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What is a Tree?

Tree - a directed, acyclic structure of linked nodes
B Directed - one-way links between nodes (no cycles)

B Acyclic - no path wraps back around to the same node twice (typically
represents hierarchical data)
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Tree Terminology
B Tree - a directed, acyclic structure of linked nodes

B Node - an object containing a data value and links to other nodes

B Edge - directed link, representing relationships between nodes
B All the blue circles
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Special Trees

B Binary Tree

B Binary Search Tree

M Balanced Tree

B Binary Heap/Priority Queue
B Red-Black Tree
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Binary Trees

Binary tree - a tree where every node has at most two children
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Binary Search Trees

B Binary search tree (BST) - a tree where nodes are organized in a
sorted order to make it easier to search

B At every node, you are guaranteed:

B All nodes rooted at the left child are smaller than the current node
value

B All nodes rooted at the right child are smaller than the current node
value
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Balancing Tree

B Observation: it is not enough to balance only root, all nodes should
be balanced.

B The balancing condition: the heights of all left and right subtrees
differ by at most 1
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BFS Example

Find element with value 15 in the tree below using BFS.

B BFS: traverse all of the nodes on the same level first, and then move on

to the next (lower) level

25-10-12-7-8-15-5
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DFS Example

Find element with value 15 in the tree below using DFS.

B DFS: traverse one side of the tree all the way to the leaves, followed by

the other side

25-10-7-8-12-15-5
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Tree Traversals Example

Traverse the tree below, using:
B Pre-order traversal: 25-10-7-8-12-15-5
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Tree Traversals Example

Traverse the tree below, using;:
B Pre-order traversal: 25-10-7-8-12-15-5
M In-order traversal: 7-10-8-25-15-12-5
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Tree Traversals Example

Traverse the tree below, using;:
B Pre-order traversal: 25-10-7-8-12-15-5
B In-order traversal: 7-10-8-25-15-12-5
B Post-order traversal: 7 -8 =10 - 15 -5 - 12 - 25
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What is Graph?

Formal Definition:
B Agraph G is a pair (V, E) where
B V is a set of vertices or nodes
B F is a set of edges that connect vertices
Simply put:
B A graph is a collection of nodes (vertices) and edges

B Linked lists, trees, and heaps are all special cases of graphs
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Terminology: Undirected Graph

B Two vertices u and v are adjacent in an undirected graph G if {u,v} is
an edge in G

B edge e = {u, v} is incident with vertex u and vertex v

B The degree of a vertex in an undirected graph is the number of edges
incident with it

B a self-loop counts twice (both ends count)
B denoted with deg(v)
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Terminology: Directed Graph

B Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an
edge in G

B vertex u is the initial vertex of (u, v)
B Vertex v is adjacent from vertex u
B vertex v is the terminal (or end) vertex of (u, v)

B Degree

B in-degree is the number of edges with the vertex as the terminal vertex
B out-degree is the number of edges with the vertex as the initial vertex
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Kinds of Graphs

directed vs undirected
weighted vs unweighted
simple vs non-simple
sparse vs dense

cyclic vs acyclic

labeled vs unlabeled

Northeastern University
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Graph Representations

Two ways to represent a graph in code:
B Adjacency List
B A list of nodes
B Every node has a list of adjacent nodes
B Adjacency Matrix

B A matrix has a column and a row to represent every node
B All entries are 0 by default
B Anentry G[u,v] is 1if there is an edge from node u to v
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Adjacency List

For each v in V, L(v) = list of w such that (v, w) is in E:

=>{8|~>{D /]
=>(cl/]

m|m|OlO|w| >
é

Storage space:
a|lV]+ b|E|
a = sizeof(node)
b = sizeof( linked list element)
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Adjacency Matrix

A B CDE F
( \
Alo0 (1) o 1 00
Bl(1) o 1 0 0 0
clo 1 0 1 10
D[ 1 0 1 0 1 0
E[ 0 0 1 1 0 0
FLO 0 0 0 0 0 )

Storage space: |V |?
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Adjacency Matrix

A B C
A[0®
BI(1) o 1
clo 1 o
pl 1 0 1
El 0 o 1
FLO 0 0

1
0

E F
0 0
0 0
1 0
1 0
0 0
0 0

Storage space: |V |?

Does this matrix represent a directed or undirected graph?
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CS 5002: Discrete Math

Comparing Matrix vs List

© Faster to test if (x, y) isina
graph?

® Faster to find the degree of a
vertex?

® Less memory on small graphs?

@ Less memory on big graphs?

© Edge insertion or deletion?

O Faster to traverse the graph?

@ Better for most problems?

© adjacency matrix

® adjacency list

® adjacency list (m+n) vs (n2)

@ adjacency matrices (a little)

@ adjacency matrices O(1) vs O(d)
@ adjacency list

@ adjacency list
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Analyzing Graph Algorithms

B Space and time are analyzed in terms of:
B Number of vertices m = |V|
B Number of edges n = | E|
B Aim for polynomial running times.
B But: is O(m?) or O(n?) a better running time?
B depends on what the relation is between n and m
B the number of edges m can be at most n? < n?.
B connected graphs have at least m > n — 1 edges
B Stil do not know which of two running times (such as m? and n?) are
better,
B Goal: implement the basic graph search algorithms in time O(m + n).
B This is linear time, since it takes O(m + n) time simply to read the input.

