Lecture 11: Proving Correctness

CS 5002: Discrete Math

Adrienne Slaughter, Tamara Bonaci

Northeastern University

December 9, 2018

CS 5002: Discrete Math ©Northeastern University Fall 2018

El Mergesort Analysis

F Proof Techniques
m Proof by Counterexample
m Proof by Induction
= Mathematical Induction
= Building block: The Well-Ordering Property
= Applying Mathematical Induction to Algorithms
m Proof by Loop Invariant Examples

Summary

Fall 2018

Mergesort: Analysis

We do 2 things in our analysis:

B What’s the runtime?

M Is it correct?

CS 5002: Discrete Math ©Northeastern University Fall 2018

Mergesort: What’s the runtime?

Recall the runtime of Mergesort:

(n) = O(1) ifn <1
2T(5) +©O(n) otherwise

CS 5002: Discrete Math ©Northeastern University Fall 2018

Example: Recursion Tree

lgn

Lo

rw Ty T T TH TO) TM) TA)

CS 5002: Discrete Math Fall 2018 5

Mergesort: Runtime Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018

Mergesort: Correctness Proof

CS 5002: Discrete Math ©Northeastern University Fall 2018

Agenda

B Review of Mergesort
B Ways to prove algorithms correct

B Counterexample
B Induction
B Loop Invariant

B Proving Mergesort correct

B Other types of proofs

B Contradiction
H Cases

B Contrapositive
B Chain of iffs

CS 5002: Discrete Math ©Northeastern University Fall 2018

Section 2

Proof Techniques

CS 5002: Discrete Math theastern University Fall 2018

Proving Correctness

How to prove that an algorithm is correct?

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proving Correctness

How to prove that an algorithm is correct?

Proof by:

B Counterexample (indirect proof)
B Induction (direct proof)

B Loop Invariant

Other approaches: proof by cases/enumeration, proof by chain of iffs, proof
by contradiction, proof by contrapositive

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof by Counterexample

Searching for counterexamples is the best way to disprove the correctness
of some things.

B Identify a case for which something is NOT true

B If the proof seems hard or tricky, sometimes a counterexample works

B Sometimes a counterexample is just easy to see, and can shortcut a
proof

M If a counterexample is hard to find, a proof might be easier

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof by Induction

Failure to find a counterexample to a given algorithm does not mean “it is
obvious” that the algorithm is correct.

Mathematical induction is a very useful method for proving the correctness
of recursive algorithms.

© Prove base case
® Assume true for arbitrary value n

® Prove true for case n + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof by Loop Invariant

B Built off proof by induction.
B Useful for algorithms that loop.

Formally: find loop invariant, then prove:
@ Define a Loop Invariant
® Initialization
©® Maintenance
O Termination
Informally:
© Find p, a loop invariant
® Show the base case for p

©® Use induction to show the rest.

CS 5002: Discrete Math ©Northeastern University

Fall 2018

H Mergesort Analysis

Proof Techniques
m Proof by Counterexample
]

Summary

Fall 2018

Proof by Counterexample

Used to prove statements false, or algorithms either incorrect or
non-optimal

CS 5002: Discrete Math ©Northeastern University Fall 2018

Counterexample: Examples

B Prove or disprove: [z +y| = [z] + [y].

CS 5002: Discrete Math ©Northeastern University Fall 2018

Counterexample: Examples

B Prove or disprove: [z +y| = [z] + [y].

