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Section 1

Review: Proof Techniques
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Proving Correctness

How to prove that an algorithm is correct?

Proof by:

B Counterexample (indirect proof)
B Induction (direct proof)

B Loop Invariant

Other approaches: proof by cases/enumeration, proof by chain of iffs, proof
by contradiction, proof by contrapositive
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Proof by Counterexample

Searching for counterexamples is the best way to disprove the correctness
of some things.

B Identify a case for which something is NOT true

B If the proof seems hard or tricky, sometimes a counterexample works

B Sometimes a counterexample is just easy to see, and can shortcut a
proof

M If a counterexample is hard to find, a proof might be easier
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Proof by Induction

Failure to find a counterexample to a given algorithm does not mean “it is
obvious” that the algorithm is correct.

Mathematical induction is a very useful method for proving the correctness
of recursive algorithms.

© Prove base case
® Assume true for arbitrary value n

® Prove true for case n + 1
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Proof by Loop Invariant

B Built off proof by induction.
B Useful for algorithms that loop.

Formally: find loop invariant, then prove:
@ Define a Loop Invariant
® Initialization
©® Maintenance
O Termination
Informally:
© Find p, a loop invariant
® Show the base case for p

©® Use induction to show the rest.
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Proof by Loop Invariant Is...

Invariant: something that is always true

After finding a candidate loop invariant, we prove:

© Initialization: How does the invariant get initialized?

® Loop Maintenance: How does the invariant change at each pass
through the loop?

® Termination: Does the loop stop? When?
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Steps to Loop Invariant Proof

After finding your loop invariant:
B Initialization
B Prior to the loop initiating, does the property hold?
B Maintenance
B After each loop iteration, does the property still hold, given the
initialization properties?
B Termination

B After the loop terminates, does the property still hold? And for what
data?
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Things to remember

B Algorithm termination is necessary for proving correctness of the
entire algorithm.

B Loop invariant termination is necessary for proving the behavior of
the given loop.
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Summary

B Approaches to proving algorithms correct
B Counterexamples

m Helpful for greedy algorithms, heuristics
B Induction

B Based on mathematical induction
B Once we prove a theorem, can use it to build an algorithm

B Loop Invariant
B Based on induction
B Key is finding an invariant

B Lots of examples
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Section 2

Some Graph and Tree Problems
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Section 3

Introduction to Trees
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What is a Tree?

Tree - a directed, acyclic structure of linked nodes
B Directed - one-way links between nodes (no cycles)

B Acyclic - no path wraps back around to the same node twice (typically
represents hierarchical data)
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Tree Terminology: Nodes

B Tree - a directed, acyclic structure of linked nodes
B Node - an object containing a data value and links to other nodes
B All the blue circles

SN
W
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Tree Terminology: Edges

B Tree - a directed, acyclic structure of linked nodes
B Edge - directed link, representing relationships between nodes
B All the grey lines

N
W
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Root Node

B Tree - a directed, acyclic structure of linked nodes
B Root - the start of the tree tree)

B The top-most node in the tree
B Node without parents

N\
A A
O 0 0 0O

CS 5002: Discrete Math Northeastern University Fall 2018



Parent Nodes

B Tree - a directed, acyclic structure of linked nodes

B Parent (ancestor) - any node with at least one child
B The blue nodes

/
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Children Nodes

B Tree - a directed, acyclic structure of linked nodes
B Child (descendant) - any node with a parent
B The blue nodes
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Sibling Nodes

B Tree - a directed, acyclic structure of linked nodes

M Siblings - all nodes on the same level
B The blue nodes

A
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Internal Nodes

B Tree - a directed, acyclic structure of linked nodes
B Internal node - a node with at least one children (except root)
B All the orange nodes
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Leaf (External) Nodes

B Tree - a directed, acyclic structure of linked nodes
B External node - a node without children
B All the orange nodes
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Tree Path

B Tree - a directed, acyclic structure of linked nodes
B Path - a sequence of edges that connects two nodes
B All the orange nodes
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Node Level

B Node level - 1 + [the number of connections between the node and
the root]
B The level of node 1is 1
B The level of node 11is 4
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Node Height

B Node height - the length of the longest path from the node to some
leaf

B The height of any leaf node is 0
B The height of node 8 is 1

B The height of node 1is 3

B The height of node 11is 0
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Tree Height

Tree height

B The height of the root of the tree, or
B The number of levels of a tree -1.
B The height of the given tree is 3.
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What is Not a Tree?

