
CS 5002: Discrete Structures Fall 2018

Lecture 3: September 20, 2018 1

Instructors: Adrienne Slaughter, Tamara Bonaci

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal pub-
lications. They may be distributed outside this class only with the permission of the Instructor.

Readings for this week:
Rosen, Chapter 2.4: Sequences and Summations

3.1 Overview

1. Sequences
2. Summations
3. Recurrences
4. Closed forms
5. Applications
6. Problem Solving/Examples

3.2 Introduction

Today, we’re going to talk about some topics that demonstrate very strongly the practical nature of
discrete math. The topics we talk about today reflect patterns we find in nature, and applications
to our own personal lives.

We’ll start with some basics and definitions. But then we’ll move into some problem solving: we’re
going to solve some basic summations and such, but we’ll also solve some more complex problems.

3.3 Review

• inverse functions
• compositions
• floor and ceiling

3.4 Situating Problem Introduction

Let’s work through a problem y’all are likely to face soon.

3-1

3-2 Lecture 3: September 20, 2018

You get a job offer: Yay! It seems pretty good, but you want to analyze it a bit.

Here are the details:

• Your base salary is $100, 000
• You get a raise of 5% every year.

This sounds great! So, you want to know: how much will I have earned after 5 years at this
company? Maybe you want to figure out if you can pay off your student loans or buy a house or
something.

How do we calculate this? Well, we know math. We can do this!

Salary 5% of salary

Year 1: $100,000 5,000

Year 2: $105,000 5,250

Year 3: $110,250 5,512.50

Year 4: $115,762.50 5,788.13

Year 5: $121,550.63 ?

Total: $552,563.13

Okay, this is great. We know the answer! But let’s say that I’m really looking a few more years
out. This table works, but it’s kinda clunky.

I’ll make an observation: This table is really equivalent to an equation:

I can re-write this as:

Lecture 3: September 20, 2018 3-3

100000 + [100000 + 5000] + [105000 + . . .] . . . (3.1)

And, because this is a math class, I’m getting annoyed at writing all these numbers. Let me replace
these numbers with variables and rewrite it as such:

a0 + (a0 + (0.05 · a0)) + (a1 + (0.05 · a1)) + (a2 + (0.05 · a2)) + . . . (3.2)

It’s getting a little less cumbersome, but I’ll simplify it one more time by introducing the summation
notation:

Summation Notation Example

5∑
j=0

2j = (2 · 0) + (2 · 1) + (2 · 3) + (2 · 4) + (2 · 5) (3.3)

= 0 + 2 + 4 + 6 + 8 + 10 (3.4)

= 30 (3.5)

(3.6)

Applied to our formula:

a0 +

4∑
j=1

aj−1 + (aj−1 · 0.05) = a0 +

4∑
j=1

(aj−1 · 1.05) (3.7)

Which, if we were to expand out, would be the same as:

a0 + ((a1 · 1.05) + (a2 · 1.05) . . . (a4 · 1.05)) (3.8)

Note: a0 is pulled out because it doesn’t match our pattern inside the summation. The first year,
we just earn a0; the rest of the years, salary increases by a percentage.

What is a0? a1?

a0 = 100000 a1 = 105000

We know a0: it’s our original salary! If we plug a0 in the first term, we can calculate all the other
terms.

Therefore, to answer our original question: How much will we have made over those 5 years?

552,563.13

3-4 Lecture 3: September 20, 2018

3.5 Sequences

Definition 1: Sequence

Collection of ordered elements.
We use an to denote the nth term of the sequence.

Examples of sequences:

{1, 3, 5,7, 9, . . .}
{2,4, 6}

(3.9)

3.5.1 Geometric Sequence

a, ar, ar2, ar3, ar4, . . . arn (3.10)

Example:

{bn} : bn = (−1)n

b0 = (−1)0

b1 = (−1)1

b2 = (−1)2

{b0, b1,b2, . . .}
{1,−1, 1,−1, 1, . . .}

(3.11)

This is equivalent to f(x) = arx, which is an exponential function.

3.5.2 Arithmetic Sequence

a, a+ d, a+ 2d, a+ 3d, . . . a+ nd (3.12)

This is equivalent to f(x) = dx+ a, which is called a linear function .

Lecture 3: September 20, 2018 3-5

(Why? Look at a graph of the function).

{sn} : sn = −1 + 4n

s0 = −1

s1 = 3

s2 = 7

s3 = 11

...