B Proof by counterexample: x = % andy =

=

2

CS 5002: Discrete Math ©Northeastern University Fall 2018

Counterexample: Examples

B Prove or disprove: [z +y| = [z] + [y].
B Proof by counterexample: z = 3 and y = 3

B Prove or disprove: “Every positive integer is the sum of two squares
of integers”

CS 5002: Discrete Math ©Northeastern University Fall 2018

Counterexample: Examples

B Prove or disprove: [z +y| = [z] + [y].
B Proof by counterexample: z = 3 and y = 3

B Prove or disprove: “Every positive integer is the sum of two squares
of integers”

B Proof by counterexample: 3

CS 5002: Discrete Math ©Northeastern University Fall 2018

Counterexample: Examples

B Prove or disprove: [z +y| = [z] + [y].
B Proof by counterexample: z = 3 and y = 3

B Prove or disprove: “Every positive integer is the sum of two squares
of integers”

B Proof by counterexample: 3

B Prove or disprove: VzVy(zy > x) (over all integers)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Counterexample: Examples

B Prove or disprove: [z +y| = [z] + [y].
B Proof by counterexample: z = 3 and y = 3

B Prove or disprove: “Every positive integer is the sum of two squares
of integers”

B Proof by counterexample: 3
B Prove or disprove: VzVy(zy > x) (over all integers)
B Proof by counterexample: x = —1,y = 3;2y = —3; -3 % —1

CS 5002: Discrete Math ©Northeastern University Fall 2018

Example: Greedy Algorithms

Greedy Algorithm: An algorithm that selects the best choice at each step,
instead of considering all sequences of steps that may lead to an optimal

solution.
B It’s usually straight-forward to find a greedy algorithm that is
feasible, but hard to find a greedy algorithm that is optimal

B Either prove the solution optimal, or find a counterexample such that
the algorithm yields a non-optimal solution

B An algorithm can be greedy even if it doesn’t produce an optimal

solution

Fall 2018

CS 5002: Discrete Math ©Northeastern University

Example: Interval Scheduling

The Problem: We have a resource 7, such as a classroom, and a bunch of

requests ¢ : {start, finish}. How can we schedule the requests to use the
resource?

CS 5002: Discrete Math

©Northeastern University Fall 2018

Example: Interval Scheduling

The Problem: We have a resource 7, such as a classroom, and a bunch of

requests ¢ : {start, finish}. How can we schedule the requests to use the
resource?

B We want to identify a set .S of requests such that no requests overlap.

CS 5002: Discrete Math

©Northeastern University Fall 2018

Example: Interval Scheduling

The Problem: We have a resource 7, such as a classroom, and a bunch of

requests ¢ : {start, finish}. How can we schedule the requests to use the
resource?

B We want to identify a set S of requests such that no requests overlap.

M Ideally, the S that we find contains the maximum number of requests.

CS 5002: Discrete Math

©Northeastern University Fall 2018

In this diagram, we see three sets of requests.

Which set of requests is the preferred choice for the interval scheduling
problem as defined?

time)

stern University Fall 2018

In this diagram, we see three sets of requests.

Which set of requests is the preferred choice for the interval scheduling
problem as defined?

time)

Solution: A simple heuristic that is an example of a greedy algorithm.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Interval Scheduling: Simple Greedy Algorithm

Input: Array A of requests q : {start, finish} such that

(1 = {s1, fi}, a2 = {52, fo}, .- @0 = {50, fu})
Output: S is the set of talks scheduled

Schedule(A):

1 Sort talks by start time; reorder so that s; < s9 < ... < sy
2 S=9

3 forj =1ton:

4 if ¢; is compatible with S:

5 returnS$

CS 5002: Discrete Math ©Northeastern University Fall 2018

Interval Scheduling: Visually

time)

CS 5002: Discrete Math Northeastern University Fall 2018

Interval Scheduling: Visually

CS 5002: Discrete Math ortheastern University Fall 2018

Interval Scheduling: Visually

time)

CS 5002: Discrete Math ortheastern University Fall 2018

Interval Scheduling: Visually

Interval Scheduling: Correct Greedy Algorithm

Input: Array A of requests ¢ : {start, finish} such that

(@1 ={s1, [i}, a2 = {52, o}, - - @ = {50, fn})
Output: S is the set of talks scheduled

Schedule(A):

1 Sort talks by finish time; reorder so that f; < fo < ... < f,
2 S=90

3 forj =1ton:

4 if ¢; is compatible with S:

5 D> The current request doesn’t conflict with any others we’ve chosen
6 S =5u @ > Add it to the set of scheduled

7 returnS$S

CS 5002: Discrete Math ©Northeastern University Fall 2018

Interval Scheduling: Proving the simple wrong

B Greedy algorithms are easy to design, but hard to prove correct

B Usually, a counterexample is the best way to do this

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof by Counterexample

Searching for counterexamples is the best way to disprove the correctness
of some things.