Problems:
B Cycles: the only node has a cycle
B No root: the only node has a parent (itself, because of the cycle), so
there is no root
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What is Not a Tree?

Problems:
B Cycles: there is a cycle in the tree

B Multiple parents: node 3 has multiple parents on different levels

A
%%
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What is Not a Tree?

Problems:
B Cycles: there is an undirected cycle in the tree
B Multiple parents: node 5 has multiple parents on different levels

N
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What is Not a Tree?

Problems:

B Disconnected components: there are two unconnected groups of

nodes
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Summary: What is a Tree?

B A tree is a set of nodes, and that set can be empty
B If the tree is not empty, there exists a special node called a root

B The root can have multiple children, each of which can be the root of a
subtree
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Section 4

Special Trees

CS 5002: Discrete Math ortheastern University Fall 2018



Special Trees

B Binary Tree

B Binary Search Tree

M Balanced Tree

B Binary Heap/Priority Queue
B Red-Black Tree
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Binary Trees

Binary tree - a tree where every node has at most two children

N
W

CS 5002: Discrete Math ©Northeastern University Fall 2018



Binary Search Trees

B Binary search tree (BST) - a tree where nodes are organized in a
sorted order to make it easier to search

B At every node, you are guaranteed:

B All nodes rooted at the left child are smaller than the current node
value

B All nodes rooted at the right child are smaller than the current node
value
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Example: Binary Search Trees?

Binary search tree (BST) - a tree where nodes are organized in a sorted
order to make it easier to search

B Left tree is a BST
B Right tree is not a BST - node 7 is on the left hand-side of the root
node, and yet it is greater than it
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Example: Using BSTs

Suppose we want to find who has the score of 15...

Name:
Jane
Score: 15
RN
Name: Name:
Alec Jim
Score: 5 Score: 17
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Mustafa
Score: 25

JName:
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Score: 52
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Example: Using BSTs

Suppose we want to find who has the score of 15:
M Start at the root

Name:
Mustafa
Score: 25

I

Name:
Jane
Score: 15
/1 \\
-
Name: Name:
Alec Jim
Score: 5 Score: 17

\kName:

Madison
Score: 52
s [~
Name: Name:
Ben Jack
Score: 38 Score: 100

ortheastern University
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Example: Using BSTs

Suppose we want to find who has the score of 15:
M Start at the root

M If the score is > 15, go to the left

Name:
Mustafa
Score: 25

I

Name:

Jane

Score: 15

yal \\

-

Name: Name:
Alec Jim
Score: 5 Score: 17

\Name:
Madison
Score: 52

~

Name:
Ben
Score: 38

Name:
Jack
Score: 100
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Example: Using BSTs

Suppose we want to find who has the score of 15:
M Start at the root

M If the score is > 15, go to the left

B If the score is < 15, go to the right

Name:
Mustafa
Score: 25

I

Name:
Jane
Score: 15
/1 \\
-
Name: Name:
Alec Jim
Score: 5 Score: 17

\kName:

Madison
Score: 52
RN
Name: Name:
Ben Jack
Score: 38 Score: 100
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Example: Using BSTs

Suppose we want to find who has the score of 15:
B Start at the root
M If the score is > 15, go to the left
B If the score is < 15, go to the right
W If the score == 15, stop

Name:
Mustafa
Score: 25
Name: \.Name:
Jane Madison
Score: 15 Score: 52
/1 \\ // [~
> ) >
Name: Name: Name: Name:
Alec Jim Ben Jack
Score: 5 Score: 17 Score: 38 Score: 100
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Balanced Trees

Consider the following two trees. Which tree would it make it easier for us
to search for an element?
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Balanced Trees

Consider the following two trees. Which tree would it make it easier for us
to search for an element?

Observation: height is often key for how fast functions on our trees are.
So, if we can, we want to choose a balanced tree.

CS 5002: Discrete Math ©Northeastern University Fall 2018



Tree Balance and Height

How do we define balance?