{s0, s1, . . . sn}
{ −1, 3, 7, 11, . . . }

(3.13)

An alternative way to think about this:

f(x) = 4x− 1

f(1) = 3

f(2.5) = 9

...

(3.14)

Strings

Sequences are sometimes called
strings .

Empty string: λ
Length of a string: Number of terms or
elements in the string.
Length of λ: 0

Back to our problem of interest:

5∑
j=1

(aj−1 · 1.05) (3.15)

Is it geometric or arithmetic? geometric

Is it discrete or continuous? discrete

Side note that’s interesting: time is contin-
uous, but anything that we measure over time
is discrete. Why? (Because we have to sample–
take a reading every so often!)

3-6 Lecture 3: September 20, 2018

Definition 2: Recurrence Relation

Given a sequence {an}, an is expressed in terms of 1 or more previous
terms in the sequence.

3.5.3 Recurrence Relations

A sequence is a solution of a recurrence relation if the terms satisfy
the recurrence relation.

Example:

{an} : an = an−1 + 3

a0 = 2 : {5, 8, 11, . . . }
a0 = 6 : {9, 12, 15, . . . }

(3.16)

We’ve shown two solutions to the recurrence relation.

Solutions are unique depending on the initial condition .

3.5.4 Closed Formula

We now know that given an initial condition, we can find a sequence that is a solution to a
recurrence. But, sometimes it’s awkward to write out a sequence, and using formulas are just more
convenient. To solve the recurrence, we have to find a formula for the solution. So, in addition to
finding a solution, we look for a closed formula .

That is, instead of finding the list of terms (the sequence) that we add together, can we find a
formula that calculates the final result?

Example:

Given this recurrence :

an = 2an−1 − an−2, for n = 2, 3, 4, . . . (3.17)

Is this a solution to the above recurrence?

{an} : an = 3n∀ non-negative integers n (3.18)

Yes, it’s a solution. Below are the first few elements of the sequence:

{6, 9, 12, 15, . . .}, for n = 2, 3, 4, . . . (3.19)

Lecture 3: September 20, 2018 3-7

And,

3n = 2(3(n− 1))− 3(n− 2), for n = 2, 3, 4, . . . (3.20)

2(3(n− 1))− 3(n− 2) = 3n = an, for n = 2, 3, 4, . . . (3.21)

But, it’s a little awkward to write.

Now, I propose this is a closed formula for the above recurrence, given initial conditions of a2 =
3; a3 = 6:

an = 6n− 3(n− 1) (3.22)

We can check this by plugging in numbers. Since this is defined for n > 1, let’s plug in some
numbers:

n = 4 : a4 = 6 · 4− 3 · 3→ 15 checks out with our sequence above in 3.19

n = 6 : a6 = 6 · 6− 3 · 5→ 21 check my math!
(3.23)

We know how to check if something is a closed formula for a recurrence— it’s fairly straightforward.
But, how do we come up with a solution for a recurrence? To see the derivation of
the closed formula in 3.22, see 3.6.3.

For now, Iteration! : We’ll learn more techniques later this semester.

For the example above:

Let’s start with the first term and initial condition . And then we work through,
until we get to a an where we can deduce a closed formula.

Recurrence: an = an−1 + 3 for n = 1, 2, 3, 4, . . .

Initial condition: a1 = 2

a2 = 2 + 3

a3 = (2 + 3) + 3 = 2 + 3 · 2
a4 = (2 + 2 · 3) = 2 + 3 · 3

...

an = an−1 + 3 = (2 + 3 · (n− 2)) + 3 = 2 + 3(n− 1)

(3.24)

Or you can do it backwards!

3-8 Lecture 3: September 20, 2018

an = an−1 + 3

= (an−2 + 3) + 3→ an−2 + (2 · 3)

= ((an−3 + 3) + 3) + 3→ an−3 + (3 · 3)

...

an = a2 + 3(n− 2) = (a1 + 3) + 3(n− 2) = 2 + 3(n− 1)

(3.25)

Define: iteration, forward substitution, backward substitution.

What have we been doing with our salary example so far? (a little of both)

Let’s come up with a closed formula for the calculation we’ve done by hand so far:

a0 +

n∑
j=1

(aj−1 · 1.05)

Let’s work out the first few terms; replacing rate with a variable

a1 = ra0

a2 = ra1 = ra0 = r2a0

a3 = ra2 = ra1 = r3a0
...

an = rna0

Replacing r and a0

an = 1.05n · 100000

a4 =??

