×m matrix whose entries
are obtained by “flipping” the rows and the columns of matrix A:

(AT )ij = Aji

The following properties of transpose can be easily verified:

• (AT )T = A
• (AB)T = BTAT

• (A+B)T = AT +BT

A square matrix A ∈ Zn×n is a symmetric matrix if it holds that:

A = AT

A square matrix A is anti-symmetric if:

A = −AT
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Matrix Manipulations: The product of two matrices A ∈ Zm×n and B ∈ Zn×p is a new matrix,
C, defined as:

C = AB :=
n∑
k=1

AikBkj ∈ Rm×p

Note: In order for matrix C to exist, the number of columns of matrix A must be equal to the
number of rows of matrix B.

Example 1: Please find matrix product AB, if matrices A and B are equal to A =

[
2 3
4 1

]
and

B =

[
2 4 2
1 5 3

]
.

AB =

[
2 3
4 1

] [
2 4 2
1 5 3

]
=

[
2 · 2 + 3 · 1 2 · 4 + 3 · 5 2 · 2 + 3 · 3
4 · 2 + 1 · 1 4 · 4 + 1 · 5 4 · 2 + 1 · 3

]
=

[
7 23 13
8 21 11

]
Some Properties of Matrix-Matrix Manipulation:

• Matrix manipulation is associative: (AB)C = A(BC)
• Matrix manipulation is distributive: A(B + C) = AB +Ac
• Matrix manipulation in general is not commutative, i.e., in general, AB 6= BA

Matrix Determinant: The determinant of a square matrix A ∈ Rn×n is a function det :
Rn×n → R, denoted as |A|. Before giving the general definition for the determinant, let’s define
A ∈ Rn×n and A\i,\j ∈ R(n−1)×(n−1) as a matrix that results from deleting the i-th row and j-th
column from matrix A. The general (recursive) formula for the determinant is now given as:

|A| =
n∑
i=1

(−1)i+jaij |A\i,\j | =
n∑
j=1

(−1)i+jaij |A\i,\j |

for any i, j ∈ {1, 2, . . . , n}. The initial case is given as |A| = a11 for A ∈ R1×1.

For matrices up to size 3× 3, the determinants can be found using the following formulas:

• |[a11]| = a11

•
∣∣∣∣[ a11 a12

a21 a22

]∣∣∣∣ = a11a22 − a12a21

•

∣∣∣∣∣∣
 a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

Matrix Inverse: The inverse of a square matrix A ∈ Zn×n is denoted as A−1, and it is a unique
matrix such that:

A−1A = AA−1 = I (5.1)

Note: Not all matrices have an inverse. In particular, we say that matrix A is invertible or
non-singular if its inverse A−1 exits.
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5.4 Introduction to Number Theory

Why are numbers beautiful? Its like asking why is Beethoven’s Ninth Symphony
beautiful. If you dont see why, someone can’t tell you. Paul Erdös(1913–1996)

After so many math topics we have already explored in this course, you would be perfectly justified
to ask why should you care about number theory. There are many important real world reasons,
let’s mention a few:

• Secure communication - many cryptographic algorithms we use today, to make sure our
digital communication is confidential, as well as to confirm that some remote entity is who
they claim to be, is based on some famous results from number theory.
• Pseudo random number generators Many pseudorandom number generators we use

today rely on important results from number theory.
• Digit verification Many services we use in our regular lives rely on various identification

numbers. For example, retail product are often identified by their UPCs (Universal Product
Codes). Similarly, books are uniqiely identified by their ISBNs (International Standard Book
Numbers). The validity of those numbers is often verified by performing simple modular
arithmetic checks on the digits of those numbers.

Let’s take a deeper dive into one simple cryptographic example. Let’s assume some person, Alice
wants to send a message to another person, Bob over an insecure channel, and that neither Alice
nor Bob want this information to be readable by any other parties.

1. Alice takes her original message, referred to as plaintext, and encrypts it with a cryptograhic
secret, using some encryption function, to generate a secure message, typically referred to as
ciphertext.

2. She then transmits the ciphertext over the insecure channel.

3. Bob knows something about Alice’s cryptographic secret, and he has an appropriate decryption
algorithm.

4. When he receives the ciphertext from Alice, he runs the decryption algorithm, and recovers
the original message.

For simplicity, we can assume that Alice and Bob communicate in English, and we know that
English alphabet consists of 26 letters. Since our encryption function is just another function, it
is often convenient to take those 26 letters of English alpahbet, and map them into some integers.
One way to do so is shown in the table below.

