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Section 1

Review: Proof Techniques

CS 5002: Discrete Math ©Northeastern University Fall 2018 3



Proving Correctness

How to prove that an algorithm is correct?

Proof by:

� Counterexample (indirect proof )

� Induction (direct proof )

� Loop Invariant

Other approaches: proof by cases/enumeration, proof by chain of i�s, proof

by contradiction, proof by contrapositive
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Proof by Counterexample

Searching for counterexamples is the best way to disprove the correctness

of some things.

� Identify a case for which something is NOT true

� If the proof seems hard or tricky, sometimes a counterexample works

� Sometimes a counterexample is just easy to see, and can shortcut a

proof

� If a counterexample is hard to find, a proof might be easier
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Proof by Induction

Failure to find a counterexample to a given algorithm does not mean “it is

obvious” that the algorithm is correct.

Mathematical induction is a very useful method for proving the correctness

of recursive algorithms.

1 Prove base case

2 Assume true for arbitrary value n

3 Prove true for case n+ 1
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Proof by Loop Invariant

� Built o� proof by induction.

� Useful for algorithms that loop.

Formally: find loop invariant, then prove:

1 Define a Loop Invariant

2 Initialization

3 Maintenance

4 Termination

Informally:

1 Find p, a loop invariant

2 Show the base case for p

3 Use induction to show the rest.
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Proof by Loop Invariant Is…

Invariant: something that is always true

A�er finding a candidate loop invariant, we prove:

1 Initialization: How does the invariant get initialized?

2 Loop Maintenance: How does the invariant change at each pass

through the loop?

3 Termination: Does the loop stop? When?
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Steps to Loop Invariant Proof

A�er finding your loop invariant:

� Initialization

� Prior to the loop initiating, does the property hold?

� Maintenance

� A�er each loop iteration, does the property still hold, given the

initialization properties?

� Termination

� A�er the loop terminates, does the property still hold? And for what

data?
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Things to remember

� Algorithm termination is necessary for proving correctness of the

entire algorithm.

� Loop invariant termination is necessary for proving the behavior of

the given loop.
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Summary

� Approaches to proving algorithms correct

� Counterexamples

� Helpful for greedy algorithms, heuristics

� Induction

� Based on mathematical induction

� Once we prove a theorem, can use it to build an algorithm

� Loop Invariant

� Based on induction

� Key is finding an invariant

� Lots of examples
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Section 2

Some Graph and Tree Problems
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Indoors Navigation
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Telecommunication Networks
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Social Networks
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Section 3

Introduction to Trees
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What is a Tree?

Tree - a directed, acyclic structure of linked nodes

� Directed - one-way links between nodes (no cycles)

� Acyclic - no path wraps back around to the same node twice (typically

represents hierarchical data)
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Tree Terminology: Nodes

� Tree - a directed, acyclic structure of linked nodes

� Node - an object containing a data value and links to other nodes

� All the blue circles
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Tree Terminology: Edges

� Tree - a directed, acyclic structure of linked nodes

� Edge - directed link, representing relationships between nodes

� All the grey lines
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Root Node

� Tree - a directed, acyclic structure of linked nodes

� Root - the start of the tree tree)
� The top-most node in the tree

� Node without parents
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Parent Nodes

� Tree - a directed, acyclic structure of linked nodes

� Parent (ancestor) - any node with at least one child

� The blue nodes
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Children Nodes

� Tree - a directed, acyclic structure of linked nodes

� Child (descendant) - any node with a parent

� The blue nodes
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Sibling Nodes

� Tree - a directed, acyclic structure of linked nodes

� Siblings - all nodes on the same level

� The blue nodes

CS 5002: Discrete Math ©Northeastern University Fall 2018 24



Internal Nodes

� Tree - a directed, acyclic structure of linked nodes

� Internal node - a node with at least one children (except root)

� All the orange nodes
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Leaf (External) Nodes

� Tree - a directed, acyclic structure of linked nodes

� External node - a node without children

� All the orange nodes
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Tree Path

� Tree - a directed, acyclic structure of linked nodes

� Path - a sequence of edges that connects two nodes

� All the orange nodes
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Node Level

� Node level - 1 + [the number of connections between the node and

the root]

� The level of node 1 is 1

� The level of node 11 is 4
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Node Height

� Node height - the length of the longest path from the node to some

leaf

� The height of any leaf node is 0
� The height of node 8 is 1

� The height of node 1 is 3

� The height of node 11 is 0
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Tree Height

Tree height
� The height of the root of the tree, or

� The number of levels of a tree -1.

� The height of the given tree is 3.
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What is Not a Tree?

Problems:

� Cycles: the only node has a cycle

� No root: the only node has a parent (itself, because of the cycle), so

there is no root
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What is Not a Tree?