B Note that when we work with connected graphs, a running time of
O(m + n) is the same as O(m), since m > n — 1.

CS 5002: Discrete Math ©Northeastern University Fall 2018



Single-Source Shortest Path

Input Directed graph with non-negative weighted edges, a starting
node s and a destination node d
Problem Starting at the given node s, find the path with the lowest
total edge weight to node d
Example A map with cities as nodes and the edges are distances
between the cities. Find the shortest distance between city 1

and city 2.
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Djikstra’s Algorithm: Overview

B Find the “cheapest” node— the node you can get to in the shortest
amount of time.

B Update the costs of the neighbors of this node.
B Repeat until you’ve done this for each node.
B Calculate the final path.
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Djikstra’s Algorithm: Formally

DJIKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S=90

3 Q=G.V

4 while @ # 0

5 u = EXTRACT-MIN(Q))

6 S =SU{u}

7 for each vertex v € G.Adj[u]

8 RELAX (u, v, w)
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DJiksTRA(G, w, s)

1 > Gisagraph
2 > w is the weighting function such that w(u, v) returns the weight of the
3 > sis the starting node
4 for each vertexu € G
5 u.d = w(s,u) > where w(s,u) = oo if there is no edge (s, u).
6 S = (> Nodes we know the distance to
7 @ = G.V > min-PriorityQueue starting with all our nodes, ordered by dis
8 while Q # ()
9 u = EXTRACT-MIN(Q)) > Greedy step: get the closest node
10 S = SU {u} > Set of nodes that have shortest-path-distance found
11 for each vertex v € G.Adj[u]
12 RELAX (u, v, w)

ReLAX(u, v, w)

1 > uis the start node

2 > is the destination node
3 > w is the weight function
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Djikstra’s: A walkthrough

B Find the “cheapest” node— the
node you can get to in the
shortest amount of time.

B Update the costs of the
neighbors of this node.

B Repeat until you’ve done this
for each node.

B Calculate the final path.

Breadth First Search: distance = 7
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Step 1: Find the cheapest node

© Should we go to A or B?

B Make a table of how long it takes to get to each node from this node.
B We don’t know how long it takes to get to Finish, so we just say infinity

for now.
Node | Time to Node
A 6
B 2
Finish 00
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Step 2: Take the next step

@ Calculate how long it takes to get (from Start) to B’s neighbors by
following an edge from B
B We chose B because it’s the fastest to get to.

B Assume we started at Start, went to B, and then now we’re updating
Time to Nodes.

Node | Time to Node
A 65
B 2
Finish o 7
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Step 3: Repeat!

© Find the node that takes the least amount of time to get to.

B We already did B, so let’s do A.
B Update the costs of A’s neighbors

m Takes 5 to get to A; 1 more to get to Finish

Node | Time to Node
A 65
B 2
Finish 76
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Section 2

Random Experiments and Sample Spaces
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Random Experiment

Definition
Random experiment is an experiment whose outcome cannot be
determined in advance, because it is unknown.

Some examples:

B Tossing a die
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Random Experiment

Definition
Random experiment is an experiment whose outcome cannot be
determined in advance, because it is unknown.

Some examples:
B Tossing a die
B Measuring the amount of rainfall in Seattle in December
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Random Experiment

Definition
Random experiment is an experiment whose outcome cannot be
determined in advance, because it is unknown.

Some examples:
B Tossing a die
B Measuring the amount of rainfall in Seattle in December

B Counting the number of sunny days in Seattle in December

Fall 2018
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Random Experiment

Definition
Random experiment is an experiment whose outcome cannot be
determined in advance, because it is unknown.

Some examples:
B Tossing a die
B Measuring the amount of rainfall in Seattle in December
B Counting the number of sunny days in Seattle in December

B Selecting a random sample of CS 5002 students, and observing who is

left-handed
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Random Experiment

Definition
Random experiment is an experiment whose outcome cannot be
determined in advance, because it is unknown.

Some examples:

B Tossing a die

B Measuring the amount of rainfall in Seattle in December
B Counting the number of sunny days in Seattle in December
[ |

Selecting a random sample of CS 5002 students, and observing who is

left-handed

Randomly choosing ten people, and recording which languages they
speak
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Random Experiment - Coin Tossing

Coin tossing

B The most fundamental stochastic experiment

B A coin is tossed, and an outcome is observed:

m Head - H
W Tail-T

Example: Three experiments showing a fair coin tossed 100 times

20

30 40 50 60 70 80

100

— .=

3

20

100
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Sample Space

Definition
Sample space, (2, of a random experiment is the set of all possible
outcomes of the experiment.

Some examples:
B Tossing two coins consequtively: Q = {(H, H),(H,T),(T,H),(T,T)}

Fall 2018
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Sample Space

Definition
Sample space, (2, of a random experiment is the set of all possible
outcomes of the experiment.