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

Table 5.1: Mapping of alphabets to numerals
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The goal of Alice’s encryption function is to take one letter of English alphabet, represented as a
number, and map it to some other English letter. For example, Alice may decide to shift every
letter of her original message, xi by some integer K to the right:

yi = xi +K

Let’s assume Alice sets her cryptgraphic secret K = 3, and does the following:

Letter A: 0 + 3 = 3

Letter B: 1 + 3 = 4

...

Letter Y: 24 + 3 = 27

Letter Z: 25 + 3 = 28

An important question immediately arises: how does Alice convert these numbers back to some
cyphertext, when there do not exist numbers 26, 27, 28 in her table?

To see the answer to these and other important question, let’s dive into modular arithmetic.

5.5 Divisibility and Modular Arithmetic

5.5.1 Divisibility

We start our exploration of number theory by defining the notion of divisibility.

Definition 5.1 If a and b are integers such that a 6= 0, we say that a divides b if if there exist
an integer c such that:

b = ac

or equivalently, b
a is an integer.

When a divides b, we say that a is a factor or divisor of b, and b is multiple of a.

Notation:

• Notation a|b denotes that a divides b
• Notation a 6 |b denotes that a does not divide b

Theorem 5.2 Let a, b and c be integers, such that a 6= 0. Then it holds:

1. If a|b and a|c, then a|(b+ c)
2. If a|b, then a|bc for all integers c
3. If a|b and b|c, then a|c

An important question arises: what happens when a 6 |b? Let’s introduce the next theorem to see.
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Theorem 5.3 (The Division Algorithm) Let a be some integer, and d some positive integer.
Then there always exist unique integers q and r, where 0 ≤ r < d, such that:

a = dq + r

In the given equation, positive integer d is typically referred to as divisor, integer a as dividend,
and integers q and r as quotient and remainder, respectively.

We can now write:

q = a div d

r = a mod d

5.5.2 Modular Arithmetic

In many situations, we care only about a remainder of an integer, when it is divided by some other
positive integer, and we have a special notation for it.

Definition 5.4 (Congruence) Let a and b be integers, a, b ∈ Z and let m be a positive integer,
m ∈ N. If m divides (a− b), we can write:

a ≡ b (mod m), or (5.2)

m|(a− b) (5.3)

The operator ≡ is called congruence and a ≡ b (mod m) is read: “a is congruent to b modulo
m.” The positive integer m is known as the modulus.

Example 2: Determine whether or not 19 is congruent to 7 modulo 4. We start solving this
problem by subtracting 7 from 19, 19 - 7 = 12. We immediately observe that 12 is divisible by 4,
such that the quotient q = 3, and remainder r = 0. Therefore, 19 is congruent ot 7 modulo 4.

Theorem 5.5 Let m be a positive integer. Then some integers a and b are congruent modulo m
if and only if there exists some integer k such that:

a = b+ km

When working with congruences, we need to be rather careful, since some properties we would
expect to hold are actually not valid. Let’s explore some of the properties that do hold.

5.5.2.1 Some Properties of Modulo Arithmetic

Let Zm denote the set of integers {0, 1, 2, . . . ,m− 1}.
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1. a ≡ b (mod m) if and only if a (mod m) = b (mod m), i.e. the remainders of a and b modulo
m are equal.

2. Addition is closed: for any a, b ∈ Zm, a+ b ∈ Zm.
3. Addition is commutative: for any a, b ∈ Zm, a+ b = b+ a.
4. Addition is associative: for any a, b, c ∈ Zm, (a+ b) + c = a+ (b+ c).
5. 0 is an additive identity: for any a ∈ Zm, a+ 0 = 0 + a = a.
6. The additive inverse of any a ∈ Zm is m−a: that is a+ (m−a) = (m−a) +a = 0, ∀a ∈ Zm.
7. Multiplication is closed: for any a, b ∈ Zm, ab ∈ Zm.
8. Multiplication is commutative: for any a, b ∈ Zm, ab = ba.
9. Multiplication is associative: for any a, b, c ∈ Zm, (ab)c = a(bc).

