CS 5002: Discrete Structures Fall 2018

Lecture 2: September 13, 2018

Instructors: Adrienne Slaughter, Tamara Bonaci

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

2.1 Overview

Review: logic and number representation
Representing negative numbers

Logic in Computers and Binary Strings
Variables and Functions

Some Important Integer Functions

Ok W=

2.2 Introduction

In today’s lecture, we will quickly review the most important concepts we discussed last time - logical
propositions, operators, and quantifiers, as well as the notion of logical eqiuvalence. We will then show how
those might apply to bit strings.

We will then refresh our memory about number representation, and talk about possible ways to represent
negative numbers.

Our big topic for today, however, are variables and functions. We will introduce those concepts, and see
why and how do functions matter to computer scientists. We will finish by talking about special type of
functions - integer functions, and we will consider some important examples.

2.3 Review

2.3.1 Logic: Propositions, Operators, Logical Equivalence and Quantifiers

In the last lecture, we defined a proposition as a statement that is true or false, but not both, and showed
that such a proposition has a truth value. The truth value of a proposition is true (T) if it is a true
proposition and false (F) if it is false.

We then introduced several logic operators:

e Negation, — — the proposition —p is false when p is true, and true when p is false.

e Conjunction, A — the proposition p and ¢ is p A ¢ and is true when p and ¢ are true, and false
otherwise.

e Disjunction or inclusive OR, V — the proposition p or ¢ (written by pV q) is false when p and ¢
are false, and true otherwise.

2-2 Lecture 2: September 13, 2018

e Exclusive OR, or XOR, @& — the proposition p xor ¢ (written by p @ ¢) is true when p is true OR ¢
is true, but not when p and ¢ are either both true or both false.

e Implication or conditional, — — the proposition p — ¢ is false when p is true and q is false, and
true otherwise.

e Biconditional, <> — the proposition p <> ¢ is true when p is true and q is true,
or p is false and g is false, false otherwise.

We then showed that we can create compound propositions by grouping and ordering propositions. We
can then evaluate logical equivalence of two or more such (compound) propositions by comparing the
truth tables of each of them.

We next talked about predicates and quantifiers, and introduced the universe of discourse, and two special
quantifiers:

e Universal quantifier, V — for every value in the universe of discourse, some predicate P is true.
e Existential quantifier, 3 — There exists a value in the universe of discourse such that some predicate
P is true.

2.3.2 Number Representations

We know that we generally use decimal notation to express integers. After the last lecture, however, we
know that we don’t always have to use base 10. We can actually use any base, such as, for example 5, and
in the last lecture, we showed general rules to represent some number n into some arbitrary base b.

Theorem 2.1 Ifb is a positive integer greater than 1, and n is a positive integer, it can be expressed in the
form:

nig = akbk + ak_lbk_l + ...+ aib+ ag

where k is a nonnegative integer, the number of digits in n

Some popular bases that we will be dealing with in computer sciences in general are:

e Binary base — base b = 2
e Octal base — base b =8
e Hexadecimal base — base b = 16

To construct the base b expansion of integer n, first divide n by b to obtain a quotient and remainder. That
is:

n =bqo + ao,0 < ag <b
The remainder (ag) is the rightmost (least significant) digit in the base b expansion on n. Next, divide ¢

by b to obtain

qgo =bq1 +a;,0<a; <b

Lecture 2: September 13, 2018 2-3

a1 is the second digit from the right in the base b expansion of n. Continue this until you obtain a quotient
equal to 0.

We then briefly talked on the number of possible values that we can represent in some base. We observed
that for some base b and digit length &, the maximum number of values that can be represented is b*.

2.4 Representing Negative Numbers

So far in the course, we have only talked about positive numbers. In real life, however, numbers can, and
and will be negative, and in math we have a simple way to deal with that - we just put a negative sign in
front of a number.

The question, however, is: what do we do in machine world, to represent negative numbers. It turns out there
are several approaches to that. For example, we can designate a particular bit, normally the left-most to
indicate the sign. The problem with this approach, however, is that the procedures for adding the resulting
numbers are somewhat complicated, and also the representation of zero si not unique.

One popular approach, that resolves these two issues, is referred to as two’s complement, and in this
approach, the negative sign is encoded within the number representation itself.