Some examples:
B Tossing two coins consequtively: Q = {(H, H),(H,T),(T,H),(T,T)}

B The lifetime of some electronic device (in days):
Q=R; =05,1,1.1,...

©Northeastern University Fall 2018
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Sample Space

Definition
Sample space, (2, of a random experiment is the set of all possible
outcomes of the experiment.

Some examples:
B Tossing two coins consequtively: Q = {(H, H),(H,T),(T,H),(T,T)}
B The lifetime of some electronic device (in days):
Q=Ry =05,1,1.1,...

B The number of submitted responses for the optional quiz:
Q={0,1,2,...,75} =Z4

CS 5002: Discrete Math ©Northeastern University Fall 2018



Sample Space

Definition
Sample space, (2, of a random experiment is the set of all possible
outcomes of the experiment.

Some examples:

B Tossing two coins consequtively: Q = {(H, H),(H,T),(T,H),(T,T)}

B The lifetime of some electronic device (in days):
Q=R; =05,1,1.1,...

B The number of submitted responses for the optional quiz:
Q=1{0,1,2,...,75} =7,

B The weight of ten selected people:
Q= {(z1,22,...,710),2; > 0,i=1,...,10} =R
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Event

Definition

Event is any subset of the sample space. J

Some examples:

B The event that the sum of two dice is 10 or more:

A ={(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)}

CS 5002: Discrete Math
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Event

Definition

Event is any subset of the sample space. J

Some examples:

B The event that the sum of two dice is 10 or more:
A= {(47 6)7 (57 5)7 (57 6)7 (67 4)7 (6a 5)7 (67 6)}
B The event that someone does not have a birthday on October 5:

B = {Birthday on Jan 1, Birthday on Jan 2, ..., Birthday on Oct 4,
Birthday on Oct 6, ..., Bithday on Dec 31}

CS 5002: Discrete Math ©Northeastern University
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Event

Definition

Event is any subset of the sample space. J

Some examples:

B The event that the sum of two dice is 10 or more:
A ={(4,6),(5,5),(5,6),(6,4),(6,5), (6,6)}

B The event that someone does not have a birthday on October 5:
B = {Birthday on Jan 1, Birthday on Jan 2, ..., Birthday on Oct 4,
Birthday on Oct 6, ..., Bithday on Dec 31}

B The event that out of fifty selected people, at least five are taller than
58" C = {5.2",5.4",5.8",6.0",6.1”,6.3",5.9" ...}
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Event and Sets

Definition
Event is any subset of the sample space. J

Universal set

Sample space, 5
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Events and Sets

Since events are sets, we can apply the usual set operations to them:
B The set AU B (A union B) is the event that A or B or both occur,
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Events and Sets

Since events are sets, we can apply the usual set operations to them:
B The set AU B (A union B) is the event that A or B or both occur,
B The set AN B (A intersection B) is the event that A and B both occur,
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Events and Sets

Since events are sets, we can apply the usual set operations to them:
B The set AU B (A union B) is the event that A or B or both occur,
B The set AN B (A intersection B) is the event that A and B both occur,
B The set A° (A complement) is the event that A does not occur,
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Events and Sets

Since events are sets, we can apply the usual set operations to them:
B The set AU B (A union B) is the event that A or B or both occur,
B The set AN B (A intersection B) is the event that A and B both occur,
B The set A° (A complement) is the event that A does not occur,
B If A C B (Aisasubset of B) then event A is said to imply event B.
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Events and Sets

Since events are sets, we can apply the usual set operations to them:
B The set AU B (A union B) is the event that A or B or both occur,
B The set AN B (A intersection B) is the event that A and B both occur,
B The set A° (A complement) is the event that A does not occur,
B If A C B (Aisasubset of B) then event A is said to imply event B.

B Two events A and B which have no outcomes in common, that is,
AN B =, are called disjoint events.
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Event and Sets

Since events are sets, we can apply the usual set operations to them:

ol

ANB° AnB A°NB
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Random Experiments and Sample Spaces - Summary

B Random experiment - an experiment whosse outcome cannot be
determined in advance, because it is unknown

B Sample space, (2 - set of all possible outcomes of a random experiment

B Event - any subset of the sample space

Fall 2018
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Section 3

Probability
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Probability - Frequentist Viewpoint

To compute the probability of an event A C €2, count the number of
occurences of A in N random experiments

Then P(A) = limy, 00 %
For example, if we toss a coin 100 times, and observe 51 heads, then the

probability of a head can be found as: P(H) ~ 15—010

CS 5002: Discrete Math ©Northeastern University
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Probability

Definition
A probability P is a rule (function) that assigns a positive number to every
event from the sample space, and satisfies the following axioms of

probability:
B Axiom 1: P(A) >0

Fall 2018
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Probability

Definition
A probability P is a rule (function) that assigns a positive number to every
event from the sample space, and satisfies the following axioms of

probability:
B Axiom 1: P(A) >0
B Axiom2: P(Q) =1

Fall 2018
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Probability

Definition
A probability P is a rule (function) that assigns a positive number to every
event from the sample space, and satisfies the following axioms of
probability:

B Axiom 1: P(A) >0

B Axiom 2: P(Q)) =

B Axiom 3: The sum rule: For any sequence of disjoint events,

A1, Ag, ..., it holds that:

P(U; A7) ZIP’
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Probability - Examples

Consider the experiment where we throw a fair die. How do we define 2
and P?
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Probability - Examples

Consider the experiment where we throw a fair die. How do we define 2
and P?

