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What is a Tree?

Tree - a directed, acyclic structure of linked nodes

� Directed - one-way links between nodes (no cycles)

� Acyclic - no path wraps back around to the same node twice (typically

represents hierarchical data)
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Tree Terminology

� Tree - a directed, acyclic structure of linked nodes

� Node - an object containing a data value and links to other nodes

� Edge - directed link, representing relationships between nodes

� All the blue circles
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Special Trees

� Binary Tree

� Binary Search Tree

� Balanced Tree

� Binary Heap/Priority �eue

� Red-Black Tree
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Binary Trees

Binary tree - a tree where every node has at most two children
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Binary Search Trees

� Binary search tree (BST) - a tree where nodes are organized in a

sorted order to make it easier to search

� At every node, you are guaranteed:

� All nodes rooted at the le� child are smaller than the current node

value

� All nodes rooted at the right child are smaller than the current node

value
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Balancing Tree

� Observation: it is not enough to balance only root, all nodes should

be balanced.

� The balancing condition: the heights of all le� and right subtrees

di�er by at most 1
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BFS Example

Find element with value 15 in the tree below using BFS.

� BFS: traverse all of the nodes on the same level first, and then move on

to the next (lower) level

25 – 10 – 12 – 7 – 8 – 15 – 5
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DFS Example

Find element with value 15 in the tree below using DFS.

� DFS: traverse one side of the tree all the way to the leaves, followed by

the other side

25 – 10 – 7 –8 – 12 – 15 – 5
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Tree Traversals Example

Traverse the tree below, using:

� Pre-order traversal: 25 – 10 – 7 – 8 – 12 – 15 – 5

� In-order traversal: 7 – 10 – 8 – 25 – 15 – 12 – 5

� Post-order traversal: 7 – 8 –10 – 15 –5 – 12 – 25
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Tree Traversals Example
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What is Graph?

Formal Definition:
� A graph G is a pair (V,E) where

� V is a set of vertices or nodes

� E is a set of edges that connect vertices

Simply put:
� A graph is a collection of nodes (vertices) and edges

� Linked lists, trees, and heaps are all special cases of graphs
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Terminology: Undirected Graph

� Two vertices u and v are adjacent in an undirected graph G if {u, v} is
an edge in G

� edge e = {u, v} is incident with vertex u and vertex v

� The degree of a vertex in an undirected graph is the number of edges

incident with it

� a self-loop counts twice (both ends count)

� denoted with deg(v)
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Terminology: Directed Graph

� Vertex u is adjacent to vertex v in a directed graph G if (u, v) is an
edge in G

� vertex u is the initial vertex of (u, v)

� Vertex v is adjacent from vertex u

� vertex v is the terminal (or end) vertex of (u, v)

� Degree

� in-degree is the number of edges with the vertex as the terminal vertex

� out-degree is the number of edges with the vertex as the initial vertex
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Kinds of Graphs

� directed vs undirected

� weighted vs unweighted

� simple vs non-simple

� sparse vs dense

� cyclic vs acyclic

� labeled vs unlabeled
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Graph Representations

Two ways to represent a graph in code:

� Adjacency List
� A list of nodes

� Every node has a list of adjacent nodes

� Adjacency Matrix
� A matrix has a column and a row to represent every node

� All entries are 0 by default

� An entry G[u, v] is 1 if there is an edge from node u to v
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Adjacency List

For each v in V , L(v) = list of w such that (v, w) is in E:

A

B

C

D

E

F

Storage space:
a|V |+ b|E|

a = sizeof(node)
b = sizeof( linked list element)
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Adjacency Matrix

A

B

C

D

E

F

Storage space: |V |2

Does this matrix represent a directed or undirected graph?
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Adjacency Matrix

A

B

C

D

E

F

Storage space: |V |2

Does this matrix represent a directed or undirected graph?
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Comparing Matrix vs List

1 Faster to test if (x, y) is in a

graph?

2 Faster to find the degree of a

vertex?