B Think about small examples

B Think about examples on or around your decision points

B Think about extreme examples (big or small)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Summary: Counterexamples

B Sometimes it’s easy to provide a counterexample

B It’s usually enough to provide a counterexample to prove something
wrong or False

W In algorithms, particularly useful for proving heuristics or greedy
algorithms wrong or non-optimal

CS 5002: Discrete Math ©Northeastern University Fall 2018

H Mergesort Analysis

Proof Techniques

|
m Proof by Induction

Summary

Fall 2018

Consider the Equation

CS 5002: Discrete Math ©Northeastern University Fall 2018

Consider the Equation

How do we prove this true?

CS 5002: Discrete Math ©Northeastern University Fall 2018

Consider the Equation: It’s true for some numbers...

n

Z _ n(n+1)

=1

1
Casenzl:Ziz
i=1

CS 5002: Discrete Math ©Northeastern University Fall 2018

Consider the Equation: It’s true for some numbers...

n

Z _ n(n+1)

=1

Casenzl:Ziz
Casen=5:2i=

i=1

How do we prove this true?

CS 5002: Discrete Math ©Northeastern University

Fall 2018

Consider the Equation: It’s true for some numbers...

n

Z o n(n+1)

=1

1
Casen=1: Ziz
i=1
5
Casen =5: Ziz
i=1
30

Casen:30:2i:
i=1

How do we prove this true?

CS 5002: Discrete Math

©Northeastern University Fall 2018

Consider the Equation: It’s true for some numbers...

n

Z o n(n—H)

=1

1
Casenzl:Ziz
i=1
5
Casen=5:2i=
i=1

30

Casen:30:2i:
i=1

How do we prove this true?

Just because we proved this true for a couple of instances doesn’t mean
we’ve proved it!

CS 5002: Discrete Math

©Northeastern University Fall 2018

Table of Contents

B Mergesort Analysis

Proof Techniques
m

m Proof by Induction
= Mathematical Induction

Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018

Mathematical Induction

© Prove the formula for the smallest number that can be used in the
given statement.

® Assume it’s true for an arbitrary number n.

® Use the previous steps to prove that it’s true for the next number n 4 1.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Example

A simple example:

Theorem: For all prices p > 8 cents, the price p can be paid using only
5-cent and 3-cent coins

Northeastern University Fall 2018

Step 1: Proving true for smallest number

Show the theorem holds for price p = 8 cents.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Step 2: Assume true for arbitrary n

Assume that theorem is true for some p > 8.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Step 3: Show true forn + 1

Show the theorem is true for price p + 1
Inductive step:

B Assume price p > 8 can be paid using only 3-cent and 5-cent coins.

B Need to prove that price p + 1 can be paid using only 3-cent and 5-cent
coins.

Main idea: “reduce” from price p + 1 to price p.

CS 5002: Discrete Math

©Northeastern University Fall 2018

Step 3: Show true forn + 1

If we have 100 5-cent coins, and 100 3-cent coins (for a total of p = $8.00),
how can we modify the number of 5-cent and 3-cent coins so that we can
make the p + 1 price (p + 1 = $8.01)?

B 40 5-cent coins + 200 3-cent coins ($2.00 + $6.00 = $8.00)

B 39 5-cent coins + 202 3-cent coins ($1.95 + $6.06 = $8.01)

B 99 5-cent coins + 102 3-cent coins ($4.95 + $3.06 = $8.01)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Step 3: Show true forn + 1

Assume that p = 5n + 3m where n, m > 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b > 0. Partition to
cases:

B Case 1: n > 1. We have more than 1 5-cent piece.