10. 1 is the multiplicative identity: for any a ∈ Zm, a× 1 = 1× a = a.
11. The distributive property is satisfied: for any a, b, c ∈ Zm, (a+b)c = (ac)+(bc) and a(b+c) =

(ab) + (ac).

Properties 1, 3-5, say that Zm forms a group. Since property 2 also holds, the group is called an
abelian group. Properties 1-10 make Zm a ring.

We can also define subtraction in Zm as (a− b) mod m.

5.6 Prime Numbers and Greatest Common Divisors

A few important concepts, based on the concept of divisibility are those of prime, coprime, and
composite numbers. Let’s investigate them next.

5.6.1 Prime and Composite Numbers

Definition 5.6 Some integer p greater than one is called prime if its only positive factors are 1
and p. A positive integer that is not a prime is called composite.

When thinking about prime and composite numbers, several questions immediately come to mind.
For example:

• How do we show that some positive integer is a prime?
• If an integer isn’t a prime, how do we find all of its divisors (factors)?
• How many primes are there anyway?

Let’s address all of these questions in order, and in doing so, let’s start by introducing an important
theorem, the fundamental theorem of arithmetic.
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5.6.1.1 Unique Prime Factorization

Theorem 5.7 (Fundamental Theorem of Arithmetic) For any integer m > 1, there exists
an integer n, a set of distinct primes p1, . . . , pn, and a set of integers e1, . . . , en satisfying

m = pe11 p
e2
2 · · · p

en
n (5.4)

Furthermore, the sequences p1, . . . , pn and e1, . . . , en are unique up to reordering of the pi’s.

While we won’t prove the fundamental theorem of arithmetic, let’s take a moment to restate what
this theorem says: every integer greater than 1 can be uniquely written as a prime, or a
product of two or more primes.

Example 3: For x = 432,
432 = 24 · 33. (5.5)

This factorization is unique up to a rearrangement of the terms on the right hand side (i.e., we can
write 33 × 24 instead).

The fundamental theorem of arithmetic has many important consequences, and one such consequence
can be expressed as follows.

Theorem 5.8 If n is a composite integer, then it has a prime divisor less than or equal to
√
n.

Trivial division: From theorem 5.8, it follows that an integer is a prime if it isn’t divisible by any
prime less than or equal to its square root. This leads to a brute-force algorithm to check whether
or not an integer is a prime.

Note: (The cost of primality testing vs. the cost of prime factorization) In addition to
the trivial division, there exist many other algorithms to check whether or not some integer is a
prime number. The fastest such algorithm run in polynomial time in the size of the input. Unlike
primality testing, however, prime factorization of some integer is considered to be a computationally
difficult problem, which cannot be solved nowhere near polynomail time. This fact is used in some
of the most popular cryptogrpahic algorithms that we have today.

Let’s answer our last question about prime numbers - how many prime numbers there are?

Theorem 5.9 There are infinitely many prime numbers.

Proof: To prove theorem 5.9, we will start by assuming the contradiction, that there are only
finitely many primes, p1, p2, . . . , pn. Let now define a new integer:

Q = p1p2 . . . pn + 1

By the fundamental theorem of arithmetic, integer Q is either a prime, or it can be written as the
product of primes p1, p2, . . . , pmn. However, by construction, none of our known primes pi, 1 ≤ i ≤ n
divides Q, since Q−p1p2 . . . pn = 1. Therefore, there exists some prime that is not on our finite list
of known primes, and that prime is either Q itself, or some other prime that divides Q. But, that
is a contradiction, since we said that there are only finitely many primes, p1, p2, . . . , pn.
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5.7 Coprimes and Greatest Common Divisors

A concept closely related to that of prime and composite numbers is that of coprime or relatively
prime numbers. To define it, however, we first need to define the concept if a greatest common
divisor.

Definition 5.10 Given two integers a 6= 0 and b 6= 0, the greatest common divisor of a and b
(denoted gcd (a, b)) is equal to the largest integer c that divides both a and b.

Definition 5.11 Two integers a ≥ 1 and m ≥ 2 are said to be relatively prime or coprime if
their greatest common divisor is equal to gcd(a,m) = 1.

Two important questions one can ask, when thiking about relatively prime numbers are:

• Given some positive integer a, how many integers from the set Za = {1, 2, . . . , a − 1} are
coprime with a?
• How would we generally check whether or not two integers a and b are coprime?