Obviously, = {1, 2, 3,4, 5, 6}. We can now define P as:

14l
6

A

where A represents some possible event from the sample space. For
example, all even number on the die.
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Elementary Event and Discrete Sample Space

In many random experiments, sample space is countable:
Q={ay,a2,...,a,}

Such a sample space is called a discrete sample space.
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Discrete Sample Space

In many random experiments, sample space is countable:
Q={ay,a2,...,a,}

Such a sample space is called a discrete sample space.
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Discrete Sample Space and Elementary Events

In many random experiments, sample space is countable:
Q={ay,as,...,a,}

Such a sample space is called a discrete sample space.
The easiest way to specify the probability on a discrete sample space is to
first specify the probability of all elementary events a;, and then to define:

P(A)=> pi, VACQ

a;EA

Fall 2018
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Discrete Sample Space and Equally Likely Events

Theorem

If sample space ) has a finite number of outcomes, and all outcomes are
equally likely, then the probability of every event A is equal to:

_ 14

FA =1

CS 5002: Discrete Math
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Discrete Sample Space and Counting

What does counting have to do with random experiments?
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Section 4

Conditional Probability and Independance
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Thought Experiment

Let €2 be a sample space associated with a random experiment. Let A, B be
two events. How do probabilities change when we know that some event
B € ) has occured?

Some examples:

B Today is a sunny day on Kauai, Hawaii. What does that tell us about
the weather in Seattle?
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Thought Experiment

Let €2 be a sample space associated with a random experiment. Let A, B be
two events. How do probabilities change when we know that some event
B € ) has occured?

Some examples:

B Today is a sunny day on Kauai, Hawaii. What does that tell us about
the weather in Seattle?

B Today is sunny and cold around NEU Seattle campus. What does that
tell us about the weather in Seattle today?
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Thought Experiment

Let €2 be a sample space associated with a random experiment. Let A, B be
two events. How do probabilities change when we know that some event
B € ) has occured?

Some examples:

B Today is a sunny day on Kauai, Hawaii. What does that tell us about
the weather in Seattle?

B Today is sunny and cold around NEU Seattle campus. What does that
tell us about the weather in Seattle today?

B Today is sunny and cold around NEU Seattle campus. What are the
chances that it is raining on UW main campus?
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Conditional Probability

Let €2 be a sample space associated with a random experiment. Let A, B be
two events. How do probabilities change when we know that some event
B € Q has occured?

Let’s now generalize:

B Let’s assume that event B has occurred.
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Conditional Probability

Let €2 be a sample space associated with a random experiment. Let A, B be
two events. How do probabilities change when we know that some event
B € Q has occured?

Let’s now generalize:
B Let’s assume that event B has occurred.

M If B has occurred, we know that the outcome lies in B.
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Conditional Probability

Let €2 be a sample space associated with a random experiment. Let A, B be
two events. How do probabilities change when we know that some event
B € Q has occured?

Let’s now generalize:
B Let’s assume that event B has occurred.
M If B has occurred, we know that the outcome lies in B.

B That means that event A will occur if and only if AN B occurs.
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Conditional Probability

Let €2 be a sample space associated with a random experiment. Let A, B be
two events. How do probabilities change when we know that some event
B € Q has occured?

Let’s now generalize:
B Let’s assume that event B has occurred.
M If B has occurred, we know that the outcome lies in B.
B That means that event A will occur if and only if AN B occurs.

B The relative probability of A occuring in those circumstance is given as:

P(AN B)

PAIB) = —5 5
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Conditional Probability

Definition
Let €2 be a sample space associated with a random experiment. Let A, B be
two events. The conditional probability of event A, given event B is

defined as:
P(AN B)

PAIB) = —5
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Conditional Probability - Example

Example: We throw two dice. Given that observed sum is equal to 10, what
is the probability that one die is equal to 6?
Solution:

Let B be the event that the sum of dots on two dice is 10:

B = {(47 6)7 (57 5)’ (6a 4)}
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Conditional Probability - Example

Example: We throw two dice. Given that observed sum is equal to 10, what
is the probability that one die is equal to 6?
Solution:

Let B be the event that the sum of dots on two dice is 10:
B = {(47 6)7 (57 5)’ (6a 4)}
Let A now be an event that one die is showing 6:

A= {(176)7 (276)7 (37 6)7 (47 6)7 (57 6)}
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Conditional Probability - Example

Example: We throw two dice. Given that observed sum is equal to 10, what
is the probability that one die is equal to 6?
Solution:

Let B be the event that the sum of dots on two dice is 10:
B ={(4,6),(5,5),(6,4)}
Let A now be an event that one die is showing 6:
A={(1,6),(2,6),(3,6),(4,6),(5,6)}

Now, AN B = {(4,6,(6,4))}.
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Conditional Probability - Example

Example: We throw two dice. Given that observed sum is equal to 10, what
is the probability that one die is equal to 6?
Solution:

Let B be the event that the sum of dots on two dice is 10:
B ={(4,6),(5,5),(6,4)}
Let A now be an event that one die is showing 6:
A={(1,6),(2,6),(3,6),(4,6),(5,6)}
Now, AN B = {(4,6,(6,4))}.