CS 5002: Discrete Math

©Northeastern University Fall 2018

Step 3: Show true forn + 1

Assume that p = 5n + 3m where n, m > 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b > 0. Partition to
cases:

B Case 1: n > 1. We have more than 1 5-cent piece.
B Inthiscase,p+1=5-(n—1)+3-(m+2).

CS 5002: Discrete Math

©Northeastern University Fall 2018

Step 3: Show true forn + 1

Assume that p = 5n + 3m where n, m > 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b > 0. Partition to
cases:

B Case 1: n > 1. We have more than 1 5-cent piece.

B Inthiscase,p+1=5-(n—1)+3-(m+2).
B Remove one 5-cent piece, add 2 3-cent pieces.

CS 5002: Discrete Math

©Northeastern University Fall 2018

Step 3: Show true forn + 1

Assume that p = 5n + 3m where n, m > 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b > 0. Partition to
cases:

B Case 1: n > 1. We have more than 1 5-cent piece.

B Inthiscase,p+1=5-(n—1)+3-(m+2).
B Remove one 5-cent piece, add 2 3-cent pieces.

B Case 2: m > 3. We have more than 3 3-cent pieces.

CS 5002: Discrete Math

©Northeastern University Fall 2018

Step 3: Show true forn + 1

Assume that p = 5n + 3m where n, m > 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b > 0. Partition to
cases:

B Case 1: n > 1. We have more than 1 5-cent piece.
B Inthiscase,p+1=5-(n—1)+3-(m+2).
B Remove one 5-cent piece, add 2 3-cent pieces.

B Case 2: m > 3. We have more than 3 3-cent pieces.
mp+1=5-(n+2)+3-(m—3).

CS 5002: Discrete Math

©Northeastern University Fall 2018

Step 3: Show true forn + 1

Assume that p = 5n + 3m where n, m > 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b > 0. Partition to
cases:

B Case 1: n > 1. We have more than 1 5-cent piece.
B Inthiscase,p+1=5-(n—1)+3-(m+2).
B Remove one 5-cent piece, add 2 3-cent pieces.

B Case 2: m > 3. We have more than 3 3-cent pieces.
mp+1=5-(n+2)+3-(m—3).
B Add 2 5-cent pieces, remove 3 3-cent pieces

CS 5002: Discrete Math

©Northeastern University Fall 2018

Step 3: Show true forn + 1

Assume that p = 5n + 3m where n, m > 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b > 0. Partition to
cases:

B Case 1: n > 1. We have more than 1 5-cent piece.
B Inthiscase,p+1=5-(n—1)+3-(m+2).
B Remove one 5-cent piece, add 2 3-cent pieces.

B Case 2: m > 3. We have more than 3 3-cent pieces.
mp+1=5-(n+2)+3-(m—3).
B Add 2 5-cent pieces, remove 3 3-cent pieces

B Case 3: n = 0,m < 2. We have no 5-cent pieces, and 2 or fewer 3-cent
pieces.

CS 5002: Discrete Math

©Northeastern University Fall 2018

Step 3: Show true forn + 1

Assume that p = 5n + 3m where n, m > 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b > 0. Partition to
cases:

B Case 1: n > 1. We have more than 1 5-cent piece.
B Inthiscase,p+1=5-(n—1)+3-(m+2).
B Remove one 5-cent piece, add 2 3-cent pieces.

B Case 2: m > 3. We have more than 3 3-cent pieces.
mp+1=5-(n+2)+3-(m—3).
B Add 2 5-cent pieces, remove 3 3-cent pieces

B Case 3: n = 0,m < 2. We have no 5-cent pieces, and 2 or fewer 3-cent
pieces.

B p=5n+ 3m < 6, which is a contradictiontop > 8

CS 5002: Discrete Math

©Northeastern University Fall 2018

Just a little thought...