Let’s answer those questions next.

5.7.1 Euler Totient Function

As it turn out, the number of integers in Za that are relatively prime to a is known as the Euler-phi
function, denoted by φ(m), and the following theorem holds for it.

Theorem 5.12 Let

m =
n∏
i=1

peii , (5.6)

where pi are distinct primes and ei > 0, 1 ≤ i ≤ n. Then

φ(m) =

n∏
i=1

(peii − p
ei−1
i ). (5.7)

Some properties of the Euler’s-phi function:

1. If p is a prime, then numbers {1, 2, ..., p− 1} are all relatively prime to p, so φ(p) = p− 1.

2. φ(p2) = p2 − p2

p = p(p− 1), since every pth element is divided by p.

3. Similarly, φ(pe1) = pe1(1− 1
p), where e1 ≥ 1.

4. If m,n are two integers such that gcd (m,n) = 1, then φ(mn) = φ(m)φ(n).
5. As a special case, if p, q are two distinct primes, then φ(pq) = φ(p)φ(q) = (p− 1)(q − 1).

φ(n) = n

k∏
i=1

(
1− 1

pi

)
. (5.8)
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Example 4: Let’s see how many integers there exist, that are coprime with:

• φ(2) = |{1}| = 1.
• φ(3) = |{1, 2}| = 2.
• φ(4) = |{1, 3}| = 2.
• φ(6) = |{1, 5}| = 2.
• φ(7) = |{1, 2, 3, 4, 5, 6}| = 6.

How many integers there exist that are coprime with m = 60:

60 = 22 · 31 · 51, (5.9)

and,
φ(m) = (4− 2) · (3− 1) · (5− 1) = 16. (5.10)

5.7.2 Euclidean Algorithm

There exist several algorithms that can be used to find the greatest common divisor of two integers.
One such algorithm is the Euclidean algorithm, and we are going to exlore it next.

Let’s start by showing the Euclidean algorithm in action first, and then we’ll explain how it works,
and why.

Example 5: Let’s find the gcd of a = 87 and b = 24. Using the Euclidean algorithm, we can write:

87 = 3(24) + 15

24 = 1(15) + 9

15 = 1(9) + 6

9 = 1(6) + 3

6 = 2(3)

It follows that gcd (87, 24) = 3.

This Euclidean algorithm finds the gcd of two integers a and b through repeated integer division.
First, r0 = a is divided by r1 = b, and the remainder r2 is found. In the next step, r1 = b is divided
by r2 and the remainder r3 is found. The process continues until the remainder of rm−1 divided by
rm is zero. The gcd(a, b) = gcd(r0, r1) is the last non-zero divisor, namely rm. The general steps
of the division algorithm are as follows:

r0 = q1r1 + r2

r1 = q2r2 + r3

r2 = q3r3 + r4

· · · · · ·
rm−2 = qm−1rm−1 + rm

rm−1 = qmrm
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And the pseudocode of the algorithm is given below:

EUCLIDEAN ALGORITHM
Input: Positive integers a and b
Output: Greatest common divisor d of a and b
r0 ← a
r1 ← b
m← 1
while rm 6= 0
qm ← b rm−1

rm
c

rm+1 ← rm−1 − qmrm
m← m+ 1

end while
m← m− 1
d← rm−1
return d

Figure 5.1: The Euclidean algorithm. Finds the greatest common divisor of a and b,
where a > b.

The Euclidean algorithm is based on the following result about greatest common divisors and the
division algorithm.

Theorem 5.13 Let a = bq + r, where a, b, q and r are integrs. Then gcd(a, b) = gcd(b, r).

Using theorem 5.13, let’s now consider the equation ri = qi+1ri+1 + ri+2. It follows that the
relationship between the divisor ri+1 and the remainder ri+2 is given by 0 ≤ ri+2 < ri+1. We also
assumed that r0 > r1. Hence, we can write r0 > r1 > r2 > · · · rm.