3 Less memory on small graphs?

4 Less memory on big graphs?

5 Edge insertion or deletion?

6 Faster to traverse the graph?

7 Be�er for most problems?

1 adjacency matrix

2 adjacency list

3 adjacency list (m+n) vs (n2)

4 adjacency matrices (a li�le)

5 adjacency matrices O(1) vs O(d)

6 adjacency list

7 adjacency list
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Analyzing Graph Algorithms

� Space and time are analyzed in terms of:

� Number of verticesm = |V |
� Number of edges n = |E|

� Aim for polynomial running times.

� But: is O(m2) or O(n3) a be�er running time?

� depends on what the relation is between n and m

� the number of edges m can be at most n2 ≤ n2
.

� connected graphs have at leastm ≥ n− 1 edges

� Stil do not know which of two running times (such asm2
and n3

) are

be�er,

� Goal: implement the basic graph search algorithms in time O(m + n).

� This is linear time, since it takes O(m+n) time simply to read the input.

� Note that when we work with connected graphs, a running time of

O(m + n) is the same as O(m), since m ≥ n− 1.
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Single-Source Shortest Path

Input Directed graph with non-negative weighted edges, a starting

node s and a destination node d

Problem Starting at the given node s, find the path with the lowest

total edge weight to node d

Example A map with cities as nodes and the edges are distances

between the cities. Find the shortest distance between city 1

and city 2.
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Djikstra’s Algorithm: Overview

� Find the “cheapest” node— the node you can get to in the shortest

amount of time.

� Update the costs of the neighbors of this node.

� Repeat until you’ve done this for each node.

� Calculate the final path.
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Djikstra’s Algorithm: Formally

DJIKSTRA(G,w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S = ∅
3 Q = G.V
4 while Q 6= ∅
5 u = Extract-min(Q)

6 S = S ∪ {u}
7 for each vertex v ∈ G.Adj[u]
8 Relax (u, v, w)
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Djikstra(G,w, s)

1 . G is a graph

2 . w is the weighting function such that w(u, v) returns the weight of the edge between u, v.
3 . s is the starting node
4 for each vertex u ∈ G
5 u.d = w(s, u) . where w(s, u) =∞ if there is no edge (s, u).
6 S = ∅ . Nodes we know the distance to

7 Q = G.V . min-Priority�eue starting with all our nodes, ordered by distance u.d from s found.
8 while Q 6= ∅
9 u = Extract-min(Q) . Greedy step: get the closest node

10 S = S ∪ {u} . Set of nodes that have shortest-path-distance found

11 for each vertex v ∈ G.Adj[u]
12 Relax (u, v, w)

Relax(u, v, w)

1 . u is the start node

2 . v is the destination node

3 . w is the weight function

4 newDistance = u.d + w(u, v)
5 if newDistance < v.d
6 v.d = newDistance . Priority �eue holding the nodes will be updated accordingly
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Djikstra’s: A walkthrough

� Find the “cheapest” node— the

node you can get to in the

shortest amount of time.

� Update the costs of the

neighbors of this node.

� Repeat until you’ve done this

for each node.

� Calculate the final path.

Breadth First Search: distance = 7

Start Finish

A

B

6

2

3

1

5
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Step 1: Find the cheapest node

1 Should we go to A or B?

� Make a table of how long it takes to get to each node from this node.

� We don’t know how long it takes to get to Finish, so we just say infinity

for now.

Node Time to Node

A 6

B 2

Finish ∞

Start Finish

A

B

6

2

3

1

5
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Step 2: Take the next step

1 Calculate how long it takes to get (from Start) to B’s neighbors by

following an edge from B

� We chose B because it’s the fastest to get to.

� Assume we started at Start, went to B, and then now we’re updating

Time to Nodes.

Node Time to Node

A �65

B 2

Finish ��∞ 7

Start Finish

A

B

6

2

3

1

5
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Step 3: Repeat!

1 Find the node that takes the least amount of time to get to.

� We already did B, so let’s do A.

� Update the costs of A’s neighbors

� Takes 5 to get to A; 1 more to get to Finish

Node Time to Node

A �65

B 2

Finish �76

Start Finish

A

B

6

2

3

1

5
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Section 2

Random Experiments and Sample Spaces
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Random Experiment

Definition

Random experiment is an experiment whose outcome cannot be

determined in advance, because it is unknown.