Since all elementary events are equally likely, we can finally write:

P(A|B) =

CS 5002: Discrete Math ©Northeastern University Fall 2018 78



Product Rule

By the definition of conditional probability, we have:
P(ANB) =P(A)P(BJA)

We can generalize this to n intersections A1 N Aa N --- N A,. This gives us
the product (chain) rule of probability.
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The Chain (Product) Rule

By the definition of conditional probability, we have:
P(ANB) =P(A)P(BJA)
Theorem
Let Ay, Ag, ..., A, be asequence of events with P(A1, ..., Ap—1) > 0. Then:

P(Ay, ..., A,) = P(A1)P(A2|A1)P(A3]A1A2) .. . P(A,|A1As ... Ap1)
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The Law of Total Probability

Suppose that we can partition the sample space €2 into n disjoint
partitions, By, Bo, ..., By.
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The Law of Total Probability

Suppose that we can partition the sample space {2 into n disjoint
partitions, By, Ba, ..., By,.

Using the third axiom of probability (the sum rule), and the definition of

conditional probability, we can derive the law of total probability:

P(A) = P(A|B;)P(By)
=1

CS 5002: Discrete Math

©Northeastern University Fall 2018



The Bayes’ Rule

A simple, yet important outcome of the definition of conditional probability
is the Bayes’ rule:

P(AN B) = P(A|B)P(B) = P(B|A)P(A)

Generalization: Let’s say we are given a probability P(A|B;) and we need
to compute P(B;|A). Let By, Ba, ..., By, be disjoint events, covering the
whole sample space. Then:

P(A|B:)P(B)
P(4)
P(A|B1)P(B)
Y P(ANB)
P(A|B1)P(B)
Y1 P(A|B)P(B;)

P(B|A)
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Independence

B An important concept in probability and statistics

CS 5002: Discrete Math ©Northeastern University Fall 2018



Independence

B An important concept in probability and statistics

B Conceptually, it models the lack of information between events
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Independence

B An important concept in probability and statistics
B Conceptually, it models the lack of information between events

B Two events A and B are said to be independent, if the knowledge that
A has occurred does not change the probability that B occurs
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Independent Events

Definition

Two events A and B are independent if P(A N B) = P(A)P(B). Stated
differently, events A and B are independent is P(A|B) = P(A) and
P(B|A) = P(B).
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Independance and Mutual Exclusiveness

Note: two events A and B being independent necessarily means that these
events are not mutually exclusive:

ANB#(

Example: Consider simultaneous flips of two fair coins.

B Event A: First Coin was a head.
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Independance and Mutual Exclusiveness

Note: two events A and B being independent necessarily means that these
events are not mutually exclusive:

ANB#(

Example: Consider simultaneous flips of two fair coins.
B Event A: First Coin was a head.

B Event B: Second coin was a tail.
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Independance and Mutual Exclusiveness

Note: two events A and B being independent necessarily means that these
events are not mutually exclusive:

ANB#(

Example: Consider simultaneous flips of two fair coins.
B Event A: First Coin was a head.
B Event B: Second coin was a tail.

B Events A and B are independent events, and they are not mutually
exclusive.
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Independance and Mutual Exclusiveness

Note: two events A and B being independent necessarily means that these
events are not mutually exclusive:

ANB#(

Example: Consider simultaneous flips of two fair coins.
B Event A: First Coin was a head.
B Event B: Second coin was a tail.

B Events A and B are independent events, and they are not mutually
exclusive.

B On the other hand, let’s define event C as: first coin was a tail. Then
A and C are not independent. They are mutually exclusive - knowing
that one has occurred (e.g. heads) implies the other cannot (tails).
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Section 5

Random Variables
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Random Variable

Definition

A random variable is a mapping or a function from the sample space {2 to
the real line: X : Q@ — R.

Let x € R. Then it holds that:

P(X(w)=2)=PH{weQ: X ==z}) )

Note 1: Although random variable is a function, we typically denote it

simply as X.

Fall 2018
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Random Variable

Definition

A random variable is a mapping or a function from the sample space 2 to
the real line: X : Q@ — R.

Let x € R. Then it holds that:

PX(w)=2)=PH{weQ: X =z}

Note 1: Although random variable is a function, we typically denote it
simply as X.

Note 2: It is very common to directly define probabilities over the
range of the random variable.
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Random Variable

Definition

A random variable is a mapping or a function from the sample space 2 to
the real line: X :  — R.