B If the heights of the left and right trees are balanced, the tree is
balanced, so:
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Tree Balance and Height

How do we define balance?
B If the heights of the left and right trees are balanced, the tree is
balanced, so:
|(height(left) — height(right))|
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Tree Balance and Height

How do we define balance?

B If the heights of the left and right trees are balanced, the tree is
balanced, so:

|(height(left) — height(right))|
B Anything wrong with this approach?
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Tree Balance and Height

How do we define balance?

B If the heights of the left and right trees are balanced, the tree is
balanced, so:

|(height(left) — height(right))|
B Anything wrong with this approach?

B Are these trees balanced?
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Tree Balance and Height

B Observation: it is not enough to balance only root, all nodes should
be balanced.

B The balancing condition: the heights of all left and right subtrees
differ by at most 1
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Example: Balanced Trees?

M The left tree is balanced.

B The right tree is not balanced. The height difference between nodes 2
and 8 is two.
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Section 5

Tree Traversals
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Tree Traversals

Challenge: write a recursive function that starts at the root, and prints out
the data in each node of the tree below

1. Joe
Smith
| N
2. Jane 3. Dan
Smith Smith
RN /1 |
4. Sadie 5. Stella 6. Thomas
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Tree Traversals

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child.

3. Do the same thing for the
tree rooted by the right
child.

2. Jane
Smith

[\

4. Sadie

5. Stella

6. Thomas

Joe Smith

Write a recursive

function that starts at
the root and prints out
the data in each node
of the tree.
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Tree Traversals

Joe Smith

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child.

3. Do the same thin® ‘or the

tree rooted &' (ne right
child. ‘ \
2. Jane 3. Dan
Smith Smith
| \ /
| ‘ Write a recursive
function that starts at
the root and prints out
h i h
4. Sadie 5. stella 6. Thomas the data in each node
) of the tree.

N [ T 4
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Tree Traversals

Joe Smith

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child.

3. Do the same thing for the
tree rooted by the right
child.

2. Jane ( 3. Dan
Smith Smith

Write a recursive

4. Sadie 5. Stella 6. Thomas

of the tree.
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Tree Traversals

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child.

3. Do the same thing for tha
tree rooted by thea™ it
child.

1. Joe
Smith

[

b

3. Dan
Smith

4. Sadie

5. Stella

6. Thomas

N | |

Joe Smith
e Smith

Write a recursive
function that starts at
the root and prints out
the data in each node
of the tree.
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Tree Traversals

1. Print out the node
2. Do the same thing for the
tree rooted by the left

child.

3. Do the same thing for the
tree rooted by the right
child.

4. Sadie

1. Joe
Smith

N

3. Dan
Smith

5. Stella

6. Thomas

Joe Smith
Jane Smith

Write a recursive
function that starts at
the root and prints out
the data in each node
of the tree.
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Tree Traversals

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child.

3. Do the same thing for the
tree rooted by the right
child.

4. Sadie

X

3.Dan
Smith

5. Stella

6. Thomas
L

Joe Smith
Jane Smith

Write a recursive
function that starts at
the root and prints out
the data in each node
of the tree.
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Tree Traversals

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child.

3. Do the same thing for the
tree rooted by the right
child.

1. Joe
Smith

3. Dan
Smith

5. Stella

6. Thomas

Joe Smith
Jane Smith
Sadie

Write a recursive
function that starts at
the root and prints out
the data in each node
of the tree.
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Tree Traversals

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child.

3. Do the same thing for the
tree rooted by the right
child.

1. Joe
Smith

2. Jane
Smith

4. Sadie

3. Dan
Smith

5. Stella

6. Thomas

Joe Smith
Jane Smith
Sadie

Stella

Write a recursive
function that starts at
the root and prints out
the data in each node
of the tree.
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Tree Traversals

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child.

3. Do the same thing for the
tree rooted by the right
child.

4. Sadie

CS 5002: Discrete Math

2. Jane
Smith

5. Stella 6. Thomas

ortheastern University

Joe Smith
Jane Smith
Sadie
Stella

Dan Smith

Write a recursivé

of the tree.
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Tree Traversals

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child.