Some examples:
� Tossing a die

� Measuring the amount of rainfall in Sea�le in December

� Counting the number of sunny days in Sea�le in December

� Selecting a random sample of CS 5002 students, and observing who is

le�-handed

� Randomly choosing ten people, and recording which languages they

speak
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Random Experiment - Coin Tossing

Coin tossing
� The most fundamental stochastic experiment

� A coin is tossed, and an outcome is observed:

� Head – H

� Tail – T

Example: Three experiments showing a fair coin tossed 100 times

CS 5002: Discrete Math ©Northeastern University Fall 2018 38



Sample Space

Definition

Sample space, Ω, of a random experiment is the set of all possible

outcomes of the experiment.

Some examples:
� Tossing two coins consequtively: Ω = {(H,H), (H,T ), (T,H), (T, T )}

� The lifetime of some electronic device (in days):

Ω = R+ = 0.5, 1, 1.1, . . .

� The number of submi�ed responses for the optional quiz:

Ω = {0, 1, 2, . . . , 75} = Z+

� The weight of ten selected people:

Ω = {(x1, x2, . . . , x10), xi ≥ 0, i = 1, . . . , 10} = R10
+
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Event

Definition

Event is any subset of the sample space.

Some examples:
� The event that the sum of two dice is 10 or more:

A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}

� The event that someone does not have a birthday on October 5:

B = {Birthday on Jan 1, Birthday on Jan 2, . . . , Birthday on Oct 4,

Birthday on Oct 6, . . . , Bithday on Dec 31}
� The event that out of fi�y selected people, at least five are taller than

5.8”: C = {5.2′′, 5.4′′, 5.8′′, 6.0′′, 6.1′′, 6.3′′, 5.9′′, . . . }
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Event and Sets

Definition

Event is any subset of the sample space.
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Events and Sets

Since events are sets, we can apply the usual set operations to them:

� The set A ∪B (A union B) is the event that A or B or both occur,

� The set A ∩B (A intersection B) is the event that A and B both occur,

� The set Ac
(A complement) is the event that A does not occur,

� If A ⊂ B (A is a subset of B) then event A is said to imply event B.

� Two events A and B which have no outcomes in common, that is,

A ∩B =, are called disjoint events.
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Event and Sets

Since events are sets, we can apply the usual set operations to them:
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Random Experiments and Sample Spaces - Summary

� Random experiment - an experiment whosse outcome cannot be

determined in advance, because it is unknown

� Sample space, Ω - set of all possible outcomes of a random experiment

� Event - any subset of the sample space
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Section 3

Probability
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Probability - Frequentist Viewpoint

To compute the probability of an event A ⊂ Ω, count the number of

occurences of A in N random experiments

Then P (A) = limn→∞
N(A)
N

For example, if we toss a coin 100 times, and observe 51 heads, then the

probability of a head can be found as: P (H) ≈ 51
100
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Probability

Definition

A probability P is a rule (function) that assigns a positive number to every

event from the sample space, and satisfies the following axioms of
probability:

� Axiom 1: P(A) ≥ 0

� Axiom 2: P(Ω) = 1

� Axiom 3: The sum rule: For any sequence of disjoint events,

A1, A2, . . . , it holds that:

P(∪iAi) =
∑
i

P(Ai)

CS 5002: Discrete Math ©Northeastern University Fall 2018 56



Probability

Definition

A probability P is a rule (function) that assigns a positive number to every

event from the sample space, and satisfies the following axioms of
probability:

� Axiom 1: P(A) ≥ 0

� Axiom 2: P(Ω) = 1

� Axiom 3: The sum rule: For any sequence of disjoint events,

A1, A2, . . . , it holds that:

P(∪iAi) =
∑
i

P(Ai)

CS 5002: Discrete Math ©Northeastern University Fall 2018 57



Probability

Definition

A probability P is a rule (function) that assigns a positive number to every

event from the sample space, and satisfies the following axioms of
probability:

� Axiom 1: P(A) ≥ 0

� Axiom 2: P(Ω) = 1

� Axiom 3: The sum rule: For any sequence of disjoint events,

A1, A2, . . . , it holds that:

P(∪iAi) =
∑
i

P(Ai)

CS 5002: Discrete Math ©Northeastern University Fall 2018 58



Probability - Examples

Consider the experiment where we throw a fair die. How do we define Ω
and P?
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Probability - Examples