(3.26)

This is a closed formula for the recurrence part; but it doesn’t handle the summation.

a0 +
n∑

j=1

(aj−1 · 1.05)

⇒ a0 +

n∑
j=1

rja0

(3.27)

We can also come up with a closed form for the summation, but we’ll see this later.

3.5.5 An Aside: Recurrences in programming

Recurrences are important in computer science. This idea comes up in what we call recursive
functions.

I can write a Python function to calculate the amount I’ve earned after n years:

Lecture 3: September 20, 2018 3-9

def calcAmount(base , raise , numYears):

if (numYears == 1):

return base;

prevYr = calcAmount(base , raise , numYears -1)

return (prevYr + (prevYr * 1.05))

3.5.6 Special Sequences

3.5.6.1 Fibonacci

The Fibonacci2 sequence is a special sequence.

It starts with the following initial condition: f0 = 0; f1 = 1. Then, a Fibonacci number fn is
defined:

fn = fn−1 + fn−2 for n ≥ 2 (3.28)

3.5.6.2 Prime Numbers

Sequences that Cannot be Represented Easily

It needs to be mentioned that there are many sequences that are not easily represented either as a
closed form or as a recurrence.

The sequence of prime numbers is one such sequence.

2, 3, 5, 7, 11, 13, 17, 19, 23, 27, 31, . . . (3.29)

We do not have a “easy” closed form for the nth prime number (there are some really compli-
cated ones that are not worth going into). Same holds for recurrences: the known ones are quite
complicated.

2Fibonacci: http://memolition.com/2014/07/17/examples-of-the-golden-ratio-you-can-find-in-nature/

http://memolition.com/2014/07/17/examples-of-the-golden-ratio-you-can-find-in-nature/

3-10 Lecture 3: September 20, 2018

3.5.6.3 Sequences of Letters and Grammars

Let us assume that there are two letters A and B. We can define sequences of ”words” over these
letters:

B,BAB,BABAB,BABABAB, . . . (3.30)

The recurrence for such sequences is often called a ”grammar” and written slightly differently (after
the work of computer scientists and linguists such as Chomsky, Naur, . . .).

The recurrence is given by

an = an−1AB (3.31)

which means, that the nth element of the sequence is the n− 1th element with the characters AB
tacked on to the end. The base case is given by

a1 = B (3.32)

Here is a more complex (context-free) recurrence relation:

bn = Bbn−1B (3.33)

with b1 = A as the base case.

What is the sequence obtained here?

Answer: A,BAB,BBABB,BBBABBB,

Interestingly, the theory behind formal grammars is the basis for how we write compilers for pro-
gramming languages. It is one of the most important applications of theoretical computer science
or discrete mathematics to computer science.

3.6 Summations

Okay, I’ve already introduced the idea of a summation, or using this funky symbol to represent
combining a bunch of terms of a sequence together. Let’s get a little more into summations.

Example:

Lecture 3: September 20, 2018 3-11

Definition 3: Summation

n∑
j=x

⇒ ax + ax+1 + ax+2 . . .+ an (3.34)

8∑
k=3

2k = (2 · 3) + (2 · 4) + (2 · 5) + (2 · 6) + (2 · 7) + (2 · 8)

= 6 + 8 + 10 + 12 + 14 + 16

= 66

(3.35)

Might also see
∑10

i=1 ai, particularly when the sum is written inline/ in text.

It’s helpful to have some ways to manipulate these summations.

Let’s say we have the following two summations.

5∑
j=1

j

4∑
k=0

(k + 1)

(3.36)

A summation can also be defined recursively, which can be helpful. Here, we’re pulling out the last
term of the summation:

n∑
j=a

f(j) = f(n) +
n−1∑
j=a

f(j) (3.37)

We can also pull out the first term of the summation:

n∑
j=a

f(j) = f(a) +

n∑
j=a+1

f(j) (3.38)

See 3.6.2 for an example.

Replacing summations with a closed form.

We talked about closed formulas earlier; we’ve got a similar thing for summations called closed forms
. In the closed form , the expression does not use any subscripted summations or ele-
ments. In fact, there are some helpful formulas that come into use:

3-12 Lecture 3: September 20, 2018

See the rest in your book, but here are some examples:

n∑
k=1

k =
n(n+ 1)

2
(3.39)

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
(3.40)

n∑
k=0

xk =
1− xn+1

1− x
(3.41)

(Also, Wikipedia is a great reference: https://en.wikipedia.org/wiki/Summation)