Let x € R. Then it holds that:

P(X(w)=z)=PH{weQ: X =z}

Some examples of random variables:

B The number of defective microchips out of 100 inspected.
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Random Variable

Definition

A random variable is a mapping or a function from the sample space 2 to
the real line: X :  — R.

Let z € R. Then it holds that:

P(X(w)=z)=PH{weQ: X =z}

Some examples of random variables:
B The number of defective microchips out of 100 inspected.

B The number of bugs in some computer program.
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Random Variable

Definition

A random variable is a mapping or a function from the sample space 2 to
the real line: X :  — R.

Let z € R. Then it holds that:

P(X(w)=z)=PH{weQ: X =z}

Some examples of random variables:
B The number of defective microchips out of 100 inspected.
B The number of bugs in some computer program.

B The number of rainy days in Seattle in December.
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Random Variable

Definition

A random variable is a mapping or a function from the sample space 2 to
the real line: X :  — R.

Let z € R. Then it holds that:

P(X(w)=z)=PH{weQ: X =z}

Some examples of random variables:
B The number of defective microchips out of 100 inspected.
The number of bugs in some computer program.

The number of rainy days in Seattle in December.

The amount of time needed for one communication packet to be
transferred from your computer to the server hosting our course
website.
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Random Variable

Definition

A random variable is a mapping or a function from the sample space 2 to
the real line: X : Q@ — R.

Let x € R. Then it holds that:

P(X(w)=2)=P{weQ: X =z})

B The set of possible values some random variable X can take is called
the range of X.
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Random Variable

Definition

A random variable is a mapping or a function from the sample space 2 to
the real line: X : Q@ — R.

Let x € R. Then it holds that:

P(X(w)=2)=P{weQ: X =z})

B The set of possible values some random variable X can take is called
the range of X.
B Based upon the countability of the range, we distinguish between:
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Random Variable

Definition

A random variable is a mapping or a function from the sample space {2 to
the real line: X : ) — R.

Let z € R. Then it holds that:

P(X(w)=2)=P{weQ: X =z})

B The set of possible values some random variable X can take is called
the range of X.
B Based upon the countability of the range, we distinguish between:

B Discrete random variables - have a countable number of possible
values
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Random Variable

Definition

A random variable is a mapping or a function from the sample space 2 to
the real line: X : Q@ — R.

Let x € R. Then it holds that:

P(X(w)=2)=P{weQ: X =z})

B The set of possible values some random variable X can take is called
the range of X.
B Based upon the countability of the range, we distinguish between:

B Discrete random variables - have a countable number of possible
values

B Continuous random variables - have an uncountable number of
possible values
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Discrete Random Variables - Examples

Discrete random variables - have a countable number of possible values

B Number of sunny days in Seattle in Summer
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Discrete Random Variables - Examples

Discrete random variables - have a countable number of possible values

B Number of sunny days in Seattle in Summer
B Number of students who pass CS 5002 with grade A
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Discrete Random Variables - Examples

Discrete random variables - have a countable number of possible values

B Number of sunny days in Seattle in Summer
B Number of students who pass CS 5002 with grade A

B Number of delievered packages currently on my porch
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Discrete Random Variables - Examples

Discrete random variables - have a countable number of possible values

B Number of sunny days in Seattle in Summer
B Number of students who pass CS 5002 with grade A
B Number of delievered packages currently on my porch

B Number of problems on the final exam
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Continuous Random Variables - Examples

Continuous random variables - have an uncountable number of possible
values

B Rainfall measurement in Seattle in December
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Continuous Random Variables - Examples

Continuous random variables - have an uncountable number of possible
values

B Rainfall measurement in Seattle in December

B Snowfall measurement in Whistler in December
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Continuous Random Variables - Examples

Continuous random variables - have an uncountable number of possible
values

B Rainfall measurement in Seattle in December

B Snowfall measurement in Whistler in December

B The lifetime of my new TV
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Continuous Random Variables - Examples

Continuous random variables - have an uncountable number of possible
values

B Rainfall measurement in Seattle in December

B Snowfall measurement in Whistler in December

B The lifetime of my new TV

B The average lifetime of the most expensive smart phone currently on
the market

Fall 2018
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Section 6

Probability Distributions
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Probability Distribution

Let X be some random variable. We would like to specify the probabilities
of various kinds of events. For examples:

B Probability of an event X =«
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Probability Distribution

Let X be some random variable. We would like to specify the probabilities
of various kinds of events. For examples:

B Probability of an event X =«
B Probability of an event {x < X < b}
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Probability Distribution

Let X be some random variable. We would like to specify the probabilities
of various kinds of events. For examples:

B Probability of an event X = x
B Probability of an event {x < X < b}

If we can specify all probabilities involving X, then we can specify the
probability distribution of X.
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Cumulative Distribution Function (cdf)

Definition
The cumulative distribution function (cdf) of some random variable X
is the function F' : R — [0, 1], defined as:

F(z)=P(X <z), z€R

The following properties of cdf F are a direct consequence of the axioms of
probability:
BO0<F(zr) <Ll
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Cumulative Distribution Function (cdf)

Definition
The cumulative distribution function (cdf) of some random variable X
is the function F' : R — [0, 1], defined as:

F(z)=P(X <z), z€R

The following properties of cdf F are a direct consequence of the axioms of
probability:

BO0<F(x)<L

B Fisincreasing: z <y — F(z) < F(y)

CS 5002: Discrete Math ©Northeastern University Fall 2018 116



Cumulative Distribution Function (cdf)

Definition
The cumulative distribution function (cdf) of some random variable X
is the function F' : R — [0, 1], defined as:

F(z)=P(X <z), z€R

The following properties of cdf F are a direct consequence of the axioms of
probability:

BO0<F(x)<L

B Fisincreasing: z <y — F(z) < F(y)

B lim, , F(z)=1
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Cumulative Distribution Function (cdf)

Definition
The cumulative distribution function (cdf) of some random variable X
is the function F' : R — [0, 1], defined as:

F(z)=P(X <z), z€R

The following properties of cdf F are a direct consequence of the axioms of
probability:

BO0<F(x)<L

B Fisincreasing: z <y — F(z) < F(y)

B lim, , F(z)=1

B F'is right-continuous.

CS 5002: Discrete Math ©Northeastern University Fall 2018 118



Discrete Distributions and Probability Mass Function

Definition
Some random variable X has a discrete probability distribution if X is a
discrete random variable.

Every discrete random variable has associated with it a probability mass
function which outputs the probability of the random variable taking a
particular value.
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Discrete Distributions and Probability Mass Function

Every discrete random variable has associated with it, a probability mass
function which ouputs the probability of the random variable taking a
particular value.

Definition
Given some discrete random variable X, we can define its probability
mass function (pmf), f, as:

Note: the easiest way to specify the probability distribution of a discrete
random variable is to specify its pmf.
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Discrete Distributions and Probability Mass Function

Definition
Given some discrete random variable X, we can define its probability
mass function (pmf), f, as:

f(2) = B(X = a)

Note: the easiest way to specify the probability distribution of a discrete
random variable is to specify its pmf.

Example: Let X denote a random variable corresponding to the role of a
die. Then P(X = i) = { is the pmf associated with X.
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Section 7

Expectation
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Expectation

Although all the probability information of some random variable is
contained in its cdf and its pmf, it is often useful to consider other
numerical characteristics of that random variable, including:

B Expectation
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Expectation

Although all the probability information of some random variable is
contained in its cdf and its pmf, it is often useful to consider other
numerical characteristics of that random variable, including:

B Expectation

M Variance
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Expectation

Although all the probability information of some random variable is
contained in its cdf and its pmf, it is often useful to consider other
numerical characteristics of that random variable, including:

B Expectation
M Variance

B Standard derivation
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Expectation

Definition

Let X be a discrete random variable with pmf f. The expectation of X,
denoted as E(X) is defined as:

E(X) = Z:UIP’(X:x) = fo(x)

T

Note: The expectation is not necessarily a possible outcome of some
random experiment. It is the weighted average of the values that a random
variable can take (where the weights are given by the probabilities).
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The Linearity of Expectation

Definition
Let X be a discrete random variable with pmf f. The expectation of X,
denoted as E(X) is defined as:

E(X) = ZZ‘P(X =1z) = wa(x)

x
v

Theorem
If X is a discrete random variable with pmf f, then for any real-valued

function g it holds that:

E(9(X)) = g(x)f(2)

Fall 2018
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The Linearity of Expectation

Theorem

If X is a discrete random variable with pmf f, then for antyreal-valued
function g it holds that:

E(9(X)) =) _g(x)f(2)

An important consequence of the previous theorem is the fact that
expectation is a linar function, and it holds that:

B E(aX +0b) =aE(X)+0b
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The Linearity of Expectation

Theorem

If X is a discrete random variable with pmf f, then for antyreal-valued
function g it holds that:

E(9(X)) =) _g(x)f(2)

An important consequence of the previous theorem is the fact that
expectation is a linar function, and it holds that:

B E(aX +0b) =aE(X)+0b
B E(g(X)+h(X)) =Eg(X)+ER(X)
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The Variance and Standard Derivation

Definition

The variance of a random variable X, denotes as Var(X) is defined as:

Var(X) = E(X —E(X))?

The following properties hold for variance:

B The squared root of the variance is called standard derivation.
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The Variance and Standard Derivation

Definition

The variance of a random variable X, denotes as Var(X) is defined as:

Var(X) = E(X —E(X))?

The following properties hold for variance:
B The squared root of the variance is called standard derivation.
B Var(X) = E(X?) - E(X)?
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The Variance and Standard Derivation

Definition

The variance of a random variable X, denotes as Var(X) is defined as:

Var(X) = E(X —E(X))?