Consider the experiment where we throw a fair die. How do we define Ω
and P?
Obviously, Ω = {1, 2, 3, 4, 5, 6}. We can now define P as:

A =
|A|
6

where A represents some possible event from the sample space. For

example, all even number on the die.
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Elementary Event and Discrete Sample Space

In many random experiments, sample space is countable:

Ω = {a1, a2, . . . , an}

Such a sample space is called a discrete sample space.
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Discrete Sample Space

In many random experiments, sample space is countable:

Ω = {a1, a2, . . . , an}

Such a sample space is called a discrete sample space.
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Discrete Sample Space and Elementary Events

In many random experiments, sample space is countable:

Ω = {a1, a2, . . . , an}

Such a sample space is called a discrete sample space.
The easiest way to specify the probability on a discrete sample space is to

first specify the probability of all elementary events ai, and then to define:

P(A) =
∑
ai∈A

pi, ∀A ⊂ Ω
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Discrete Sample Space and Equally Likely Events

Theorem

If sample space Ω has a finite number of outcomes, and all outcomes are
equally likely, then the probability of every event A is equal to:

P(A) =
|A|
|Ω|
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Discrete Sample Space and Counting

What does counting have to do with random experiments?
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Section 4

Conditional Probability and Independance
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Thought Experiment

Let Ω be a sample space associated with a random experiment. Let A,B be

two events. How do probabilities change when we know that some event

B ∈ Ω has occured?

Some examples:
� Today is a sunny day on Kauai, Hawaii. What does that tell us about

the weather in Sea�le?

� Today is sunny and cold around NEU Sea�le campus. What does that

tell us about the weather in Sea�le today?

� Today is sunny and cold around NEU Sea�le campus. What are the

chances that it is raining on UW main campus?
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� Today is sunny and cold around NEU Sea�le campus. What does that

tell us about the weather in Sea�le today?

� Today is sunny and cold around NEU Sea�le campus. What are the

chances that it is raining on UW main campus?
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Conditional Probability

Let Ω be a sample space associated with a random experiment. Let A,B be

two events. How do probabilities change when we know that some event

B ∈ Ω has occured?

Let’s now generalize:
� Let’s assume that event B has occurred.

� If B has occurred, we know that the outcome lies in B.

� That means that event A will occur if and only if A ∩B occurs.

� The relative probability of A occuring in those circumstance is given as:

P(A|B) =
P(A ∩B)

P(B)
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Conditional Probability

Definition

Let Ω be a sample space associated with a random experiment. Let A,B be

two events. The conditional probability of event A, given event B is

defined as:

P(A|B) =
P(A ∩B)

P(B)
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Conditional Probability - Example

Example: We throw two dice. Given that observed sum is equal to 10, what

is the probability that one die is equal to 6?

Solution:
Let B be the event that the sum of dots on two dice is 10:

B = {(4, 6), (5, 5), (6, 4)}

Let A now be an event that one die is showing 6:

A = {(1, 6), (2, 6), (3, 6), (4, 6), (5, 6)}

Now, A ∩B = {(4, 6, (6, 4))}.
Since all elementary events are equally likely, we can finally write:

P(A|B) =
2
36
3
36

=
2

3
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Product Rule

By the definition of conditional probability, we have:

P(A ∩B) = P(A)P(B|A)

We can generalize this to n intersections A1 ∩A2 ∩ · · · ∩An. This gives us

the product (chain) rule of probability.
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The Chain (Product) Rule

By the definition of conditional probability, we have:

P(A ∩B) = P(A)P(B|A)

Theorem

Let A1, A2, . . . , An be a sequence of events with P(A1, . . . , An−1) > 0. Then:

P(A1, . . . , An) = P(A1)P(A2|A1)P(A3|A1A2) . . .P(An|A1A2 . . . An−1)
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The Law of Total Probability

Suppose that we can partition the sample space Ω into n disjoint
partitions, B1, B2, . . . , Bn.
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The Law of Total Probability

Suppose that we can partition the sample space Ω into n disjoint
partitions, B1, B2, . . . , Bn.