Example 6: Let’s use the Euclidean algorithm to find the greatest common divisor (gcd) of
the following pairs of numbers:

1. a = 96, b = 15,
2. a = 96, b = 16, and
3. a = 96, b = 17,

1. Numbers a = 96 and b = 15 are both divisible by three, but not by six or nine, so by
inspection, we conclude that their gcd is 3. Let’s check that using the Euclidean algorithm:

96 = 6(15) + 6 (5.11)

15 = 2(6) + 3 (5.12)

6 = 2(3) (5.13)

From equation (5.13), we see that gcd(96, 15) indeed is three.
2. Number a = 96 is divisible by b = 16 without remainder, so again by inspection, we conclude

that their greatest common divisor is 16:

96 = 6(16) + 0 (5.14)
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3. Number b = 17 is a prime number (divisible only by one and by itself), so it should be the
case that the greatest common divisor of numbers a = 96 and b = 17 is one. Let’s check if
that is true using the Euclidean algorithm:

96 = 5(17) + 11 (5.15)

17 = 1(11) + 6 (5.16)

11 = 1(6) + 5 (5.17)

6 = 1(5) + 1 (5.18)

5 = 5(1) (5.19)

From equation (5.19) it now clearly follows that gcd(96, 17) is one.

5.7.3 gcds as Linear Combination

An important result that we will use in the rest of this lecture is the fact that the greatest
common divisor of some integers a and b can be expressed as a linear combination of a
and b, and their corresponding linear coefficients. Let’s explore this fact further, to see how
might that be possible, and how do we use it.

Theorem 5.14 (Bezout’s theorem) Let a and b be positive integers, and let d = gcd (a, b).
Then there exist integers x and y such that

ax+ by = d (5.20)

and integers x and y are called Bezout’s coefficients.

One algorithm that we can use to find x and y is the extended Euclidean algorithm,
with the pseudocode given below. We will see some more examples of how to use Extended
Euclidean algorithm, and the importance of the Bezout’s coefficents in the next section.

5.8 Linear Congruences and Modular Inverses

Definition 5.15 (Linear congruence) A congruence of the form:

ax ≡ b (mod m)

where m is a positive integer, a and b are integers, and x is a variable is called a linear
congruence.

The question arises: how does one solve such linear congruences? We know what we would do
if this was a regular linear equation - we would try to find an inverse of a, and apply it to the
both sides of the equation. As it turns out, we do something similar with linear congruences
too. Let’s explore.

Definition 5.16 (Modular multiplicative inverse) The modular multiplicative inverse of
an integer a ∈ Zm modulo m, denoted as a−1 (mod m), is an element a′ ∈ Zm such that:

a · a′ ≡ a′ · a ≡ 1 (mod m) (5.21)
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EXTENDED EUCLIDEAN ALGORITHM
Input: Positive integers a and b
Output: Integers r, s, and t such that
r = gcd (a, b) and sa+ tb = r
a0 ← a
b0 ← b
t0 ← 0
t← 1
s0 ← 1
s← 0
q ← ba0b0 c
r ← a0 − qb0
while r > 0
temp← t0 − qt
t0 ← t
t← temp
temp← s0 − qs
s0 ← s
s← temp
a0 ← b0
b0 ← r
q ← ba0b0 c
r ← a0 − qb0

end while
r ← b0
return (r, s, t)

Figure 5.2: The extended Euclidean algorithm.
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Given the modular multiplicative inverse, some congruence ax ≡ b (mod m) can be solved
for x as follows:

ax ≡ b (mod m)

a−1(ax)︸ ︷︷ ︸
x

≡ a−1(b) (mod m)

5.8.1 Problems with Modular Inverses

Not all integers a ∈ Zm have a modular multiplicative inverse under modulo m. As an
example, integers a = 2 and a = 13 do not have a multiplicative inverse in Z26.
That opens up some important questions:
• When does an integer a ∈ Zm have a modular multiplicative inverse under modulo m?
• If an integer a ∈ Zm have a modular multiplicative inverse under modulo m, how do we

find it?
Let’s answer them in order.

Theorem 5.17 (Existance of modular multiplicative inverse) Consider some integers
a and m > 1. If gcd(a,m) = 1, then a has a unique modular multiplicative inverse under
module m.