Now that we’ve proven the theorem, we can use it to derive an algorithm:

Northeastern University Fall 2018

The Algorithm

Input: price p > 8.
Output: integers n, m > 0 so that p = 5n + 3m

PayWithThreeCentsAndFiveCents(p):

1 Letxz=8,n=1m=1(sothat x = 5n + 3m).
2 whilez < p:

3 r=z+1

4 ifn>1:

5 n:=n-—1

6 m:=m+ 2

7 else

8 n:=n++2

9 m:=m—3

10 return (n,m)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Back to our original proof...

i ; — nntl)
=3
i=1

Fall 2018

Step 1: Proving true for smallest number

n(n+1)

I

s
Il
i

M= "
~.
Il

@
I
—

Casen=1:

CS 5002: Discrete Math ©Northeastern University Fall 2018

Step 2: Assume true for arbitrary n

Assumed.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof: Summing n integers

n n(n+1
S = (2)

1=1
Proof:

B Does it hold true forn = 1?
1= 10+
=5

B Assume it works for n v’
B Prove that it’s true when n is replaced by n + 1

Fall 2018

©Northeastern University

CS 5002: Discrete Math

Proof Step 3: Summing n integers

Starting with n:

Zz_n—H (1)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof Step 3: Summing n integers

Rewriting the left hand side...

1+2+3+...(n—1)+n:" 2)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof Step 3: Summing n integers

Replace n withn + 1

ZZ_TL—H (1)

1+2+3+...(n—1)+n:@)
14243+ +((n+1) =1+ (n+1)= (n+1)[(2+1)+1] (3)
(6)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof Step 3: Summing n integers

Simplifying
22, _ n(n;— 1))
1+2+3+...(n—1)+n:@)
14243+ +((n+1) =1+ (n+1)= (n+1)[(2+1)+1] (3)
1+2+3+...+n+(n+1)=—(”+1>2(”+2) ()
(6)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof Step 3: Summing n integers

Re-grouping on the left side

ZZ_”_“

1+2+3+...(n_1)+n:@
142434 .. +(n+1)—1)+(n+1)= (n+1)[(7’;+1)+1]
1+2+3+...+n+(n+1)=w2(”+2)
(1+2+3+...+n)+(n+1):w

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof Step 3: Summing n integers

Replace our known (assumed) formula from #2

1+2+3+...(n—1)+n:”("T+1) %)

1+2434+ ...+ ((n+1)=1)+(n+1)= (n+1>[(7;+1)+1] (3)
1+2+3+...+n+(n+1):w2(n+2) @)
(1+2+3+...+n)+(n+1)=w 5)

n(n;— 1) t1) = (n+1)2(n+2) ©)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof Step 3: Summing n integers (pt 2)

Established a common denominator

n(n2+ D, 2n 2+ 1) _(n+ 1>2(n+2) (7)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof Step 3: Summing n integers (pt 2)

Simplify
nn+1) 2(n+1) (n+1)(n+2)
2 T2 T 2 @
nn+1)+2n+1) (n+1)(n+2)
> = 5 (8)
©)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof Step 3: Summing n integers (pt 2)

Factor out common factor n + 1

n(n+1) +2(n+1) _(n+1)(n+2)

2 2 2
n(n+1)+2(n+1) _ (n+1)(n+2)

2 2
(n+1)n+2) (n+1)(n+2)

2 B 2

7)
(8)

CS 5002: Discrete Math ©Northeastern University

Fall 2018

74

Proof Step 3: Summing n integers (pt 2)

n(n+1) +2(n+1) (n+1)(n+2)

2 2 2
n(n+1)+2(n+1) _ (n+1)(n+2)
2 2

m+1)(n+2) nm+1)(n+2)

2 2

CS 5002: Discrete Math

Fall 2018

Proof Step 3: Summing n integers (pt 2)

n(n+1) +2(n+1) (n+1)(n+2)

2 2 2
n(n+1)+2(n+1) _ (n+1)(n+2)

2 2
(n+1)n+2) (m+1)(n+2)

2 N 2

v 9)

We've proved that the formula holds for n 4 1.