Using the third axiom of probability (the sum rule), and the definition of

conditional probability, we can derive the law of total probability:

P(A) =

n∑
i=1

P(A|Bi)P(Bi)
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The Bayes’ Rule

A simple, yet important outcome of the definition of conditional probability

is the Bayes’ rule:

P(A ∩B) = P(A|B)P(B) = P(B|A)P(A)

Generalization: Let’s say we are given a probability P(A|B1) and we need

to compute P(B1|A). Let B1, B2, . . . , Bk be disjoint events, covering the

whole sample space. Then:

P(B1|A) =
P(A|B1)P(B1)

P(A)

=
P(A|B1)P(B1)∑k

i=1 P(A ∩B)

=
P(A|B1)P(B1)∑k
i=1 P(A|Bi)P(Bi)
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Independence

� An important concept in probability and statistics

� Conceptually, it models the lack of information between events

� Two events A and B are said to be independent, if the knowledge that

A has occurred does not change the probability that B occurs
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Independent Events

Definition

Two events A and B are independent if P(A ∩B) = P(A)P(B). Stated
di�erently, events A and B are independent is P(A|B) = P(A) and
P(B|A) = P(B).
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Independance and Mutual Exclusiveness

Note: two events A and B being independent necessarily means that these

events are notmutually exclusive:

A ∩B 6= ∅

Example: Consider simultaneous flips of two fair coins.

� Event A: First Coin was a head.

� Event B: Second coin was a tail.

� Events A and B are independent events, and they are not mutually

exclusive.

� On the other hand, let’s define event C as: first coin was a tail. Then
A and C are not independent. They aremutually exclusive - knowing
that one has occurred (e.g. heads) implies the other cannot (tails).

CS 5002: Discrete Math ©Northeastern University Fall 2018 88



Independance and Mutual Exclusiveness

Note: two events A and B being independent necessarily means that these

events are notmutually exclusive:

A ∩B 6= ∅

Example: Consider simultaneous flips of two fair coins.

� Event A: First Coin was a head.

� Event B: Second coin was a tail.

� Events A and B are independent events, and they are not mutually

exclusive.

� On the other hand, let’s define event C as: first coin was a tail. Then
A and C are not independent. They aremutually exclusive - knowing
that one has occurred (e.g. heads) implies the other cannot (tails).

CS 5002: Discrete Math ©Northeastern University Fall 2018 89



Independance and Mutual Exclusiveness

Note: two events A and B being independent necessarily means that these

events are notmutually exclusive:

A ∩B 6= ∅

Example: Consider simultaneous flips of two fair coins.

� Event A: First Coin was a head.

� Event B: Second coin was a tail.

� Events A and B are independent events, and they are not mutually

exclusive.

� On the other hand, let’s define event C as: first coin was a tail. Then
A and C are not independent. They aremutually exclusive - knowing
that one has occurred (e.g. heads) implies the other cannot (tails).

CS 5002: Discrete Math ©Northeastern University Fall 2018 90



Independance and Mutual Exclusiveness

Note: two events A and B being independent necessarily means that these

events are notmutually exclusive:

A ∩B 6= ∅

Example: Consider simultaneous flips of two fair coins.

� Event A: First Coin was a head.

� Event B: Second coin was a tail.

� Events A and B are independent events, and they are not mutually

exclusive.

� On the other hand, let’s define event C as: first coin was a tail. Then
A and C are not independent. They aremutually exclusive - knowing
that one has occurred (e.g. heads) implies the other cannot (tails).

CS 5002: Discrete Math ©Northeastern University Fall 2018 91



Section 5

Random Variables

CS 5002: Discrete Math ©Northeastern University Fall 2018 92



Random Variable

Definition

A random variable is amapping or a function from the sample space Ω to

the real line: X : Ω→ R.
Let x ∈ R. Then it holds that:

P(X(w) = x) = P({w ∈ Ω : X = x})

Note 1: Although random variable is a function, we typically denote it

simply as X .

Note 2: It is very common to directly define probabilities over the

range of the random variable.

CS 5002: Discrete Math ©Northeastern University Fall 2018 93



Random Variable

Definition

A random variable is amapping or a function from the sample space Ω to

the real line: X : Ω→ R.
Let x ∈ R. Then it holds that:

P(X(w) = x) = P({w ∈ Ω : X = x})

Note 1: Although random variable is a function, we typically denote it

simply as X .