3. Do the same thing for the
tree rooted by the right
child.

1. Joe
Smith

N\

2. Jane
Smith

4. Sadie

5. Stell:

3. Dan
Smith

Joe Smith
Jane Smith
Sadie

Stella
Dan Smith
Thomas

Write a recursive
function that starts at
the root and prints out
the data in each node
of the tree.
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Tree Traversals

Summary:

void printTree (Node *root) {
printf (“%s\n”, root->data);
printTree (root->leftChild) ;
printTree (root->rightChild) ;
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Tree Traversals

Joe Smith
Jane Smith
Sadie
Stella

Dan Smith
Thomas

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child

3. Do the same thing for the
tree rooted by the right
child

Write a recursive
function that starts at
the root and prints out
the data in each node
of the tree.
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Tree Traversals

Joe Smith
Jane Smith
Sadie
Stella

1. Print out the node

2. Do the same thing for the
tree rooted by the left
child.

3. Dothesa

" Depth-First
Search/Traversal

\ ” \ ‘ function that starts at

the root and prints out

Dan Smith

oo

the data in each node
of the tree.
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Tree Traversals

Challenge: write a non-recursive function that starts at the root, and prints
out the data in each node of the tree below

4. Sadie

o~

3. Dan
Smith

1. Joe
Smith
| N
2. Jane
Smith
RN /1
5. Stella 6. Thomas
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Tree Traversals

=)

4/

1. Joe
Smith

2. Jane
Smith

RN

4. Sadie

3. Dan
Smith

5. Stella

6. Thomas

Write a non-recursive
function that starts at
the root and prints out
the data in each node o
the tree.
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Tree Traversals

) Tioe

Smith
l N
2. Jane 3. Dan
Smith Smith
[ \ /
*Nodel
Write a non-recursive
function that starts at
the root and prints out
4. Sadie 5. stella 6. Thomas the data in each node o

the tree.
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Tree Traversals

*Node2
*Node3
i ledel

pop
print
add
children

1. Joe
Smith

2. Jane
Smith

4. Sadie

~

3. Dan
Smith

5. Stella

6. Thomas

Joe Smith

Write a non-recursive
function that starts at
the root and prints ou
the data in each node
the tree.
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Tree Traversals

1. Joe
Smith

*Node2 >
— 3. Dan

2. Jane
*Node3 Smith Smith
Nodet A /
Write a non-recursive
function that starts at
pop the root and prints out
print the data in each f
add 4. Sadie 5. Stella 6. Thomas SRR SN
) the tree.
children
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Tree Traversals

1. Joe
Smith

*Node4 [~ Joe Smith

Jane Smith
*Nodeb _/ \_

ode >
2. Jane 3.Dan

*Node3 Smith Smith
e \ £

Write a non-recursive
function that starts at

pop the root and prints out
print . the data in each node o
ad_d 4. Sadie 5. Stella 6. Thomas the tree.

children
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Tree Traversals

1. Joe
Smith
*Node4 | N Joe Smith
Jane Smith
*Nodeb
*Node2
2. Jane 3. Dan
*Node3 Smith Smith
“Nodet RN /
Write a non-recursive
function that starts at
the root and prints out
print ) the data in each node o
add 4. Sadie 5. Stella 6. Thomas thz tree I °
children .
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Tree Traversals

1. Joe
Smith
=Noded [~ Joe Smith
Jane Smith
*NodeS Sadie
*Neode2
2. Jane 3. Dan
*Node3 Smith Smith
*Nodet L\ /
Write a non-recursive
function that starts at
the root and prints out
print the data in each node of
add 4. Sadie 5. Stella 6. Thomas S
children -
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Tree Traversals

1. Joe
Smith
*Noded [~ Joe Smith
Jane Smith
*Node5 SEERS
Stella
*Nede2
2. Jane 3. Dan
*
Node3 Smith Smith
*Neodet L\ /
Write a non-recursive
function that starts at
pop the root and prints out
print :‘> the data in each node of
add 4. Sadie | 5. Stella 6. Thomas © data il €4Ch NOCE 0
; the tree.
children | | |

Fall 2018



Tree Traversals

1. Joe
Smith

*Noded [~ Joe Smith

Jane Smith
*Neode5 sadie
Stella

Node2

2.Jane ) |30
*Node3 Smith Smith
*Nodet L\ |

Write a non-recursive
function that starts at

pep the root and prints out
o the data i h nod
add 4. Sadie 5. Stella oRThomas e data in each node c
children
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Tree Traversals