CS 5002: Discrete Math ©Northeastern University

Fall 2018

Proof: Summing n integers

=1
Proof:
B Does it hold true forn = 1?
1= W+
)

B Assume it works for n v/
B Prove that it’s true when n is replaced by n + 1 v/

Fall 2018

©Northeastern University

CS 5002: Discrete Math

Mathematical Induction

B Prove the formula for a base case
B Assume it’s true for an arbitrary number n

B Use the previous steps to prove that it’s true for the next number n + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018

Table of Content

B Mergesort Analysis

Proof Techniques
=
m Proof by Induction

= Building block: The Well-Ordering Property

Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018

The Well-Ordering Property

The Well-Ordering property

The positive integers are well-ordered. An ordered set is well-ordered if
each and every nonempty subset has a smallest or least element.
Every nonempty subset of the positive integers has a least element.

Note: this property is not true for the set of integers (in which there are
arbitrarily small negative numbers) or subsets of, e.g., the positive real
numbers (in which there are elements arbitrarily close to zero).

CS 5002: Discrete Math ©Northeastern University Fall 2018

The Well-Ordering Principle

An equivalent statement to the well-ordering principle is as follows:
The set of positive integers does not contain any infinite strictly decreasing
sequences.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proving Well-Ordered Principle with Induction'

Let .S be a subset of the positive integers with no least element.

'adapted from: https://brilliant.org/wiki/the-well-ordering-principle/

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proving Induction with the Well-Ordered Principle

Suppose P is a property of an integer such that P(1) is true, and P(n)
being true implies that P(n + 1) is true.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Template for proofs based on Well-Ordering

The Well-Ordering Principle can be used for proofs. A template:

To prove that “P(n) is true for all n € N” using the Well Ordering Principle:

B Define the set C of counterexamples to P being true. Specifically,
define C' ::== {n € N|NOT P(n) is true}
B (The notation {n|Q(n)} means “the set of all elements n for which
Q(n)istrue.”)

B Assume for proof by contradiction that C' is nonempty.
B By WOP, there will be a smallest element n in C.

B Reach a contradiction somehow-often by showing that P(n) is
actually true or by showing that there is another member of C that is
smaller than n. This is the open-ended part of the proof task.

B Conclude that C' must be empty, that is, no counterexamples exist.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Summary: Well-Ordering Property

M Let’s us order things
B Basis for proving that induction works

B Good to know about it; delve into more details on your own.

CS 5002: Discrete Math ©Northeastern University Fall 2018

H Mergesort Analysis

Proof Techniques

|
m Proof by Induction

= Applying Mathematical Induction to Algorithms

Summary

Northeastern University Fall 2018

Mathematical Induction to Algorithmic Induction

B We've seen an example of mathematical induction
B We generated an algorithm from our proof
B We saw another example of mathematical induction

B Time to see another algorithm proof

CS 5002: Discrete Math ©Northeastern University Fall 2018

Insert Algorithm

Insert(A, e)
ADD(A, e) > Add e at the end of A
fori = A.length — 1 to 1:
while Afi + 1] < A[i]:
Ali + 1] = A[{] > Move the larger one to the end

—_

A w N

CS 5002: Discrete Math ©Northeastern University Fall 2018

We want to prove that for any element e and any list A:

© The resulting list after INSERT(A, €) is sorted
® The resulting list after INSERT(A, €) contains all of the elements of A,
plus element e.
Proving: Let’s say P(n) is defined for any list A and element ¢ as:

B If sorTED(A) and LENGTH(A) = n then soRTED(INSERT(A, 1)) and
ELEMENTS(INSERT(A, €)) = ELEMENTS(A) U {e}

We want to prove that P(n) holds for all n > 0.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proving Insertion Sort: Base Case

n = 0: Prove that P(0) holds.

