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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
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1.1 Overview

1. Logic: Operators, propositions, equivalences, predicates, quantifiers.
2. Number representation and base expansion
3. Why all this matters

1.2 Introduction

In today’s lecture, we will introduce the field of mathematical logic, a subfield of mathematics that explores
the applications of formal logic to mathematics. We will then consider one of its applications - number
systems and number representations.

1.3 Logic, mathematical logic, and logic in computer science

Logic is a science of the necessary laws of thought, without which no employment of the
understanding and the reason takes place. Immanuel Kant

It is often considered that the roots of the modern logic stem from a Greek philosopher Aristotle, who
developed the first collection of rules of deductive reasoning that were intended to serve as a basis for the
study of every branch of knowledge. Aristotle’s ideas, however, remained dormant until the seventeenth
century, when the German philosopher and mathematician Gottfried Leibniz proposed the idea of using
symbols to simplify the process of deductive reasoning, in a similar way as algebraic notation is being used
to reason about numbers and their relationship.

Leibniz’s idea was realized by the English mathematicians George Boole and Augustus De Morgan in the
nineteenth century, when they invented the field of symbolic logic. From there, mathematical logic was born.
The expressive power of formal systems, and the deductive power of formal proof system is often considered
the unifying theme of mathematical logic.

Mathematical logic is often divided into the fields of set theory, model theory, recursion theory, and proof
theory, and in this course, we will talk about all of these theories. Today, however, we will start by focusing
on logical form and logical equivalence.
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1.3.1 Definitions

Definition: Proposition

A proposition is a statement that is true or false, but not both.

Examples of Propositions:

• 2 + 2 = 4 TRUE
• Seattle is in Washington. True
• 3× 6 = 15 False
• Seattle is in California. False

Practice

Which of the following are propositions?

1. What’s your favorite movie? No
2. Read the newspaper. No
3. x2 + y2 = z2 Yes
4. Seattle is in California. Yes

Just like with algebra, letters are used to represent propositions:

• p: 2 + 2 = 4
• q: Seattle is in California.

Definition: Truth Value

The truth value of a proposition is true (T) if it is a true proposition and false (F) if it is false.

Definition: Truth Table

A truth table displays the relationship between the truth values of propositions.

p ¬p
T F

F T

This truth table introduces the negation operator: ¬

1.3.2 Logic Operators

Definition: Negation

Represented by the symbol: ¬

The proposition ¬p is false when p is true, and true when p is false.

p ¬p
T F

F T
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A conjunction is a fancy word for and .

Represented by the symbol: ∧

The proposition p and q is p ∧ q and is true when p and q are true, and false otherwise.

p q p ∧ q
T T T

T F F

F T F

F F F

p: Sam left the party.

q: Pat arrived at the party.

p ∧ q

p q p ∧ q
T T T Sam left the party and Pat arrived at the party.

T F F Sam left the party; Pat did not arrive at the party.

F T F Sam did not leave the party; Pat arrived at the party.

F F F Sam did not leave the party; Pat did not arrive at the party.

Disjunction is a fancy word for or .

Represented by the symbol: ∨

The proposition p or q (written by p ∨ q) is false when p and q are false, and true otherwise.

p q p ∨ q
T T T

T F T

F T T

F F F

OR example

p: It is Wednesday.

q: I am preparing lecture.

p ∨ q
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p q p ∨ q
T T T It is Wednesday and I am preparing lecture.

T F T It is Wednesday but I am not preparing lecture.

F T T It is not Wednesday, but I am preparing lecture.

F F F It is not Wednesday, and I am not preparing lecture.

Sometimes I don’t prepare lecture on Wednesdays, but if it’s not Wednesday, then I am preparing lecture.

This is also known as inclusive OR: this, or that, or both.

Sometimes it’s necessary to denote the notion that something is true if p XOR q is true. This is called
exclusive or: this or that, but not both.

Represented by the symbol: ⊕

The proposition p xor q (written by p ⊕ q) is true when p is true OR q is true, but not when p and q are
either both true or both false.

p q p⊕ q
T T F

T F T

F T T

F F F

XOR example

p: It is Wednesday.

q: I am preparing lecture.

p⊕ q

p q p⊕ q
T T F It is Wednesday and I am preparing lecture.

T F T It is Wednesday but I am not preparing lecture.

F T T It is not Wednesday, but I am preparing lecture.

F F F It is not Wednesday, and I am not preparing lecture.

It is either Wednesday, or I am preparing lecture; it is never the case that I am preparing lecture on
Wednesday.

Conditional (Implication)

The proposition p → q is false when p is true and q is false, and true otherwise.
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p q p → q
T T T

T F F

F T T

F F T

p is sometimes considered hypothesis, antecedent, or premise. q is sometimes called the conclusion or
consequence.