We talked about geometric sequences earlier; they arise a lot. In fact we see it in the example we’ve
been using:

a0 +
n∑

j=1

(aj−1 · 1.05) = a0 +
n∑

j=1

rja0

a0 +
n∑

j=1

rja0 = a0 +
n−1∑
j=0

rj+1a0 (changing limits to fit the closed form 3.41)

This also lets us move the a0 term into the summation, and move the upper limit to n: (see 3.38 and 3.6.2)

a0

n∑
j=0

rj = a0
1− rn+1

1− r
(using closed form from 3.41)

= a0
1− (1.05)n+1

1− 1.05

= 100000 · 1− (1.05)n+1

1− 1.05
(3.42)

Evaluate this at n = 5 should give us the amount of money we will have made after 5 years:

1− (1.05)n+1

1− 1.05
· 100000 = 552, 563.13 (3.43)

Example: Double Sums

In computer science, we frequently come across double sums, or a summation of a summation.
It looks a little scary, and can be a little hairy, but if we keep our wits about ourselves, we can
untangle them.

https://en.wikipedia.org/wiki/Summation

Lecture 3: September 20, 2018 3-13

3∑
i=1

4∑
j=2

i+ j =

3∑
i=1

(i+ 2) + (i+ 3) + (i+ 4)

=
3∑

i=1

3i+ 9

= (3 + 9) + (3 · 2 + 9) + (3 · 3 + 9)

= 12 + 15 + 18

= 45

(3.44)

∑
1≤j,k≤3

ajbk = a1b1 + a1b2 + a1b3

+ a2b1 + a2b2 + a2b3

+ a3b1 + a3b2 + a3b3

(3.45)

Here, the
∑

symbol denotes a sum over all combinations of i, j, the relevant indices.

You can see it’s the same as a sum of sums, where each summation gets a different index.

∑
1≤j,k≤3

ajbk =
∑

1≤j≤3

∑
1≤k≤3

ajbk

=
∑

1≤j,k≤3

ajb1 + ajb2 + ajb3

= a1b1 + a1b2 + a1b3

+ a2b1 + a2b2 + a2b3

+ a3b1 + a3b2 + a3b3

(3.46)

3.6.1 Products

Just like we can sum over a number of terms, we can take the product of a number of terms.

Example:

n∏
i=m

ai (3.47)

This represents the product am · am+1 · . . . an−1 · an.

Example:

3-14 Lecture 3: September 20, 2018

5∏
i=1

i = 1 · 2 · 3 · 4 · 5

= 120

(3.48)

This is a special product called a factorial , defined such that f(n) = n · (n−
1) · (n− 2) . . . · 1.

Factorials come up quite a bit, so it’s helpful to recognize them and be familiar manipulating them:

(n+ 3)!

n!
=

(n+ 3)(n+ 2)(n+ 1)(n!)

n!
(3.49)

3.6.2 Review our original problem

• Wanted to sum up how much we’d earn over time.
• The amount was a summation of a recurrence.
• We found a closed form for the recurrence.
• Then found a closed form for the summation.
• Then, at the end, had a formula that provided us with the amount earned over n years, by

just plugging the rate change, the initial value, and n.

In the following few lines, I’ve combined all the steps we took throughout the discussion above.

We started with a summation:

a0 +

4∑
j=1

(aj−1 · 1.05) (3.50)

(3.51)

We then used forward iteration to find the closed formula of the recurrence inside the sum-
mation.

Working out the first few terms; replacing rate with variable r

a1 = ra0

a2 = ra1 = ra0 = r2a0

a3 = ra2 = ra1 = r3a0
...

an = rna0

Replacing r and a0

an = 1.05n · 100000

(3.52)

Lecture 3: September 20, 2018 3-15

Using this closed formula for the recurrence, we plug it into the summation to simplify:

a0 +

n∑
j=1

(aj−1 · 1.05) =⇒ a0 +

n∑
j=1

rja0 (3.53)

This closed formula for the recurrence part didn’t handle the summation, so we used a known
closed form for a summation, to find a closed form for our particular summation. Here, we’re
taking our original formula, changing the limits, then plugging a known closed form (3.41).

First: change the limits, because the closed form starts at j = 0:

a0 +
n∑

j=1

(aj−1 · 1.05) = a0 +

n∑
j=1

rja0 (3.54)

a0 +

n∑
j=1

rja0 ⇒ a0 +

n−1∑
j=0

rj+1a0 (3.55)

(3.56)

Now, what we have is equivalent to:

a0 +
n−1∑
j=0

rj+1a0 = a0 +
(
r1a0 + r2 + r3a0 . . . r

na0
)

(3.57)

⇒ r0a0 +
(
r1a0 + r2 + r3a0 . . . r

na0
)

(3.58)

This means, we can move that first a0 term the we’ve been adding to the outside of the summation
inside the summation:

(
r0a0 + r1a0 + r2 + r3a0 . . . r

na0
)

(3.59)

When we do that, we can change rj+1 to rj , and change the upper limit to n:

(
r0a0 + r1a0 + r2 + r3a0 . . . r

na0
)

=
n∑

j=0

rja0 (3.60)

If you need, take a couple minutes to convince yourself 3.57 equals 3.60.