B Let alist A such that sorTeED(A) = True and LENGTH(A) = 0.

B The only list with length zero is the empty list, so A = (). Therefore,
INSERT(A, €) evaluates as follows:

B List [e] has one element, so it is sorted by definition. Hence, INSERT(0), €)
is sorted.

B Furthermore, ELEMENTS(INSERT(e, [])) = ELEMENTS([e]) = {e} =
{e} U A = {e} U eLeMENTS([]). Therefore, the base case holds.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proving Insertion Sort: Assume true for n

a.k.a “The Invisible Step”

B Assume that P(n) holds. That is, for any element e and any sorted list
of length n, INSERT(A, €) is sorted and contains all of the elements of A,
plus e. This is the induction hypothesis.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proving Insertion Sort: Inductive Step

We want to prove that P(n + 1) also holds.
B For any e, and any sorted A of length n + 1, INSERT(A, e) is also sorted
and contains all elements of A, plus e.

B Let e be an arbitrary element, and A a sorted list of length n + 1. Let h
be the first element of A, and T be the rest of the elements of A, such
that h is less than all elements in T', and T is a sorted list of length n.
Also, ELEMENTS(A) = ELeMenTs{T'} U {h}

B The evaluation of INSERT(A, e) proceeds as follows:

Thanks to the evaluation model by substitution, we have a formal way of
describing the execution of insert. According to that model, the evaluation
of INSERT(A, e) proceeds as follows:

INSERT(A, €)

-¢ (function evaluation and replacing | with h::t) match h:t with] -; [e] —
x::xs -¢ if e | x then n:l else x:(insert(e,xs))

-; (pattern matching) if e ; h then e:l else h::(insert(e,t))

CS 5002: Discrete Math ©Northeastern University Fall 2018

Case 1: If e < his true, then INSERT(A, €) = e + A.

We have the following:

B Since h is less than all elements in 7', and e < h], it means that e is less
than all elementsin h +7T = A.
B We also know that A is sorted.

Together, the above imply that e + A is sorted. Therefore, INSERT(A, €) is
sorted.

Also, ELEMENTS(INSERT(A, €)) = ELEMENTS(e + A) = ELEMENTS(A) U {e}. So
P(n + 1) holds in this case.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Case 2. If h < e, then INSERT(A, €) = h + INSErRT(T, €)
Let A’ = INserT(T',).

B Because T is a sorted list of length n, it means that we can apply the
induction hypothesis. By the IH for element e and list T, the list
A" = INserT(T, e) is sorted, and ELEMENTS(A’) = ELEMENTS(T) U e.
B Since h + T is sorted, h is less than any element in ELEMENTS(T").
B Further, h <= e. Therefore h is less than all elements in A’. Since A’ is
sorted, INSERT(A, e) = h + A’ is sorted.
B Finally:
ELEMENTS(INSERT(A, €)) = ELEMENTS(h + INSErRT(T, €))
= eLeMeNTs(h + A)
= {h} U eLemenTs(A')
= {h} U{e} U ELEMENTS(?)
= e U h U ELEMENTS(?)
= {e} U ELEMENTS(A)

B Therefore, P(n + 1) holds in this case.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Since the conclusion of P(n + 1) holds for all branches of evaluation, we
have proved the inductive step.

We can therefore conclude that P(n) holds for all n > 0.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Summay: Proof by Induction

Induction has three steps:
© Base case
@ Assume true for n
® Show true forn +1
We:
B Defined proof by induction
B Defined Well-Ordering Property
B Example of mathematical induction

B Example of induction applied to Insertion Sort

CS 5002: Discrete Math

©Northeastern University Fall 2018

H Mergesort Analysis

Proof Techniques
|
]

m Proof by Loop Invariant Examples

Summary

Northeastern University Fall 2018

Proof by Loop Invariant Is...