Joe Smith

*Node6 = J_oe Jane Smith
Smith Sadie

Neodes [ — stella

Dan Smith
*Neode5

= 2. Jane :> 3. Dan

Smith Smith

“Nodet \ /A

Write a non-recursive
function that starts at

pop the root and prints out

oA the data i h nod

add 4. Sadie 5. Stella 6. Thomas e data in each node o
i the tree.

children
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Tree Traversals

Joe Smith

*Node6 L J_Oe Jane Smith
Smith Sadlile
*Noded [ < stella
Dan Smith
*] } i 5 Thomas
*Nede2
2. Jane 3.Dan
*Node3 Smith Smith
*Nedel L\ /
Write a non-recursive
function that starts at
pop | the root and prints out
print : -
add 4. Sadie 5. Ste:I:> 6. Thomas the data in each node 0
. the tree.
children | l
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Tree Traversals

stacks;

push(s, root)

Node* curNode;

while (lisEmpty(s)){
curNode = pop(s);
print(curNode);
push(s, curNode->right);
push(s, curNode->left);
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Tree Traversals

Pre-order Traversal

Visit the node, then visit each child.
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Tree Traversals

In-order Traversal

Visit left child, current node, then
right child.
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Tree Traversals

Post-order Traversal

Visit children, then current node.
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Tree Traversals

Challenge:

Consider how to modify this algorithm to produce a post-order
printing of the nodes.

HINT: You might need to add a helper variable somewhere.
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Tree Traversals
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Tree Traversals

K

Breadth-First
Search/Traversal

a

X/ \—*

8 o




BFS Example

Find element with value 15 in the tree below.

B BFS: traverse all of the nodes on the same level first, and then move on

to the next (lower) level
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BFS Example

Find element with value 15 in the tree below using BFS.

B BFS: traverse all of the nodes on the same level first, and then move on

to the next (lower) level

25-10-12-7-8-15-5
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DFS Example

Find element with value 15 in the tree below using DFS.

B DFS: traverse one side of the tree all the way to the leaves, followed by
the other side
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DFS Example

Find element with value 15 in the tree below using DFS.

B DFS: traverse one side of the tree all the way to the leaves, followed by

the other side

25-10-7-8-12-15-5
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Tree Traversals Example

Traverse the tree below, using:
B Pre-order traversal: 25-10-7-8-12-15-5
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Tree Traversals Example

Traverse the tree below, using;:
B Pre-order traversal: 25-10-7-8-12-15-5
M In-order traversal: 7-10-8-25-15-12-5
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Tree Traversals Example

Traverse the tree below, using;:
B Pre-order traversal: 25-10-7-8-12-15-5
B In-order traversal: 7-10-8-25-15-12-5
B Post-order traversal: 7 -8 =10 - 15 -5 - 12 - 25
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Section 6

Introduction to Graphs
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What is a Graph?

Formal Definition:
B Agraph G is a pair (V, E) where
B V is a set of vertices or nodes
B F is a set of edges that connect vertices
Simply put:
B A graph is a collection of nodes (vertices) and edges

B Linked lists, trees, and heaps are all special cases of graphs

CS 5002: Discrete Math ©Northeastern University Fall 2018



An Example

Here is a graph G = (V, E)

B Each edge is a pair (v, v2),
where v1, vy are vertices in V'
mV={ABCDEF}

m F={(4,B),(A,D),(B,C),
(C,D),(C,E),(D,E)}
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Terminology: Undirected Graph

B Two vertices u and v are adjacent in an undirected graph G if {u,v} is
an edge in G

B edge e = {u, v} is incident with vertex u and vertex v

B The degree of a vertex in an undirected graph is the number of edges
incident with it

B a self-loop counts twice (both ends count)
B denoted with deg(v)
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Terminology: Directed Graph

B Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an
edge in G

B vertex u is the initial vertex of (u, v)
B Vertex v is adjacent from vertex u
B vertex v is the terminal (or end) vertex of (u, v)

B Degree

B in-degree is the number of edges with the vertex as the terminal vertex
B out-degree is the number of edges with the vertex as the initial vertex
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B is adjacent to C;
C is adjacent from B.

(A,B) is incident to
A and B.