Problems:

� Cycles: there is a cycle in the tree

� Multiple parents: node 3 has multiple parents on di�erent levels
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What is Not a Tree?

Problems:

� Cycles: there is an undirected cycle in the tree

� Multiple parents: node 5 has multiple parents on di�erent levels
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What is Not a Tree?

Problems:

� Disconnected components: there are two unconnected groups of

nodes
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Summary: What is a Tree?

� A tree is a set of nodes, and that set can be empty

� If the tree is not empty, there exists a special node called a root
� The root can have multiple children, each of which can be the root of a

subtree
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Section 4

Special Trees
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Special Trees

� Binary Tree

� Binary Search Tree

� Balanced Tree

� Binary Heap/Priority �eue

� Red-Black Tree
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Binary Trees

Binary tree - a tree where every node has at most two children
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Binary Search Trees

� Binary search tree (BST) - a tree where nodes are organized in a

sorted order to make it easier to search

� At every node, you are guaranteed:

� All nodes rooted at the le� child are smaller than the current node

value

� All nodes rooted at the right child are smaller than the current node

value
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Example: Binary Search Trees?

Binary search tree (BST) - a tree where nodes are organized in a sorted
order to make it easier to search

� Le� tree is a BST

� Right tree is not a BST - node 7 is on the le� hand-side of the root

node, and yet it is greater than it
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Example: Using BSTs

Suppose we want to find who has the score of 15…
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Example: Using BSTs

Suppose we want to find who has the score of 15:

� Start at the root

� If the score is > 15, go to the le�

� If the score is < 15, go to the right

� If the score == 15, stop
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Balanced Trees

Consider the following two trees. Which tree would it make it easier for us

to search for an element?
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Balanced Trees

Consider the following two trees. Which tree would it make it easier for us

to search for an element?

Observation: height is o�en key for how fast functions on our trees are.

So, if we can, we want to choose a balanced tree.
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Tree Balance and Height

How do we define balance?
� If the heights of the le� and right trees are balanced, the tree is

balanced, so:

|(height(le�)− height(right))|
� Anything wrong with this approach?

� Are these trees balanced?
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Tree Balance and Height

� Observation: it is not enough to balance only root, all nodes should

be balanced.

� The balancing condition: the heights of all le� and right subtrees

di�er by at most 1
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Example: Balanced Trees?

� The le� tree is balanced.

� The right tree is not balanced. The height di�erence between nodes 2

and 8 is two.
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Section 5

Tree Traversals
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Tree Traversals

Challenge: write a recursive function that starts at the root, and prints out

the data in each node of the tree below
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals

Summary:
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Tree Traversals
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Tree Traversals
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Tree Traversals

Challenge: write a non-recursive function that starts at the root, and prints

out the data in each node of the tree below
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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Tree Traversals
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BFS Example

Find element with value 15 in the tree below.

� BFS: traverse all of the nodes on the same level first, and then move on

to the next (lower) level
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BFS Example

Find element with value 15 in the tree below using BFS.

� BFS: traverse all of the nodes on the same level first, and then move on

to the next (lower) level

25 – 10 – 12 – 7 – 8 – 15 – 5
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DFS Example

Find element with value 15 in the tree below using DFS.

� DFS: traverse one side of the tree all the way to the leaves, followed by

the other side
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DFS Example

Find element with value 15 in the tree below using DFS.

� DFS: traverse one side of the tree all the way to the leaves, followed by

the other side

25 – 10 – 7 –8 – 12 – 15 – 5
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Tree Traversals Example

Traverse the tree below, using:

� Pre-order traversal: 25 – 10 – 7 – 8 – 12 – 15 – 5

� In-order traversal: 7 – 10 – 8 – 25 – 15 – 12 – 5

� Post-order traversal: 7 – 8 –10 – 15 –5 – 12 – 25
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Tree Traversals Example
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Tree Traversals Example

Traverse the tree below, using:

� Pre-order traversal: 25 – 10 – 7 – 8 – 12 – 15 – 5

� In-order traversal: 7 – 10 – 8 – 25 – 15 – 12 – 5

� Post-order traversal: 7 – 8 –10 – 15 –5 – 12 – 25
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Section 6

Introduction to Graphs

CS 5002: Discrete Math ©Northeastern University Fall 2018 95



What is a Graph?