Implication examples

p: The weather report says rain.

q: I wear my rain coat.

p → q

p q p → q
T T T The report said rain, so I wore my coat.

T F F The report said rain, so I didn’t wear my coat.

F T T The report said sun, but I wore my coat.

F F T The report said sun, and I didn’t wear my coat.

When p is true, q is true.

When p is false, q might be either true or false, and it doesn’t matter.

In this example, when the report says rain, I always wear my rain coat; but if the report does not say rain,
I may or may not wear my rain coat.

Biconditional: The proposition p ↔ q is true when p is true and q is true,
or p is false and q is false, false otherwise.

p q p → q
T T T

T F F

F T F

F F T

Biconditional example

p: The weather report says rain.

q: I wear my rain coat.

p ↔ q
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p q p ↔ q
T T T The report said rain, so I wore my coat.

T F F The report said rain, so I didn’t wear my coat.

F T F The report said sun, but I wore my coat.

F F T The report said sun, and I didn’t wear my coat.

When p is true, q is true.

When p is false, q is false.

In this example, when the report says rain, I always wear my rain coat; but if the report does not say rain,
I never wear my rain coat.

This is an if and only if: I wear my coat if and only if the report says rain.

1.3.3 Evaluating Propositions

Grouping and Order of Operations

Parentheses are used to specify grouping. Innermost statements are evaluated first. The negation operator
is applied before all other logical operators.

¬p ∧ q is the same as (¬p) ∧ q

NOT: ¬(p ∧ q)

Compound Propositions

The proposition q → p is the converse of p → q.

The contrapositive of p → q is ¬q → ¬p.

Example: Given the implication:

“If today is Thursday, then I have a test today”

The converse is: “If I have a test today, then today is Thursday”

The contrapositive is: “If I do not have a test today, then today is not Thursday”

1.3.4 Summary: Logical Operators

Symbol said name description

¬p not p negation true when p is false.

p ∧ q p and q conjunction true when p and q are true.

p ∨ q p or q disjunction false when p and q are false.

p → q p implies q implication true when p is false or q is
true.

p ↔ q p if and only if q biconditional true when both p and q are
the same.

p⊕ q p xor q exclusive or true when p and q are
different.
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p q ¬p p ∧ q p ∨ q p → q p ↔ q p⊕ q

T T F T T T T F

T F F T F F T

F T T F T T F T

F F F F T T F

1.3.5 Logical Equivalences

Logical Equivalence

We can evaluate the logical equivalence of two propositions by comparing the truth tables of each state-
ment.

Prove the following two statements are logically equivalent:

¬p ∨ q and p → q

p q ¬p ¬p ∨ q p → q

T T F T T

T F F F F

F T T T T

F F T T T

Example: Prove the following two statements are logically equivalent:

¬(p ∨ q) and ¬p ∧ ¬q

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q
T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

1.3.6 Predicates and Quantifiers

Is this a proposition?

p : x2 + y2 = z2

Well... kinda.

P (x, y, z) : x2 + y2 = z2

Back at the beginning, I said this is a proposition. It’s not really– it’s actually something called a predicate.

Predicates:

P (x) : x > 3
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• If x = 5, P (x) = P (5) = 5 > 3 ⇒ true
• If x = 1, P (x) = P (1) = 1 > 3 ⇒ false

At this point, you should be thinking: But, we can define some rules that define when P is true and false.

Quantifiers:

Universal quantifier: For All

For every value in the universe of discourse, the predicate P is true. P (x) is true for every value of x is in
the universe of discourse.

∀xP (x)

Existential quantifier: There exists

There exists a value in the universe of discourse such that P is true.

P (x) is true for some value of x in the universe of discourse.

∃xP (x)

Quantifiers: Example

“All students in this class are in the ALIGN program. ”

Let: P (x): x is in the ALIGN program.

Define the universe of discourse as “students in this class”, or S(x).

⇒ ∀xS(x) → P (x)

Quantifiers: Example

“Some students in this class live in Seattle”

Let: P (x): x lives in Seattle.

Define the universe of discourse as “students in this class”, or S(x)’.

⇒ ∃xS(x) → P (x)

Quantifiers: Example

Going back to our example of P (x) : x > 3

Define the universe of discourse as “integers”, or N(x).

⇒ ∃xN(x) → P (x)

An Example1

P (x) : x is a professor

Q(x) : xis ignorant

R(x) : xis vain

Express each of the statements using quantifiers and logical operators, where the universe of discourse is
the set of all people.

1Based on Symbolic Logic by Lewis Carroll



Lecture 1: September 6, 2018 1-9

1. No professors are ignorant. ∀x(P (x) → ¬Q(x))
2. All ignorant people are vain.∀x(Q(x) → R(x))
3. No professors are vain. ∀x(P (x) → ¬R(x))
4. Does (3) follow from (1) and (2)?