3-16 Lecture 3: September 20, 2018

n∑
j=0

rja0 = a0

n∑
j=0

rj (see Summation identities) (3.61)

a0

n∑
j=0

rj = a0
1− rn+1

1− r
(using closed form from 3.41) (3.62)

= a0
1− (1.05)n+1

1− 1.05
(3.63)

= 100000 · 1− (1.05)n+1

1− 1.05
(3.64)

(3.65)

Evaluate this at n = 5 should give us the amount of money we will have made after 5 years:

1− (1.05)n+1

1− 1.05
· 100000 = 552, 563.13 (3.66)

So: we went from a general idea of how to sum up an increasing salary over a given number of
years, and derived a closed formula to calculate it given just a random n. That means, we can
quickly determine that we’ll have earned $1 after 10 years of working. We can also do things like
change the base salary (a0, 100, 000 in our example) or the raise amount (r, 5% in our example) to
compare different offers.

a0 +

4∑
j=1

(aj−1 · (1 + r)) =⇒ a0
1− (1 + r)n+1

1− (1 + r)
(3.67)

3.6.3 Example of using forward iteration to derive closed formula for recurrence

Here, I provide the derivation of the closed formula for the recurrence in 3.22.

We started with the recurrence:

an = 2an−1 − an−2, for n = 2, 3, 4, . . . (3.68)

We validated that this sequence is a solution of the recurrence:

{an} : an = 3n∀ non-negative integers n (3.69)

And I stated this was the closed form:

an = 6n− 3(n− 1) (3.70)

Lecture 3: September 20, 2018 3-17

I derived this by using forward iteration. Remember: our goal is to find a formula that expresses
an in terms of ONLY our initial conditions a0 and a1.

a0 =?

a1 =?

a2 = 2a1 − a0
a3 = 2a2 − a1 = 2(2a1 − a0)− a1

= 4a1 − 2a0 − a1
= 3a1 − 2a0

a4 = 2a3 − a2 = 2(3a1 − 2a0)− (2a1 − a0)
= 6a1 − 4a0 − 2a1 + a0

= 4a1 − 3a0

a5 = 2a4 − a3 = 2(4a1 − 3a0)− (3a1 − 2a0)

= 8a1 − 6a0 − 3a1 + 2a0

= 5a1 − 4a0

a6 = 2a5 − a4 = 2(5a1 − 4a0)− (4a1 − 3a0)

= 10a1 − 8a0 − 4a1 + 3a0

= 6a1 − 5a0
...

an = na1 − (n− 1)a0

At each step, I wrote out the value of the term for that element. Then, I replaced the values I
derived for earlier terms in that statement. Then, I simplified the statement. Once I get to about
a5 or a6, I could see a pattern. I then wrote out the final statement for an in general, then checked
that against previous elements.

Now, once I define my initial condition, I have a unique solution for the recurrence. When a0 = 3
and a1 = 6, the final closed formula is an = 6n− 3(n− 1).

3.7 Example Problems

(more coming)

3.8 Applications of Sequences, Summations and Recurrences

Random Number Generator

3-18 Lecture 3: September 20, 2018

Here is an interesting fact: sequences defined using recurrence relations are used inside computers
to generate pseudo random numbers. The most common sequence used is a Linear Congruential
Generator.

The eighth International Conference on Sequences and Their Applications (SETA’14)

Readings for NEXT week:

Rosen, Chapter 2.1, 2.2, 2.5, 2.6
Sets, Set Operations, Cardinality of Sets, Matrices

	Overview
	Introduction
	Review
	Situating Problem Introduction
	Sequences
	Geometric Sequence
	Arithmetic Sequence
	Recurrence Relations
	Closed Formula
	An Aside: Recurrences in programming
	Special Sequences
	Fibonacci
	Prime Numbers
	Sequences of Letters and Grammars

	Summations
	Products
	Review our original problem
	Example of using forward iteration to derive closed formula for recurrence

	Example Problems
	Applications of Sequences, Summations and Recurrences