The following properties hold for variance:
B The squared root of the variance is called standard derivation.
B Var(X) = E(X?) - E(X)?
B Var(aX +b) = a®Var(X)
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Section 8

Some Imporant Discrete Distributions
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Bernoulli Distribution

Definition

Some random variable X has a Bernoulli distribution with success
probability p if X can only assume two possible values, 0 and 1, with
probabilities:

We write X ~ Ber(p).

Example: Single coin toss experiment.
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Bernoulli Distribution

Some properties:

M The cdf given below.
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Bernoulli Distribution

Some properties:
M The cdf given below.
B The expectation: E(P) =0P(X =0) +1P(X =1)=p
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Bernoulli Distribution

Some properties:
M The cdf given below.
B The expectation: E(P) =0P(X =0) +1P(X =1)=p
B Variance: Var(X) = E(X?) — (EX)? = p(1 — p)
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Bernoulli Distribution

Some properties:
M The cdf given below.
B The expectation: E(P) =0P(X =0) +1P(X =1)=p
B Variance: Var(X) = E(X?) — (EX)? = p(1 — p)
B One of the most important distributions in the probability theory.
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Binomial Distribution

Definition

Consider the sequence of n random events with two possible outcomes, for
example coin tosses, where the probability of a head is p. If X is the random
variable that counts the number of heads, then we say that X has a
binomial distribution, with parameters n and p, and write X = Bin(n, p).
The probability mass function (pmf) of X is given as:

fz)=P(X =2) = (Z);gm — )" 2 =0,1,...,n

Fall 2018
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Binomial Distribution

Definition

The probability mass function (pmf) of X ~ Bin(n, p) is given as:

fz)=P(X =2) = (“)pfvu )" T =0,1,...,n

X

Some properties:

B The expecation of random variable X = Bin(n, p) is E(X) = np.
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Binomial Distribution

Definition

The probability mass function (pmf) of X ~ Bin(n, p) is given as:

fz)=P(X =2) = (“)pfvu )" T =0,1,...,n

X

Some properties:
B The expecation of random variable X = Bin(n, p) is E(X) = np.

B The variance of random variable X = Bin(n, p) is
Var)(X) = np(1 —p).
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Geometric Distribution

Definition

Consider again the sequence of n random events with two possible
outcomes, for example coin tosses, where the probability of a head is p. If X
is the random variable that counts the number tosses needed before we
see the first head, then we say that X has a geometric distribution,
with parameter p, and write X ~ Geo(p). The probability mass function
(pmf) of X is given as:

f@)=P(X=2)=(1-p)"'p, =1,2,3,...
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Geometric Distribution

Definition

The probability mass function (pmf) of X ~ Geo(p) is given as:

fl@)=P(X =2)=(1-p)" 'p, =1,2,3,...

Some properties:

B The expecation of random variable X =~ Geo(p) is E(X) = %.
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Geometric Distribution

Definition

The probability mass function (pmf) of X ~ Geo(p) is given as:

fl@)=P(X =2)=(1-p)" 'p, =1,2,3,...

Some properties:

B The expecation of random variable X =~ Geo(p) is E(X) = %.
B The variance of random variable X ~ Geo(p) is Var(X) = np(1 — p).
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Geometric Distribution

Definition

The probability mass function (pmf) of X ~ Geo(p) is given as:

fl@)=P(X =2)=(1-p)" 'p, =1,2,3,...

Some properties:

B The expecation of random variable X =~ Geo(p) is E(X) = %.

B The variance of random variable X ~ Geo(p) is Var(X) = np(1 — p).

B Memoryless property - the fact that we have already had k failures
does not make the event of getting a success in the next trial(s) any
more likely.
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Section 9

Stochastic Procesess
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Stochastic Processes

Definition
A stochastic or random process is typically defined as an indexed
collection of random variables, and denotes as {X;} 2 ;.

CS 5002: Discrete Math ©Northeastern University Fall 2018



Stochastic Processes

Definition

A stochastic or random process is typically defined as an indexed
collection of random variables, and denotes as {X;}2 ;.

Some examples:

B Weather around Seattle
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Stochastic Processes

Definition

A stochastic or random process is typically defined as an indexed
collection of random variables, and denotes as {X;}2 ;.

Some examples:
B Weather around Seattle
B Stock prices
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Stochastic Processes

Definition

A stochastic or random process is typically defined as an indexed
collection of random variables, and denotes as {X;}2 ;.

Some examples:
B Weather around Seattle
B Stock prices

B Customers entering and existing store

CS 5002: Discrete Math

©Northeastern University Fall 2018



Stochastic Processes

Definition
A stochastic or random process is typically defined as an indexed
collection of random variables, and denotes as {X;}2 ;.

Some examples:
B Weather around Seattle
B Stock prices
B Customers entering and existing store

B Operation of telecommunication networks
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Independent and Identically Distributed Stochastic
Processes

Definition
A stochastic process is said to be independent and identically

distributed (iid) if each of its random variables X; has the same cdf, and
all random variables are independent, in a sense that:

]P’(Xl = :L'l,XQ =T2,... ,Xn = fl}n) = ]P(Xl = iL‘l)]P(XQ = .1;‘2) .. ]P(Xn =

L

v
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