Definition 2.2 Given a positive integer a, the two’s complement of a relative to the fized bit length n is
the n-bit binary representation of 2™ — a.

Two’s complement - explanation: we will cover the math behind why this works in several weeks, but
two’s complement relies on the fact that under modular arithmethic, given some modulus 2", every
negative number has a “positive counterpart”, computed as 2" — a. In the modular arithmetic, you can use
this “positive counterpart” every time you would use the negative number, and the result will be correct.

This is convenient, because with two’s complement, the representation of zero is unique, we can easily add
and subtract positive and negative numbers, and we didn’t reduce the size of the set of positive and negative
numbers that we can represent.

Two’s complement - Computation: It turns out that there exists a convenient way to compute two’s
complements that involves less arithmeitc then the direct application of the definition. For example, let’s
consider an 8-bit representation. That representation is based on three facts:
1.2 —a=[2%-1)—a]+1
2. The binary representation of 28 — 1 is 11111111,
3. Subtracting an 8-bit binary number a from 111111115 is equivalent to just switching all 0’s to 1’s,
and vice versa (flipping the bits). The resulting number is called the one’s complement of the given
number.

Example 1: Let’s find an 8-bit two’s complement of a = 27. To do so, let’s represent a = 27 in the binary
base as a = 2719 = 000110115.

We can write:

11111111 =28 — 1
— 00011011 = 27,
11100100 = (2% — 1) — 27
+ 00000001 = 1

2-4 Lecture 2: September 13, 2018

11100101 = 2% — 27 (2.1)

So, in general, to find an n-bit complement of a positive integer a:

1. Write an n-bit representation of a.
2. Flip the bits (that is, switch all 1’s to 0’s, and all 0’s to 1’s).
3. Add 1 to binary representation.

2.4.1 Logic in Computers

Definition 2.3 A Boolean variable is a variable that can take on only two values, either true or false,
and such a variable can be represented using a bit.

Computers represent information using bits, where a bit is defined as a symbol with two possible values, 0
(zero) and 1 (one). Luckily for us, a bit can also be used to represent a truth value, and typically, we use a
1 bit to represent true, and a 0 bit to represent false.

This is convenient because it allows us to establish the correspondence between computer bit operations,
as follows.

plq||NOTp | pANDgq || p OR q || p XOR ¢
171 0 1 1 0
110 0 0 1 1
01 1 0 1 1
00 1 0 0 0

An interesting question one can now ask is — what if we have more than one bit of information to represent?

Once again — not a problem for us. We will just use a bit string (binary string), defined as follows.

Definition 2.4 A bit string is a sequence of zero or more bits, and its length is equal to the number of
bits in this string.

We can now use bit strings, and extend binary operations to bit strings as follows.

Bitwise OR, bitwise AND, and BITWISE XOR of two strings of the same length are the resulting bit
strings, of the same length, that have as their bits the OR, AND or XOR of the corresponding bits in the
starting strings.

Let’s take a look at an example.

Example 2: Consider bit strings 0110 1101 1000 and 1100 0111 0110. Find the bitwise OR, bitwise AN D
and bitwise XOR of these strings.

011011011000
110001110110

111011111110 (bitwise OR)
000001010000 (bitwise AN D)
111011101110 (bitwise XOR)

Lecture 2: September 13, 2018 2-5

2.5 Variables and Functions

Mathematics is a language. Josiah Willard Gibbs(1839-1903)

In this section, we are staring our deep dive into discrete math, and we will do so by asking how does one
express mathematical statements?

It turns out there exist several different ways to express mathematical statements, but three of the most
important mathematical statements are:

e Universal statements, stating the property that is true for all elements in some set. (For example:
All students in this class are ALIGN students.)

e Conditional statement, stating that if one thing is true, then it has to be the case that some other
thing is also true. (For example If a student is required to take CS 5002, then tht student is an ALIGN
student.)

e Existential statement, which states that, given some property, there exists at least one element of
the set for which the given property is true. (For example: It will be sunny at least one day this week.)

Such mathematical statements can be expressed in a variety of ways, but we are interested in a way that is
efficient and practical for computer systems. As it turns out, one such a way relies on variables and functions.