In-degree = 2
Out-degree =1
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Kinds of Graphs

directed vs undirected
weighted vs unweighted
simple vs non-simple
sparse vs dense

cyclic vs acyclic

labeled vs unlabeled

Fall 2018



Directed vs Undirected

B Undirected if edge (x, y) implies
edge (y, x).
B otherwise directed
B Roads between cities are
usually undirected (go both 3

ways)

B Streets in cities tend to be
directed (one-way)
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Weighted vs Unweighted

B Each edge or vertex is assigned
a numerical value (weight).
B A road network might be
labeled with:
B length
B drive-time
B speed-limit
B In an unweighted graph, there
is no distinction between edges.
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Simple vs Not simple

B Some kinds of edges make
working with graphs
complicated

B Aself-loop is an edge (z, x)
(one vertex).

B An edge (z,y) is a multiedge
if it occurs more than once in a

graph.
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Sparse vs Dense

B Graphs are sparse when a small
fraction of vertex pairs have
edges between them

B Graphs are dense when a large
fraction of vertex pairs have
edges

B There’s no formal distinction
between sparse and dense
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Cyclic vs Acyclic

B An acyclic graph contains no
cycles

B A cyclic graph contains a cycle

B Trees are connected, acyclic,
undirected graphs

M Directed acyclic graphs are
called DAGs
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Labeled vs Unlabeled

B Each vertex is assigned a
unique name or identifier in a
labeled graph

B In an unlabeled graph, there
are no named nodes

B Graphs usually have names—
e.g., city names in a
transportation network

B We might ignore names in
graphs to determine if they are
isomorphic (similar in structure)
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Section 7

Graph Representations
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Graph Representations

Two ways to represent a graph in code:
B Adjacency List
B A list of nodes
B Every node has a list of adjacent nodes
B Adjacency Matrix

B A matrix has a column and a row to represent every node
B All entries are 0 by default
B Anentry G[u,v] is 1if there is an edge from node u to v
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Adjacency List

For each v in V, L(v) = list of w such that (v, w) is in E:

=>{8|~>{D /]
=>(cl/]

m|m|OlO|w| >
é

Storage space:
a|lV]+ b|E|
a = sizeof(node)
b = sizeof( linked list element)
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Adjacency Matrix

A B CDE F
( \
Alo0 (1) o 1 00
Bl(1) o 1 0 0 0
clo 1 0 1 10
D[ 1 0 1 0 1 0
E[ 0 0 1 1 0 0
FLO 0 0 0 0 0 )

Storage space: |V |?
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Adjacency Matrix

A B C
A[0®
BI(1) o 1
clo 1 o
pl 1 0 1
El 0 o 1
FLO 0 0

1
0

E F
0 0
0 0
1 0
1 0
0 0
0 0

Storage space: |V |?

Does this matrix represent a directed or undirected graph?
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Comparing Matrix vs List

© Faster to test if (x, y) isina
graph?
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Comparing Matrix vs List

© Faster to test if (x, y) isina © adjacency matrix
graph?
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Comparing Matrix vs List

© Faster to test if (x, y) isina © adjacency matrix
graph?

@ Faster to find the degree of a
vertex?
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Comparing Matrix vs List

© Faster to test if (x, y) isina © adjacency matrix
”
graph? ) ® adjacency list
@ Faster to find the degree of a
vertex?

CS 5002: Discrete Math ©Northeastern University Fall 2018



Comparing Matrix vs List

© Faster to test if (x, y) isina © adjacency matrix
”
graph? ) ® adjacency list
@ Faster to find the degree of a
vertex?

® Less memory on small graphs?
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Comparing Matrix vs List

© Faster to test if (x, y) isina © adjacency matrix
?
graph? ) ® adjacency list
@ Faster to find the degree of a
vertex? ® adjacency list (m+n) vs (n2)

® Less memory on small graphs?
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Comparing Matrix vs List

© Faster to test if (x, y) isina © adjacency matrix
?
graph? ) ® adjacency list
@ Faster to find the degree of a
vertex? ® adjacency list (m+n) vs (n2)

® Less memory on small graphs?
@ Less memory on big graphs?

CS 5002: Discrete Math ©Northeastern University Fall 2018



Comparing Matrix vs List

© Faster to test if (x, y) isina
graph?

@ Faster to find the degree of a
vertex?

® Less memory on small graphs?

@ Less memory on big graphs?