Note 2: It is very common to directly define probabilities over the

range of the random variable.

CS 5002: Discrete Math ©Northeastern University Fall 2018 94



Random Variable

Definition

A random variable is amapping or a function from the sample space Ω to

the real line: X : Ω→ R.
Let x ∈ R. Then it holds that:

P(X(w) = x) = P({w ∈ Ω : X = x})

Some examples of random variables:
� The number of defective microchips out of 100 inspected.

� The number of bugs in some computer program.

� The number of rainy days in Sea�le in December.

� The amount of time needed for one communication packet to be

transferred from your computer to the server hosting our course

website.
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Random Variable

Definition

A random variable is amapping or a function from the sample space Ω to

the real line: X : Ω→ R.
Let x ∈ R. Then it holds that:

P(X(w) = x) = P({w ∈ Ω : X = x})

� The set of possible values some random variable X can take is called

the range of X .

� Based upon the countability of the range, we distinguish between:

� Discrete random variables - have a countable number of possible

values

� Continuous random variables - have an uncountable number of

possible values
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Discrete Random Variables - Examples

Discrete random variables - have a countable number of possible values

� Number of sunny days in Sea�le in Summer

� Number of students who pass CS 5002 with grade A

� Number of delievered packages currently on my porch

� Number of problems on the final exam
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Continuous Random Variables - Examples

Continuous random variables - have an uncountable number of possible

values

� Rainfall measurement in Sea�le in December

� Snowfall measurement in Whistler in December

� The lifetime of my new TV

� The average lifetime of the most expensive smart phone currently on

the market
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Section 6

Probability Distributions
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Probability Distribution

Let X be some random variable. We would like to specify the probabilities

of various kinds of events. For examples:

� Probability of an event X = x

� Probability of an event {x ≤ X ≤ b}

.

CS 5002: Discrete Math ©Northeastern University Fall 2018 112



Probability Distribution
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Probability Distribution

Let X be some random variable. We would like to specify the probabilities

of various kinds of events. For examples:

� Probability of an event X = x

� Probability of an event {x ≤ X ≤ b}
If we can specify all probabilities involving X , then we can specify the

probability distribution of X .
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Cumulative Distribution Function (cdf)

Definition

The cumulative distribution function (cdf) of some random variable X
is the function F : R→ [0, 1], defined as:

F (x) := P(X ≤ x), x ∈ R

The following properties of cdf F are a direct consequence of the axioms of

probability:

� 0 ≤ F (x) ≤ 1.

� F is increasing: x ≤ y → F (x) ≤ F (y)

� limx→∞ F (x) = 1

� F is right-continuous.
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Discrete Distributions and Probability Mass Function

Definition

Some random variable X has a discrete probability distribution if X is a

discrete random variable.

Every discrete random variable has associated with it a probability mass
function which outputs the probability of the random variable taking a

particular value.
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Discrete Distributions and Probability Mass Function

Every discrete random variable has associated with it, a probability mass
function which ouputs the probability of the random variable taking a

particular value.

Definition

Given some discrete random variable X , we can define its probability
mass function (pmf), fx as:

f(x) = P(X = x)

Note: the easiest way to specify the probability distribution of a discrete

random variable is to specify its pmf.
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Discrete Distributions and Probability Mass Function

Definition

Given some discrete random variable X , we can define its probability
mass function (pmf), fx as:

f(x) = P(X = x)

Note: the easiest way to specify the probability distribution of a discrete

random variable is to specify its pmf.

Example: Let X denote a random variable corresponding to the role of a

die. Then P (X = i) = 1
6 is the pmf associated with X .
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Section 7

Expectation
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Expectation

Although all the probability information of some random variable is

contained in its cdf and its pmf, it is o�en useful to consider other

numerical characteristics of that random variable, including:

� Expectation

� Variance

� Standard derivation
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Expectation

Definition

Let X be a discrete random variable with pmf f . The expectation of X ,

denoted as E(X) is defined as:

E(X) =
∑
x

xP(X = x) =
∑
x

xf(x)

Note: The expectation is not necessarily a possible outcome of some

random experiment. It is the weighted average of the values that a random

variable can take (where the weights are given by the probabilities).
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The Linearity of Expectation