2.5.1 Variables

Definition 2.5 A variable is any characteristic, number or quantity whose value:

e Is arbitrary, or

e Is not fully specified, or
e Is unknow, or

e Changes over time

Let’s briefly analyze this definition of a variable a bit more. Intuitively, we can think of a variable as a
mathematical “John Doe”, a placeholder which we can use whenever we want to talk about two cases
[Epp, 2011]:

e Case 1: There exists an entity that can have more possible values, and we don’t exactly know what
its current value is, or

e Case 2: There exists two or more entities that could possibly satisfy some condition that we care
about, and we want to consider all such entities, and do not want to be restricted to consider only one.

This notion of a variable as a placeholder is very powerful. It allows us to create a variety of algebraic
computations with variables as if they were explicit numbers, which, in turns, allows us to represent, analyze
and solve a variety of problems.

When thinking about variables, we typically distinguish between two types:

¢ Independent variables - variables that can take on different values independent of other variables
we may care to measure

e Dependent variables - variables that change value in relation (response) to other variables in our
System

Example 3: Let’s consider some examples of independent and dependent variables.

e Effect of study time on the success in some course Let’s assume we are interested in observing
the effect that the time a student investes into studying has on their success in this course. Under two

2-6 Lecture 2: September 13, 2018

simplifying assumptions, that all of the student’s study time is perfectly productive time, and that the
student has an unconstricted time they could decide to devote to studying, in this example, the study
time is the independent variable, and the final grade in the course, as a representation of the success
in the course is the dependent variable.

e Effect of a prescribed medication on a disease severity Independent variable: the dose of a
prescribed medication. Dependent variables: frequency and severity of the symptoms of a disease

o Effect of weekly exercise on a person’s fitness: Independent variables: frequency, type and
intensitiy of a person’s workout. Dependent variables: a person’s weight, stamina, etc...

Based upon this classification, we notice that mathematical objects, such as variables, can be related in
various ways, and we typically represent that relationship as a function.

2.5.2 Functions
One of the core concepts in discrete math is that of the function. In it’s most simple form, an function is
simply a mapping from one set of numbers (or items) to another set of numbers (or items).

You might be familiar with the concept of a function in algebra, where you can calculate a variable y based
on an input x.

Ben o e A
Anne B
Betsy o e

Charlie » D
David * o F

Figure 2.1: Example: Assigning grades

In algebra, a function is seen a relationship between one or more inputs (input variables), and one or
more outputs (output variables).

T = 2.2
f (' <) y (2.2)
name of a function input variable output variable

Example 4: Let’s consider some examples, and analyze whether or not those are functions:

e Identity function: Let’s consider some function fi(z), defined as:
fi(x) = z,Va our universe of discourse

The given function f;(x) takes some input z, and just propagates it to the output (maps input into
the output). Such a functions is typically called the identity function.

e Eraser function: Let’s consider function fo(x) that takes some integer = as an input, and maps every
such integer into a 0. Is this function f>(z) a valid function?

Lecture 2: September 13, 2018 2-7

e Computing an average value in the list of numbers: Let’s consider the folowing Python code
below, that takes some list of numbers as an input, and finds the average value of the elements in the
list. Is this a valid function?

Python program to get average of a list

def Average(lst):
return sum(lst) / len(lst)

Driver Code
1st = [15, 9, 55, 41, 35, 20, 62, 49]
average = Average(lst)

Printing average of the list
print ("Average of the list =", round(average, 2))

Extending this perspective, we can think of a function as a mapping or a transformation between inputs
and output, i.e., a function is a mathematical statement that maps input into outputs.

This perspective immediately triggers a question: ”Is there a way for us to characterize such mappings a bit
more formaly, for example by providing more information about inputs and outputs?”

The answer to that questions is ”yes”, but to show it, we need to introduce another discrete structure we
will rely heavily in this course, a set.!

Definition 2.6 A set is an unordered collection of objects, called elements or members of a set. A
set is said to contain its elements. We write a € A to denote that some element a is an element of set A,
and a ¢ A to denote that a is not an element of the set A.

Given the definition of a set, we can formally define a function as follows.

Definition 2.7 Let A and B be some nonempty sets (sets containing at least one element). A function
f:A— B from set A to set B is an assignment of exactly one element of B to each element of A. We
write f(a) =b if b is a unique element of B, assigned by the function f to the element a € A.