Theorem 5.18 (Modular inverse and Bezout’s coefficients) An integer a has an inverse
(mod m) if and only if there exist numbers p and q such thar

ap+ qm = 1 (mod m) (5.22)

Proof: Let’s rewrite equation (5.22) as:

1 ≡ ap (mod m) (5.23)

Equation (5.23) implies that a has a modular multiplicative inverse p (mod m). Let’s now
recall that some number r ≡ 1 (mod m) if and only we can write:

r + bm = 1 (5.24)

for some b, implying that ap ≡ 1 (mod m) if and only if it holds that:

ap+mq = 1 (5.25)

for some q. Equation (5.25) is, in turn, valid only if gcd(a,m) = 1. To see why, let c =
gcd (a,m) and suppose c > 1. Then there exist positive integers α, β satisfying a = αc and
m = βc. If ap + mq = 1 for some p, q, then pcα + qcα = 1, hence c(pα + qα) = 1. This is a
contradiction since there are no positive integers that divide 1 (except 1 itself).
The other direction of the theorem is also true: if gcd(a,m) = 1, then there exist integers
p, q satisfying equation (5.22). These integers can be computed using the extended Euclidean
algorithm, and integer p is a modular multiplicative inverse of a (mod m).
Now that we know when some integer a has a modular multiplicative inverse, a question that
immediately comes to mind is: suppose we have Bezout’s coefficients, p and q. Can we use
them to find the inverse of a modulo b?
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The answer is we can use the Extended Euclidean algorithm. Let’s see how on the
following example.

Example: Let a = 7, m = 26. Find a−1 mod m.
First, let’s look at the Euclidean algorithm.

26 = 3(7) + 5 (5.26)

7 = 1(5) + 2 (5.27)

5 = 2(2) + 1 (5.28)

Now, let’s rewrite the last equation to put the gcd (which is 1) on to the left-hand side of the
equation.

1 = 5− 2(2) (5.29)

From Eq. (5.28), we have:

2 = 7− 5 (5.30)

Substituting Eq. (5.30) into Eq. (5.29) yields

1 = 5− 2(7− 5) = 3(5)− 2(7) (5.31)

We’re almost there; the last step is to use Eq. (5.27), as follows:

5 = 26− 3(7) (5.32)

so that

1 = 3(26− 3(7))− 2(7) = 3(26)− 11(7) (5.33)

And so 7−1 mod 26 = −11 mod 26 = 15 mod 26.
Example 7: Let a = 9, m = 26. Find a−1 mod m.
We first use the Euclidean algorithm to check whether or not the multiplicative modular
inverse exists.

26 = 2(9) + 8 (5.34)

9 = 1(8) + 1 (5.35)

8 = 8(1) (5.36)

(5.37)

Since gcd(9, 26) = 1, the modular multiplicative inverse exists, and we can use the Extended
Euclidean algoirthm to find it. First, let’s rewrite the last equation to put the gcd (which is
1) on to the left-hand side of the equation.

1 = 9− 1(8) (5.38)

From Eq. (5.34), we have:

8 = 26− 2(9) (5.39)
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Substituting equation (5.39) into equation (5.38), we get:

1 = 9− 1{26− 2(9)} = 3(9)− 26 (5.40)

From equation (5.40), we can read off the modular multiplicative inverse of a = 9 to be
a−1 = 3 under modulo m = 26 arithmetic.
Let’s see one more example.
Example 8: Let’s use the Extended Euclidean algorithm again to find the modular multiplicative
inverse of number a = 27 under modulo b = 5.

We start by first using the Euclidean algorithm as follows:

27 = 5(5) + 2 (5.41)

5 = 2(2) + 1 (5.42)

Equation (5.42) can now be rewritten as:

1 = 5− 2(2) (5.43)

Similarly, equation (5.42) can be rewritten as:

2 = 27− 5(5) (5.44)

By plugging equation (5.44) into equation (5.43), we get:

1 = 5− 2(27− 5(5)) (5.45)

1 = 5− 2(27) + 5(5) (5.46)

1 = 6(5)− 2(27) (5.47)

We now apply modulo (5) on equation (5.47):

1 = 6(5)− 2(27)(mod5) (5.48)

1 ≡ −2(27)(mod5) (5.49)

From equation (5.49), it follows that -2 is modular multiplicative inverse of 27 under modulo
5 arithmetic:

a−1 = −2 ≡ 3(mod5) (5.50)

5.8.2 Systems of Congruences and the Chinese Remainder Theorem

We now know when one linear congruence has a solution, and how to find it using the Extended
Euclidean algorithm. Interesting questions to ask are:

• When does a system of linear congruences have a solution?
• If the system of linear congruences has a solution, how do we find it?