No. P implies not Q; P implies not R; and Q implies R, but no statement has been made about
whether P implies R. The statements do not rule out the possibility of other vain people that are not
ignorant.

Another Example2

P (x) : x is a baby

Q(x) : x is logical

R(x) : xis able to manage a crocodile

S(x) : x is despised

Express each of the statements using quantifiers, logical connectives and the statements, where the universe
of discourse is the set of all people.

1. Babies are illogical.∀x(P (x) → ¬Q(x))
2. Nobody is despised who can manage a crocodile. ∀x(R(x) → ¬S(x))
3. Illogical persons are despised. ∀x(¬Q(x) → S(x))
4. Babies cannot manage crocodiles. ∀x(P (x) → ¬R(x))
5. Does (4) follow from (1), (2) and (3)?

Yes.
If x is a baby, then by (1), x is illogical. By (3), x is despised. (2) says that if x could manage a
crocodile, then x would not be despised. Therefore, x cannot manage a crocodile.

Summary

• Propositions
• Truth Values
• Truth Tables
• Logical operators (sometimes called Logic Connectives), to create compound statements
• Combining/ordering of operators
• Predicates
• Quantifiers: when predicates are true or false
• Universe of discourse

1.4 Number Representations

Generally, we use decimal notation to express integers. In decimal notation, a number 1024 can be expressed
as:

(1 · 1000) + (0 · 100) + (2 · 10) + (4 · 1) or (1 · 103) + (0 · 102) + (2 · 101) + (4 · 100)
As a review, decimal is base 10 .

Arbitrary base: Base 5

2Also based on Symbolic Logic by Lewis Carroll
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(1 · 103) + (0 · 102) + (2 · 101) + (4 · 100)

(1 · 53) + (0 · 52) + (2 · 51) + (4 · 50) = (125) + (10) + 4

= (139)5

Counting in Different bases:

Decimal Binary Base 5 Hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 10 5
6 110 11 6
7 111 12 7
8 1110 13 8
9 1000 14 9

10 1001 20 A
11 1010 21 B
12 1011 22 C
13 1100 23 D
14 1101 24 E
15 1110 30 F
16 10000 31 10
17 10001 32 11
18 10010 33 12

1.4.1 Base Expansion

Base b expansion of n

Theorem 1.1 If b is a positive integer greater than 1, and n is a positive integer, it can be expressed in the
form:

n10 = akb
k + ak−1b

k−1 + ...+ a1b+ a0

where k is a nonnegative integer, the number of digits in n

In decimal notation, a number 1024 can be expressed as:

(1 · 1000) + (0 · 100) + (2 · 10) + (4 · 1) or (1 · 103) + (0 · 102) + (2 · 101) + (4 · 100)

As a review, decimal is base 10 .

(This is what we use to go FROM base b TO base 10. )

Bases

Binary: Base 2

Hexadecimal: Base 16
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Octal: Base 8

When base b > 10, we need more symbols than the digits 0− 9 to represent each value. In hexadecimal, we
use the letters A-F to represent the values 10-15.

Binary expansion of integer n

When base b = 2, it is called binary expansion.

If n is a positive integer, it can be expressed in the form:

n10 = ak2
k + ak−12

k−1 + ...+ a12 + a0

where k is a nonnegative integer, which is the number of digits in n.

Integers in base 2 use only the digits 1 and 0.

(This is what we use to go FROM base 2 TO base 10. )

Hexadecimal expansion of n

When base b is 16 and n is positive, it can be expressed in the form:

n10 = ak16
k + ak−116

k−1 + ...+ a116 + a0

where k is a nonnegative integer, which is the number of digits in n. Integers in base 16 use the digits 0-9
and the letters A-F.

(This is what we use to go FROM base 16 TO base 10. )

Example: Hexadecimal Expansion

Problem: Express the number (2A0F1)16 in decimal.

Solution: Use the hexadecimal expansion formula.

(2 · 164) + (A · 163) + (0 · 162) + (F · 161) + (1 · 160) =
(2 · 65536) + (A · 4096) + (0 · 256) + (F · 16) + (1 · 1) =
(2 · 65536) + (10 · 4096) + (0 · 256) + (15 · 16) + (1 · 1) = (172273)10

Going from Base 10 to Base b

To construct the base b expansion of integer n, first divide n by b to obtain a quotient and remainder. That
is:

n = bq0 + a0, 0 ≤ a0 < b

The remainder (a0) is the rightmost (least significant) digit in the base b expansion on n. Next, divide q0
by b to obtain

q0 = bq1 + a1, 0 ≤ a1 < b
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a1 is the second digit from the right in the base b expansion of n. Continue this until you obtain a quotient
equal to 0.

Problem: Convert (12345)10 to base 8.