Figure 2.2: A graphical representation of a function as a mapping between two sets

2.5.2.1 Domain and Codomain of a Function

Definition 2.8 If f is a function from A to B, we refer to A as a domain of f and B as a codomain.

LA whole lecture on sets and set theory is coming soon.

2-8 Lecture 2: September 13, 2018

Example 5: Let’s consider some example functions, and find their domains and codomains:

e Let function f be a function f : A — B, where A = {1,3,5} and B = {2,4,6}. This function maps
odd numbers 1, 3, 5 into their even counterparts, 1 — 2, 3 — 4 and 5 — 6. Its domain is A = {1, 3,5},
and its codomain set B = {2,4,6}.

e Let f be the function that takes a student’s name as input, and returns that student’s final grade in
some course. For example, f(Jane Smith) = A, f(Burt Beghs) = F. The domain of this function is
the set of all student names, and its codomain is the set of possible grades, {4, B,C, D, E}.

e Let f be the function that assigns the last two bits of some bit string of length of at least 2 bits to
that string. For examle, f(101100) = 00. The domain of that function is the set of all bit strings of
length 2 or more, and its codomain is the set {00,01,10,11}.

A function is called real-valued if its codomain is the set of real numbers, and it is called integer-valued
if its codomain is the set of integers. Two real-valued or integer-valued functions with the same domain can
be added, as well as multiplied as follows:

Definition 2.9 Let fi1 and fs be functions from A to R. Then fi + fo and f1fo are also functions from A
to R, defined for all x € A as follows:

(fi+f)=) = fiz)+ fol2) (2.3)
(fifo)(x) = fi(@)fa(2) (2.4)

2.5.2.2 Range of a Function

Definition 2.10 If f(a) = b, we say that b is the image of a, and a is the preimage of b. The range or
image of f is the set of all images of elements of A.

Example 6: Let’s consider some example functions, and find their domains, codomains and ranges:

e Let f be a function that, given a student’s ID, defined as a 5-digit integer, for example 12345, returns
that students first and last name. The domain of this function is the set of all possible student ID, i.e.,
the set of all allowed 5-digit integers, and its codomain is the set of possible students’ first and last
names. The range of f is the set of the first and last names of all of the active/enrolled students.

2.5.2.3 Partial Functions

You must have exprienced cases where some program you wrote, or interacted with may not have produced
the correct value of the function for all elements in the domain of the function. For example, a program may
fail because the provided input would make it stuck in the infinite loop, lead to an overflow, or something
similar.

In mathematics, we allow for something similar to happen. We allow there to exist cases where some
elements of domain do not produce the expected output. To account for such cases, we often want to deal
with functions that are defined only for a subset of the domain. In order to do that, we introduce the idea
of a partial function.

Definition 2.11 A partial function f from a set A to a set B is an assignment of each element a in a
subset of A, called the domain of definiiton of f, of a unique element b € B. The sets A and B are still
called the domain and the codomain of f, but we say that f is undefined for elements in A that are not in
the domain fo definition of f.

Lecture 2: September 13, 2018 2-9

Remark: When the domain of definition of f is equal to A, we say that f is a total function.

Example 7: Let f : Z — R be a function that computes a square root of some integer number, f(x) = \/x.
This function is a partial function. Its domain of definition is the set of nonnegative integers, its codomain
are all real numbers, and its range is the set of real number that are the square roots of the integers in the
domain.

Definition 2.12 Let f be a function from A to B, and let S be a subset from A. The image of S under the
function f is the subset of B that consists of images of elements of S. We typically denote the image of S

as f(S5)
f(8) = {t3s € S(t = f(5))} (2.5)

2.5.2.4 Equality Between Functions

Two functions are said to be equal if the have:

e The same domain,
e The same codomain, and
e Map each element of their common domain to the same element of their common codomain.

2.5.3 One-to-One and Onto Functions

When thinking about mapping between domains and codomains, we distinguish between several different
types of functions, namely, injection, surjection and bijection. Let’s see what are those.

Definition 2.13 Some function f is said to be an injection or one-to-one if and only if f(a) = f(b)
implies that a = b for all a and b in the domain of f.