To answer these questions, let’s take a look at the very old, and very famous Chinese reminder
theorem.
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5.8.3 The Chinese Remainder Theorem

Theorem 5.19 (Chinese Remainder Theorem) Let m1,m2, . . . ,mr be integers such that every
mi,mj where i 6= j are relatively prime, i.e.gcd(mi,mj) = 1. Then for any integers a1, a2, . . . , ar
the set of congruences:

X ≡ ai mod mi, i = 1, 2, . . . , r (5.51)

has a unique solution modulo M , where M = m1m2 . . .mr =
∏r
i=1mi. The solution is given as:

X =

(
r∑
i=1

aiMiyi

)
mod M (5.52)

where Mi = M
mi

and yi = M−1i mod mi

Proof: Let Mi = M
mi

. Note that gcd(Mi,mi) = 1.Let yi = M−1i (mod mi)→ Miyi = 1 (mod mi)
(The inverse exists because gcd(Mi,mi) = 1, and can be found using the Extended Euclidean
Algorithm). Let ρ(a1, a2, . . . , ar) =

∑r
i=1 aiMiyi (mod M). We can then write ρ(a1, a2, . . . , ar) =∑r

i=1 aiMiyi + λM , where λ is an integer. Note that M = 0 (mod mi), 1 ≤ i ≤ r.

Set X = ρ(a1, a2, . . . , ar) and let 1 ≤ j ≤ r. Consider a term of ρ reduced modulo mj . If i = j, then
aiMiyi = ai (mod mi), because Miyi ≡ 1 (mod mi). If i 6= j, then aiMiyi ≡ 0 (mod mj) since
mj |Mi. Hence X = (

∑r
i=1 aiMiyi) (mod mj) ≡ aj (mod mj). This is true for all j and hence X

is a solution to the system of congruences. This solution can also be shown to be unique modulo
M since the cardinalities of the domain and the range are equal.

Example 9: Solve the system of congruences:

X ≡ 5 (mod 7) (5.53)

X ≡ 3 (mod 11) (5.54)

X ≡ 10 (mod 13) (5.55)

(5.56)

Step 1 Let’s setup the problem. We have three congruences, where m1 = 7,m2 = 11,m3 =
13, a1 = 5, a2 = 3, a3 = 10. We can compute M to be equal to M = 7 · 11 · 13 = 1001.
Step 2 Now we can compute M1 = M

m1
= 143,M2 = 91,M3 = 77.

Step 3 Using the extended Euclidean algorithm, we can find modular multiplicative inverses
of Mi-s to be equal to y1 = 5, y2 = 4 and y3 = 12. Please note here that modular multiplicative
inverse yi of Mi is found with respect to modulo mi.
Step 4 We can compute the solution X as follows:

X = (5 · 143 · 5) + (3 · 91 · 4) + (10 · 77 · 12) mod 1001 = 894

Step 5 Finally, we can check our solution, and verify that:

894 ≡ 5 (mod 7)

894 ≡ 3 (mod 11)

894 ≡ 10 (mod 13)
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5.9 Euler’s Theorem

Theorem 5.20 (Euler’s Theorem:) Given two integers, a and n such that gcd(a, n) = 1, then:

aφ(n) = 1 mod n. (5.57)

Theorem 5.21 (Fermat’s Little Theorem) Let’s consider two integers a and p. If p is a prime,
and p does not divide a, then:

ap−1 = 1 mod p (5.58)

Proof: Follows from the proof of the Euler’s theorem by noting that if n = p, a prime, then
φ(n) = p− 1.


	Overview
	Introduction
	Review
	Set Theory
	Set Operations

	Matrices and Arrays

	Introduction to Number Theory
	Divisibility and Modular Arithmetic
	Divisibility
	Modular Arithmetic
	Some Properties of Modulo Arithmetic


	Prime Numbers and Greatest Common Divisors
	Prime and Composite Numbers
	Unique Prime Factorization


	Coprimes and Greatest Common Divisors
	Euler Totient Function
	Euclidean Algorithm
	gcds as Linear Combination

	Linear Congruences and Modular Inverses
	Problems with Modular Inverses
	Systems of Congruences and the Chinese Remainder Theorem
	The Chinese Remainder Theorem

	Euler's Theorem