Formal Definition:
� A graph G is a pair (V,E) where

� V is a set of vertices or nodes

� E is a set of edges that connect vertices

Simply put:
� A graph is a collection of nodes (vertices) and edges

� Linked lists, trees, and heaps are all special cases of graphs
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An Example

Here is a graph G = (V,E)

� Each edge is a pair (v1, v2),
where v1, v2 are vertices in V

� V = {A,B,C,D,E, F}
� E = {(A,B), (A,D), (B,C),

(C,D), (C,E), (D,E)}
A

B

C

D

E

F
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Terminology: Undirected Graph

� Two vertices u and v are adjacent in an undirected graph G if {u, v} is
an edge in G

� edge e = {u, v} is incident with vertex u and vertex v

� The degree of a vertex in an undirected graph is the number of edges

incident with it

� a self-loop counts twice (both ends count)

� denoted with deg(v)
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Terminology: Directed Graph

� Vertex u is adjacent to vertex v in a directed graph G if (u, v) is an
edge in G

� vertex u is the initial vertex of (u, v)

� Vertex v is adjacent from vertex u

� vertex v is the terminal (or end) vertex of (u, v)
� Degree

� in-degree is the number of edges with the vertex as the terminal vertex

� out-degree is the number of edges with the vertex as the initial vertex
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Kinds of Graphs

� directed vs undirected

� weighted vs unweighted

� simple vs non-simple

� sparse vs dense

� cyclic vs acyclic

� labeled vs unlabeled
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Directed vs Undirected

� Undirected if edge (x, y) implies

edge (y, x).

� otherwise directed

� Roads between cities are

usually undirected (go both

ways)

� Streets in cities tend to be

directed (one-way)

A

B

C

D

E

F

A

B

C

D

E

F
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Weighted vs Unweighted

� Each edge or vertex is assigned

a numerical value (weight).

� A road network might be

labeled with:

� length

� drive-time

� speed-limit

� In an unweighted graph, there

is no distinction between edges.

A

B

C

D

E

F

15

7

8

2

20

6

4

10
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Simple vs Not simple

� Some kinds of edges make

working with graphs

complicated

� A self-loop is an edge (x, x)
(one vertex).

� An edge (x, y) is a multiedge
if it occurs more than once in a

graph.

A

B

C

D

E

F
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Sparse vs Dense

� Graphs are sparse when a small

fraction of vertex pairs have

edges between them

� Graphs are dense when a large

fraction of vertex pairs have

edges

� There’s no formal distinction

between sparse and dense

A

B

C

D

E

F
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Cyclic vs Acyclic

� An acyclic graph contains no

cycles

� A cyclic graph contains a cycle

� Trees are connected, acyclic,
undirected graphs

� Directed acyclic graphs are

called DAGs

A

B

C

D

E

F

A

B

C

D

E

F
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Labeled vs Unlabeled

� Each vertex is assigned a

unique name or identifier in a

labeled graph

� In an unlabeled graph, there

are no named nodes

� Graphs usually have names—

e.g., city names in a

transportation network

� We might ignore names in

graphs to determine if they are

isomorphic (similar in structure)
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Section 7

Graph Representations
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Graph Representations

Two ways to represent a graph in code:

� Adjacency List
� A list of nodes

� Every node has a list of adjacent nodes

� Adjacency Matrix
� A matrix has a column and a row to represent every node

� All entries are 0 by default

� An entry G[u, v] is 1 if there is an edge from node u to v
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Adjacency List

For each v in V , L(v) = list of w such that (v, w) is in E:

A

B

C

D

E

F

Storage space:
a|V |+ b|E|

a = sizeof(node)
b = sizeof( linked list element)
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Adjacency Matrix

A

B

C

D

E

F

Storage space: |V |2

Does this matrix represent a directed or undirected graph?
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Adjacency Matrix

A

B

C

D

E

F

Storage space: |V |2

Does this matrix represent a directed or undirected graph?
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Comparing Matrix vs List

1 Faster to test if (x, y) is in a

graph?

2 Faster to find the degree of a

vertex?

3 Less memory on small graphs?

4 Less memory on big graphs?

5 Edge insertion or deletion?

6 Faster to traverse the graph?

7 Be�er for most problems?

1 adjacency matrix

2 adjacency list

3 adjacency list (m+n) vs (n2)

4 adjacency matrices (a li�le)

5 adjacency matrices O(1) vs O(d)

6 adjacency list

7 adjacency list
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Analyzing Graph Algorithms

� Space and time are analyzed in terms of:

� Number of verticesm = |V |
� Number of edges n = |E|

� Aim for polynomial running times.

� But: is O(m2) or O(n3) a be�er running time?

� depends on what the relation is between n and m

� the number of edges m can be at most n2 ≤ n2
.

� connected graphs have at leastm ≥ n− 1 edges

� Stil do not know which of two running times (such asm2
and n3

) are

be�er,

� Goal: implement the basic graph search algorithms in time O(m+ n).

� This is linear time, since it takes O(m+n) time simply to read the input.

� Note that when we work with connected graphs, a running time of

O(m+ n) is the same as O(m), since m ≥ n− 1.
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Section 8

Graph Traversals
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Graph Traversals

Two basic traversals:

� Breadth First Search (BFS)

� Depth First Search (DFS)
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BFS

Example…
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What’s the best way for me to get from Green Lake to Space Needle?
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BFS: The Algorithm

� Start at the start.