Remark: We can express that f is one-to-one using quantifiers:

Yavb (f(a) = f(b)) > a=10

or equivalently:
Vavb (a#b— f(a) # f(b))

where the universe of discourse if the domain of the function. Codoma
odaomain

Domain

— |

Figure 2.3: A graphical representation of a one-to-one (injection) function.

2-10 Lecture 2: September 13, 2018

Example 8: Let consider the following functions. Are they injections?

e Function f from {w,z,y, z} to {100,200, 300,400,500}, where:

fw) = 100
flz) = 200
fly) = 300
f(z) = 500

Yes, the given function is an injection because f mapes every element of its domain into a different
value in its codomain.

e Function f :Z — 7Z, defined as f(z) = z2.
No, the given function is not an injection, because two different integers from the domain, for example
-5 and 5 map into the same number in the codomain, 25.

Definition 2.14 Some function f is said to be an surjection or onto if and only if for every element
b € B there is an element a € A, such that f(a) =b.

Codomain

Domain

Figure 2.4: A graphical representation of a onto (surjection) function.

Example 9: Let consider the following functions. Are they surjections?

e Let f be a function from set {p,r,s,t} to {a,b, c}, defined as:

fp) = a
fr) =%
fls) = ¢
ft) = ¢

Yes, the given function is a surjection becase all three elements of its codomain are images of the
elements in the domain.

o Let f:7Z — Z be a function defined as f(z) = z2.
No, the given function is not a surjection, because there doesn’t exist an integer whose squared value
is negative. For example, there doesn’t exist x such that f(z) = —5.

Definition 2.15 Some function f is said to be an bijection or one-to-one correspondance if and only
if it is both injection (one-to-one) and surjection (onto).

Lecture 2: September 13, 2018 2-11

Example 10: Let consider the following functions. Are they bijections?

e Let A be a set. The identitiy function on A is a function t4 : A — A, where t4(z) = z for all z € A.
Yes, this function is a bijection, because it is both one-to-one and onto.

Summary: Suppose that f: A — B

e To show that f is injective: Show that if f(z) = f(y) for arbitrary z,y € A with © # y, then z = y.
e To show that f is not injective: Find particular elements z,y € A such that © # y, but f(x) = f(y).
e To show that f is surjective: Consider an arbitrary y € B, and find an element x inA such that

f(z) =y
e To show that f is not surjective: Find a particular element y € B such that f(z) # yvVx € A.

2.5.3.1 Increasing, Strictly increasing, Decreasing and Strictly Decreasing Functions

Definition 2.16 A function f whose domain and codomain are subsets of the set of real numbers is called:

e Increasing function, if f(z) > f(y) whenever x <y and x and y are both in the domain of f.
e Strictly increasing function, if f(z) < f(y) whenever x <y and x and y are both in the domain of

f

e Decreasing function, if f(x) < f(y) whenever zy and x and y are both in the domain of f.
e Strictly decreasing function, if f(z) > f(y) whenever x <y and x and y are both in the domain

of f.

When reasoning about increasing and decreasing functions, it is typically helpful to represent them graphically,
and as it turns out, we can easily do that, by defining a graph of a function.

Definition 2.17 Let f be a function from the set A to the set B. The graph of the function f is the set of
ordered pairs {(a,b)la € A and f(a) = b}.

A
s(t)

s(T)

s(t)

S*(t) s()

Figure 2.5: An example graphical representation of some functions s(¢) and s*(t).

2-12 Lecture 2: September 13, 2018

2.5.4 Inverse Functions and Compositions of Functions

Let’s now consider a one-to-one correspondence (a bijection) f from set A to the set B. Because f is an onto
function (a surjection), every element in B is an image of some element in A. Because f is also a one-to-one
function, every element in B is the image of a unique element in A. These facts allow us to define a new
function from B to A that reverses the correspondence given by f. This leads to the definition of an inverse
function.

Definition 2.18 Let f be a one-to-one correspondance (bijection) from some set A to some set B. The
inverse function of f is the function that assigns to an element b belonging to B the unique element a € A
such that f(a) = b. The inverse function of f is typically denoted as f=1.

f(b)

Figure 2.6: A graphical example of function f and its inverse f~!.