© adjacency matrix
® adjacency list
® adjacency list (m+n) vs (n2)

@ adjacency matrices (a little)
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Comparing Matrix vs List

© Faster to test if (x, y) isina
graph?

® Faster to find the degree of a
vertex?

® Less memory on small graphs?

@ Less memory on big graphs?

© Edge insertion or deletion?

© adjacency matrix
® adjacency list
® adjacency list (m+n) vs (n2)

@ adjacency matrices (a little)
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Comparing Matrix vs List

© Faster to test if (x, y) isina
graph?

® Faster to find the degree of a
vertex?

® Less memory on small graphs?

@ Less memory on big graphs?

© Edge insertion or deletion?

© adjacency matrix

® adjacency list

® adjacency list (m+n) vs (n2)
@ adjacency matrices (a little)

@ adjacency matrices O(1) vs O(d)
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Comparing Matrix vs List

© Faster to test if (x, y) isina
graph?

® Faster to find the degree of a
vertex?

® Less memory on small graphs?

@ Less memory on big graphs?

© Edge insertion or deletion?

@ Faster to traverse the graph?

© adjacency matrix

® adjacency list

® adjacency list (m+n) vs (n2)
@ adjacency matrices (a little)

@ adjacency matrices O(1) vs O(d)
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Comparing Matrix vs List

© Faster to test if (x, y) isina
graph?

® Faster to find the degree of a
vertex?

® Less memory on small graphs?

@ Less memory on big graphs?

© Edge insertion or deletion?

@ Faster to traverse the graph?

© adjacency matrix

® adjacency list

® adjacency list (m+n) vs (n2)

@ adjacency matrices (a little)

@ adjacency matrices O(1) vs O(d)
@ adjacency list
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Comparing Matrix vs List

© Faster to test if (x, y) isina
graph?

® Faster to find the degree of a
vertex?

® Less memory on small graphs?

@ Less memory on big graphs?

© Edge insertion or deletion?

@ Faster to traverse the graph?

@ Better for most problems?

© adjacency matrix

® adjacency list

® adjacency list (m+n) vs (n2)

@ adjacency matrices (a little)

@ adjacency matrices O(1) vs O(d)
@ adjacency list
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Comparing Matrix vs List

© Faster to test if (x, y) isina
graph?

® Faster to find the degree of a
vertex?

® Less memory on small graphs?

@ Less memory on big graphs?

© Edge insertion or deletion?

@ Faster to traverse the graph?

@ Better for most problems?

© adjacency matrix

® adjacency list

® adjacency list (m+n) vs (n2)

@ adjacency matrices (a little)

@ adjacency matrices O(1) vs O(d)
@ adjacency list

@ adjacency list
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Analyzing Graph Algorithms

B Space and time are analyzed in terms of:
B Number of vertices m = |V|
B Number of edges n = | E|
B Aim for polynomial running times.
B But: is O(m?) or O(n?) a better running time?
B depends on what the relation is between n and m
B the number of edges m can be at most n? < n?.
B connected graphs have at least m > n — 1 edges
B Stil do not know which of two running times (such as m? and n?) are
better,
B Goal: implement the basic graph search algorithms in time O(m + n).
B This is linear time, since it takes O(m + n) time simply to read the input.

B Note that when we work with connected graphs, a running time of
O(m + n) is the same as O(m), since m > n — 1.
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Section 8

Graph Traversals
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Graph Traversals

Two basic traversals:

B Breadth First Search (BFS)
B Depth First Search (DFS)
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BFS

Example...

CS 5002: Discrete Matl Fall 2018



Capitol
Hill

Northeastern
University

Space
Needle
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Capitol
Hill

Northeastern
University

Space
Needle

What’s the best way for me to get from Green Lake to Space Needle?
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Capitol
Hill

Space
Needle

What’s the best way for me to get from Green Lake to Space Needle?
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Northeastern
University

Space
Needle

What’s the best way for me to get from Green Lake to Space Needle?
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Capitol
Hill

Northeastern
University

Space
Needle

What’s the best way for me to get from Green Lake to Space Needle?

©Northeastern University Fall 2018



BFS: The Algorithm

B Start at the start.
B Look at all the neighbors. Are any of them the destination?
B If no:
B Look at all the neighbors of the neighbors. Are any of them the

destination?
B Look at all the neighbors of the neighbors of the neighbors. Are any of

them the destination?