� Look at all the neighbors. Are any of them the destination?

� If no:

� Look at all the neighbors of the neighbors. Are any of them the

destination?

� Look at all the neighbors of the neighbors of the neighbors. Are any of

them the destination?
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BFS: Runtime

� If you search the entire network, you traverse each edge at least once:

O(|E|)
� That is, O(number of edges)

� Keeping a queue of who to visit in order.

� Add single node to queue: O(1)
� For all nodes: O(number of nodes)

� O(|V |)
� Together, it’s O(V + E)
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Using

� Assuming we can add and remove from our “pending” DS in O(1) time,

the entire traversal is O(|E|)
� Traversal order depends on what we use for our pending DS.

� Stack : DFS

� �eue: BFS

� These are the main traversal techniques in CS, but there are others!
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� Depth first search needs to check which nodes have been output or

else it can get stuck in loops.

� In a connected graph, a BFS will print all nodes, but it will repeat if

there are cycles and may not terminate

� As an aside, in-order, pre-order and postorder traversals only make

sense in binary trees, so they aren’t important for graphs. However, we

do need some way to order our out-vertices (le� and right in BST).
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� Breadth-first always finds shortest length paths, i.e., “optimal

solutions”

� Be�er for “what is the shortest path from x to y”

� But depth-first can use less space in finding a path

� If longest path in the graph is p and highest out- degree is d then DFS

stack never has more than d ∗ p elements

� But a queue for BFS may hold O(|V |) nodes
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BFS vs DFS: Problems

BFS Applications

� Connected components

� Two-coloring graphs

DFS Applications

� Finding cycles

� Topological Sorting

� Strongly Connected

Components
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Section 9

Path Finding in a Graph
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Single-Source Shortest Path

Input Directed graph with non-negative weighted edges, a starting

node s and a destination node d

Problem Starting at the given node s, find the path with the lowest

total edge weight to node d

Example A map with cities as nodes and the edges are distances

between the cities. Find the shortest distance between city 1

and city 2.
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Djikstra’s Algorithm: Overview

� Find the “cheapest” node— the node you can get to in the shortest

amount of time.

� Update the costs of the neighbors of this node.

� Repeat until you’ve done this for each node.

� Calculate the final path.
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Djikstra’s Algorithm: Formally

DJIKSTRA(G,w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S = ∅
3 Q = G.V
4 while Q 6= ∅
5 u = Extract-min(Q)

6 S = S ∪ {u}
7 for each vertex v ∈ G.Adj[u]
8 Relax (u, v, w)
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Djikstra(G,w, s)

1 . G is a graph

2 . w is the weighting function such that w(u, v) returns the weight of the edge between u, v.
3 . s is the starting node
4 for each vertex u ∈ G
5 u.d = w(s, u) . where w(s, u) =∞ if there is no edge (s, u).
6 S = ∅ . Nodes we know the distance to

7 Q = G.V . min-Priority�eue starting with all our nodes, ordered by distance u.d from s found.
8 while Q 6= ∅
9 u = Extract-min(Q) . Greedy step: get the closest node

10 S = S ∪ {u} . Set of nodes that have shortest-path-distance found

11 for each vertex v ∈ G.Adj[u]
12 Relax (u, v, w)

Relax(u, v, w)

1 . u is the start node

2 . v is the destination node

3 . w is the weight function

4 newDistance = u.d+ w(u, v)
5 if newDistance < v.d
6 v.d = newDistance . Priority �eue holding the nodes will be updated accordingly
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Djikstra’s: A walkthrough

� Find the “cheapest” node— the

node you can get to in the

shortest amount of time.

� Update the costs of the

neighbors of this node.

� Repeat until you’ve done this

for each node.

� Calculate the final path.

Breadth First Search: distance = 7

Start Finish

A

B

6

2

3

1

5
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Step 1: Find the cheapest node

1 Should we go to A or B?

� Make a table of how long it takes to get to each node from this node.

� We don’t know how long it takes to get to Finish, so we just say infinity

for now.

Node Time to Node

A 6

B 2

Finish ∞

Start Finish

A

B

6

2

3

1

5
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Step 2: Take the next step

1 Calculate how long it takes to get (from Start) to B’s neighbors by

following an edge from B

� We chose B because it’s the fastest to get to.

� Assume we started at Start, went to B, and then now we’re updating

Time to Nodes.

Node Time to Node

A �65

B 2

Finish ��∞ 7

Start Finish

A

B

6

2

3

1

5
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Step 3: Repeat!

1 Find the node that takes the least amount of time to get to.

� We already did B, so let’s do A.

� Update the costs of A’s neighbors

� Takes 5 to get to A; 1 more to get to Finish

Node Time to Node

A �65

B 2

Finish �76

Start Finish

A

B

6

2

3

1

5
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