Example 11: Let’s consider some function f : R — R, defined as:
fl@)=5x+7 (2.6)

e Is the given function invertible? Yes, the given function is a one-to-one correspondence (bijection),
and therefore has an inverse.
e If the function is invertible, find its inverse. To find thr inverse, we proceed as follows:
f is a bijection — flz)=yVYx,y € R
> Sr+T7T=y

-7
- (2.7)
5
By the definition of an inverse function, it follows that:
_ y—T7
F) = (2.8)

5
Example 12:2 Given a function ¢ : T — T, defined as:

For all string t in T, g(¢f) = the string obtained by writing the characters of ¢ in reverse
order determine whether or not g(¢) is invertible, and if it is, find its inverse.

To solve this problem, we observe that if the characters of ¢ are written in reverse order, and then written in
the reverse order again, the origina string is recovered. Therefore, the given function is invertible, and given
any string t € T', g_l(t) = the unique string that, when written in reverse orhder, equals ¢ =
the strings obtained by writing the characters of ¢ in reverse order = ¢(¢) So,in thisexample,
the function and its inverse are the same, g = g~ 1.

2Example originally presented in [Epp, 2011].

Lecture 2: September 13, 2018 2-13

2.5.4.1 Composition of Functions

Definition 2.19 Let g be a function from the set A to the set B, and let f be a function from the set B to
the set C'. The composition of the functions f and g, denoted fro all a € A by f o g, is defined as:

(fog)(a) = f(g(a)) (2.9)
Remark: In other words, a composition f o g is the function that assigns to the element a € A the element

assigned by f to g(a). In doing so, it is important to note that a composition f o g cannot be defined unless
the range of g is the subset of the domain of f.

(foala) flgla))

Figure 2.7: A graphical example of the composition of functions f and g.

Example 13:3 Consider two functions f : Z — Z, defined as f(z) = 2+ 1 and g : Z — Z, defined as
g(z) = 2% for all x € Z.

e Find fog?
els fog=go f?

Let’s start solving this problem by first finding f o g as follows:
feog = [flg(x))
= f(a?)

z?+1 (2.10)

Let’s now find g o f as follows:

_ y? = (z+1)? (2.11)

As we can see, the two compositions are not the same, fog# go f

2.6 Some Important Integer Functions

We have already seen many examples where our programs expects integers, yet real life values that we are
dealing with are real numbers or fractions. This issue exposes a question of conversion from fractions or

arbitrarty real number into integers.

3Example originally presented in [Epp, 2011].

2-14 Lecture 2: September 13, 2018

In this part of the lecture, we will explore several such conversion functions and analyze their properties.

2.6.1 Floor and Ceiling Functions and Their Properties

The first two functions used to convert real numbers into integers are floor (greatest integer), and ceiling
(least integer), defined as follows.

Definition 2.20 The floor (greatest integer) function is defined as:
|z | = the greatest integer less than or equal to x (2.12)
Similarly, the ceiling (least integer) function is defined as:

[x] = the least integer greater than or equal to x (2.13)

Graphs of the floor and the ceiling functions are represented in Figure 2.8, and we can observe that, for both
functions, their graphical representations form staircase-like patterns above and below the line f(z) = «.

3

2 A
[X] = eesescs

1 foeoeee

)

Figure 2.8: A graphical representation of the floor and the ceiling functions. Graph credit: Knuth et al.,
Concrete Mathematics, 2nd Edition, 1994

Lecture 2: September 13, 2018 2-15

From graph 2.8, we see that:

le] = 2 |—e]=-3
€]

We can observe several facts about floors and ceiling from their graphical representation [Knuth, 1994]:

e Since the floor lies on or below the diagonal line f(x) = x, and similarly ceil on or above the same line,
it follows that:

2] <X and [z] >« (2.14)

The floor and the ceil function are equal precisely at the integer points:
lz] =2 <= [z] <= z€Z (2.15)
e When floor and ceiling differ, then the ceiling is exactly 1 higher than the floor:

(2] —|z]=1 = x¢Z (2.16)

If we shift the diagonal line down one unit, it lies completely below the floor function, so z — 1 < |z].
Combining this with a similar observation for floor, we can write:

r—1l<|z]<z<[z]<z+1 (2.17)

The functions are reflections of each other about both access:

[=z] = —[z]

[—z] = —|z]