Fall 2018
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BFS: Runtime

H If you search the entire network, you traverse each edge at least once:
O(|El)
B That is, O(number of edges)
B Keeping a queue of who to visit in order.

B Add single node to queue: O(1)

B For all nodes: O(humber of nodes)
= O(|V])

B Together, it’'s O(V + E)
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Using

B Assuming we can add and remove from our “pending” DS in O(1) time,
the entire traversal is O(|E)
B Traversal order depends on what we use for our pending DS.
B Stack: DFS
B Queue: BFS

B These are the main traversal techniques in CS, but there are others!
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B Depth first search needs to check which nodes have been output or
else it can get stuck in loops.

B In a connected graph, a BFS will print all nodes, but it will repeat if
there are cycles and may not terminate

B As an aside, in-order, pre-order and postorder traversals only make
sense in binary trees, so they aren’t important for graphs. However, we
do need some way to order our out-vertices (left and right in BST).
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B Breadth-first always finds shortest length paths, i.e., “optimal
solutions”
B Better for “what is the shortest path from z to y”
B But depth-first can use less space in finding a path
B If longest path in the graph is p and highest out- degree is d then DFS
stack never has more than d * p elements

B But a queue for BFS may hold O(|V|) nodes

CS 5002: Discrete Math ©Northeastern University Fall 2018



BFS vs DFS: Problems

BFS Applications DFS Applications
B Connected components B Finding cycles
B Two-coloring graphs B Topological Sorting
B Strongly Connected
Components
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Section 9

Path Finding in a Graph
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Single-Source Shortest Path

Input Directed graph with non-negative weighted edges, a starting
node s and a destination node d
Problem Starting at the given node s, find the path with the lowest
total edge weight to node d
Example A map with cities as nodes and the edges are distances
between the cities. Find the shortest distance between city 1

and city 2.
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Djikstra’s Algorithm: Overview

B Find the “cheapest” node— the node you can get to in the shortest
amount of time.

B Update the costs of the neighbors of this node.
B Repeat until you’ve done this for each node.
B Calculate the final path.
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Djikstra’s Algorithm: Formally

DJIKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S=90

3 Q=G.V

4 while @ # 0

5 u = EXTRACT-MIN(Q))

6 S =SU{u}

7 for each vertex v € G.Adj[u]

8 RELAX (u, v, w)
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DJiksTRA(G, w, s)

1 > Gisagraph
2 > w is the weighting function such that w(u, v) returns the weight of the
3 > sis the starting node
4 for each vertexu € G
5 u.d = w(s,u) > where w(s,u) = oo if there is no edge (s, u).
6 S = (> Nodes we know the distance to
7 @ = G.V > min-PriorityQueue starting with all our nodes, ordered by dis
8 while Q # ()
9 u = EXTRACT-MIN(Q)) > Greedy step: get the closest node
10 S = SU {u} > Set of nodes that have shortest-path-distance found
11 for each vertex v € G.Adj[u]
12 RELAX (u, v, w)

ReLAX(u, v, w)

1 > uis the start node

2 > is the destination node
3 > w is the weight function
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Djikstra’s: A walkthrough

B Find the “cheapest” node— the
node you can get to in the
shortest amount of time.

B Update the costs of the
neighbors of this node.

B Repeat until you’ve done this
for each node.

B Calculate the final path.

Breadth First Search: distance = 7
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Step 1: Find the cheapest node

© Should we go to A or B?

B Make a table of how long it takes to get to each node from this node.
B We don’t know how long it takes to get to Finish, so we just say infinity

for now.
Node | Time to Node
A 6
B 2
Finish 00
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Step 2: Take the next step

@ Calculate how long it takes to get (from Start) to B’s neighbors by
following an edge from B
B We chose B because it’s the fastest to get to.

B Assume we started at Start, went to B, and then now we’re updating
Time to Nodes.

Node | Time to Node
A 65
B 2
Finish o 7
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Step 3: Repeat!

© Find the node that takes the least amount of time to get to.

B We already did B, so let’s do A.
B Update the costs of A’s neighbors

m Takes 5 to get to A; 1 more to get to Finish

Node | Time to Node
A 65
B 2
Finish 76
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