Solution: First, divide 12345 by 8 to obtain:

12345 = 8× 1543 + 1(The right-most digit)

1543 = 8× 192 + 7

192 = 8× 24 + 0

24 = 8× 3 + 0

3 = 8× 0 + 3(The left-most digit)

This results in:

(12345)10 = (30071)8

We’ve talked about different bases. One significant effect of base value is the number of values that can be
represented by a given number of digits.

Number of values represented

For base b and digit length k, the maximum number of values that can be represented is bk. We’ll go into
more of the math behind this later this semester.

Example: Limits

Assume we have a positive integer of length 4.

In decimal:

• What is the maximum value we can represent? 9999
• What is the minimum value we can represent? 0000
• ⇒ 10,000 values, or 104 unique values.

In binary:

• 16, or 24 unique values.

In hexadecimal:

• 65,536, or 164 unique values.

Hopefully the decimal example helps. Also, you can work with a 3-digit number in base 2 (23 or 8 unique
values) to convince yourself.

Summary: Number Representation

Not including details on adding and multiplying in various bases.

• Number representations
• Base 10 (decimal), base 2 (binary), base 16 (hexadecimal)
• Going from Base 10 to base b
• Going from Base b to base 10
• Converting between base 2 and base 16 (binary and hexadecimal)
• Maximum number of values that can be represented
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1.5 Relevance to Programming

1.5.1 Binary in Computers

Binary is important in CS because numbers are all represented in binary. Data is stored, transmitted and
processed via a series of electrical pulses; high for 1, low for 0.

8- vs 16-bit numbers: What’s the largest value an 8-bit binary number can have?

In this case, k = 8, and our formula gives us:

n = 28 = 256

Binary in Computers

These days, data is usually stored in a 16-bit binary number. For display and discussion purposes, I’ll be
using an 8-bit binary number. But so far, we have only talked about positive integers. If this is the case,
how do we represent negative numbers?

In math, or the non-computer world, we just put a negative sign in front. But in the machine world, what’s
the negative sign?

I could provide a longer explanation about how computers are built out of circuits and how we could
use various protocols and such, but really it’s just easier to encode the negative sign within the number
representation itself.

2’s Complement: Definition

This is where 2’s complement comes in:

Definition: 2’s complement

In 2’s complement representation of binary numbers, the most significant bit is considered negative:

n = −ak2
k + ak−12

k−1 + ...+ a12 + a0

Where k is the number of bits in the number.

2’s Complement: Explanation

Using the definition from the previous slide, an 8-bit binary number using 2’s complement will have the
value:

n = −a72
7 + a62

6 + a52
5 + a42

4 + a32
3 + a22

2 + a12 + a0

Recall, since this is binary, each ak is either 1 or 0. That means, each term is either present or not.

If all the terms are present (that is, all the ak are 1, or the binary number is 11111111), the value is:
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n = −1 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 2 + 1

= −1 · 128 + 1 · 64 + 1 · 32 + 1 · 16 + 1 · 8 + 1 · 4 + 1 · 2 + 1

= −128 + 127

= −1

2’s Complement: Practice

Spend a few minutes and answer the following questions:

• In 2’s complement, which of the numbers below has the greatest value?
1. 1111 1111
2. 1000 0000
3. 0000 0000
4. 0111 1111

• In 2’s complement, which of the numbers below has the least value?
1. 1111 1111
2. 1000 0000
3. 0000 0000
4. 0111 1111

1.5.2 Representing Negative Numbers

2’s Complement: Relevance to Python

In Python, when you’re looking at documentation, you’ll see that different types have different MAX and
MIN values. While the values vary according to implementation and machine, here are some representative
values:

type storage size (# bits) min value max value
char 8 bits (1 byte) -127 128
unsigned char 8 bits 0 255
signed char 8 bits -127 128
int 16 bits3 -32,768 32,767
unsigned int 16 bits4 0 65,535
short 16 bits (2 bytes) -32,768 32,767
unsigned short 16 bits 0 65,535
long 32 bits (4 bytes) -2,147,483,648 2,147,483,647
unsigned long 32 bits 0 4,294,967,295

1.5.3 Logic in Computers

Logic and Bit Operators

bit operations

p q NOT p p AND q p OR q p XOR q

1 1 0 1 1 0

1 0 0 1 1

0 1 1 0 1 1

0 0 0 0 0
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T/F and Bits

OR, AND, XOR

Logic and Bit Operators

bitwise OR, bitwise AND, bitwise XOR

107 0110 1011
206 1100 1110
239 1110 1111 bitwise OR
74 0100 1010 bitwise AND

165 1010 0101 bitwise XOR
148 1001 0100 bitwise NOT

Summary: Relevance to Computing

• Why we use binary in computing
• How to represent negative numbers in binary
• How number representation impacts integer values in C
• Logic and bits: AND, OR, NOT, XOR