Definition

Let X be a discrete random variable with pmf f . The expectation of X ,

denoted as E(X) is defined as:

E(X) =
∑
x

xP(X = x) =
∑
x

xf(x)

Theorem

If X is a discrete random variable with pmf f , then for any real-valued
function g it holds that:

E(g(X)) =
∑
x

g(x)f(x)
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The Linearity of Expectation

Theorem

If X is a discrete random variable with pmf f , then for antyreal-valued
function g it holds that:

E(g(X)) =
∑
x

g(x)f(x)

An important consequence of the previous theorem is the fact that

expectation is a linar function, and it holds that:

� E(aX + b) = aE(X) + b

� E(g(X) + h(X)) = Eg(X) + Eh(X)
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The Variance and Standard Derivation

Definition

The variance of a random variable X , denotes as Var(X) is defined as:

Var(X) = E(X − E(X))2

The following properties hold for variance:

� The squared root of the variance is called standard derivation.

� Var(X) = E(X2)− E(X)2

� Var(aX + b) = a2Var(X)
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Section 8

Some Imporant Discrete Distributions
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Bernoulli Distribution

Definition

Some random variable X has a Bernoulli distribution with success

probability p if X can only assume two possible values, 0 and 1, with

probabilities:

P(X = 1) = p = 1− P(X = 0)

We write X ≈ Ber(p).

Example: Single coin toss experiment.
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Bernoulli Distribution

Some properties:

� The cdf given below.

� The expectation: E(P ) = 0P(X = 0) + 1P(X = 1) = p

� Variance: Var(X) = E(X2)− (EX)2 = p(1− p)

� One of the most important distributions in the probability theory.
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Binomial Distribution

Definition

Consider the sequence of n random events with two possible outcomes, for

example coin tosses, where the probability of a head is p. IfX is the random

variable that counts the number of heads, then we say that X has a

binomial distribution, with parameters n and p, and write X ≈ Bin(n, p).
The probability mass function (pmf) of X is given as:

f(x) = P (X = x) =

(
n

x

)
px(1− o)n−x, x = 0, 1, . . . , n
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Binomial Distribution

Definition

The probability mass function (pmf) of X ≈ Bin(n, p) is given as:

f(x) = P (X = x) =

(
n

x

)
px(1− o)n−x, x = 0, 1, . . . , n

Some properties:

� The expecation of random variable X ≈ Bin(n, p) is E(X) = np.

� The variance of random variable X ≈ Bin(n, p) is
Var)(X) = np(1− p).
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Geometric Distribution

Definition

Consider again the sequence of n random events with two possible

outcomes, for example coin tosses, where the probability of a head is p. IfX
is the random variable that counts the number tosses needed before we
see the first head, then we say that X has a geometric distribution,
with parameter p, and write X ≈ Geo(p). The probability mass function

(pmf) of X is given as:

f(x) = P (X = x) = (1− p)x−1p, x = 1, 2, 3, . . .
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Geometric Distribution

Definition

The probability mass function (pmf) of X ≈ Geo(p) is given as:

f(x) = P (X = x) = (1− p)x−1p, x = 1, 2, 3, . . .

Some properties:

� The expecation of random variable X ≈ Geo(p) is E(X) = 1
p .

� The variance of random variable X ≈ Geo(p) is Var(X) = np(1− p).

� Memoryless property - the fact that we have already had k failures

does not make the event of ge�ing a success in the next trial(s) any

more likely.
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Section 9

Stochastic Procesess
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Stochastic Processes

Definition

A stochastic or random process is typically defined as an indexed
collection of random variables, and denotes as {Xi}Ni=1.
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Stochastic Processes

Definition

A stochastic or random process is typically defined as an indexed
collection of random variables, and denotes as {Xi}Ni=1.

Some examples:

� Weather around Sea�le

� Stock prices

� Customers entering and existing store

� Operation of telecommunication networks
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Independent and Identically Distributed Stochastic

Processes

Definition

A stochastic process is said to be independent and identically
distributed (iid) if each of its random variables Xi has the same cdf, and

all random variables are independent, in a sense that:

P(X1 = x1, X2 = x2, . . . , Xn = xn) = P(X1 = x1)P(X2 = x2) . . .P(Xn = xn)
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