Invariant: something that is always true

After finding a candidate loop invariant, we prove:

© Initialization: How does the invariant get initialized?

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof by Loop Invariant Is...

Invariant: something that is always true

After finding a candidate loop invariant, we prove:

© Initialization: How does the invariant get initialized?

® Loop Maintenance: How does the invariant change at each pass
through the loop?

CS 5002: Discrete Math ©Northeastern University Fall 2018

Proof by Loop Invariant Is...

Invariant: something that is always true

After finding a candidate loop invariant, we prove:

© Initialization: How does the invariant get initialized?

® Loop Maintenance: How does the invariant change at each pass
through the loop?

® Termination: Does the loop stop? When?

CS 5002: Discrete Math ©Northeastern University Fall 2018

Loop Invariant Proof Examples

We have a few examples:
B Linear Search
B Insertion Sort
B Bubble Sort
B Merge Sort

CS 5002: Discrete Math ©Northeastern University

Fall 2018

LinearSearch(A, v)

1 forj = 1toA.length:
2 if A[j] ==u:

3 return j

4 return NIL

©Northeastern University Fall 2018

CS 5002: Discrete Math

LinearSearch(A, v)
1 forj = 1toA.length:

2 if A[j] ==v:
3 return j
4 return NIL

Loop Invariant . At the start of each iteration of the for loop on line 1, the
subarray A[l : j — 1] does not contain the value v

CS 5002: Discrete Math ©Northeastern University Fall 2018

LinearSearch(A, v)
1 forj = 1toA.length:

2 if A[j] ==u:
3 return j
4 return NIL

Initialization Prior to the first iteration, the array A[1 : j — 1] is empty
(j == 1). That (empty) subarray does not contain the value v.

CS 5002: Discrete Math ©Northeastern University Fall 2018

LinearSearch(A4, v)

1 forj = 1toA.length:
2 if Ajj] ==

3 return j

4 return NIL

Maintenance Line 2 checks whether A[j] is the desired value (v). If it is, the
algorithm will return j, thereby terminating and producing
the correct behavior (the index of value v is returned, if v is
present). If A[j] # v, then the loop invariant holds at the end
of the loop (the subarray A[1 : j] does not contain the value

V).

Fall 2018

CS 5002: Discrete Math ©Northeastern University

LinearSearch(A, v)

1 forj = 1toA.length:
2 if A[j] == v:

3 return j

4 return NIL

Termination The for loop on line 1 terminates when j > A.length (that is,
n). Because each iteration of a for loop increments j by 1,
then j = n 4 1. The loop invariant states that the value is not
present in the subarray of A[l : j — 1]. Substituting n + 1 for
J, we have A[1 : n]. Therefore, the value is not present in the
original array A and the algorithm returns NIL.

CS 5002: Discrete Math ©Northeastern University Fall 2018

New example: INSERTION SORT

Fall 2018

Insertion Sort

InsertionSort(A)

1 fori = 1to A.length

2 j=i

3 while j > 0and A[j — 1] > A[j]
4 Swapr(Al[j], A[j — 1))

5 j=7—1

CS 5002: Discrete Math ©Northeastern University Fall 2018

Insertion Sort

InsertionSort(A)

1 fori = 1to A.length

2 j=i

3 while j > 0 and A[j — 1] > A[j]
4 Swapr(A[j], A5 — 1])

5 j=73—1

Invariant A[O : i — 1] are sorted

CS 5002: Discrete Math ©Northeastern University Fall 2018

Insertion Sort

InsertionSort(A)

1 fori = 1to A.length

2 j=i

3 while j > 0and A[j — 1] > A[j]
4 Swapr(Al[j], A[j — 1))

5 j=7—-1

Initialization At the top of the first loop, this is A[0 : 0], which is vacuously
true.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Insertion Sort

InsertionSort(A)

1 fori = 1to A.length

j=i

while j > 0 and A[j — 1] > A[j]
Swar(A[j], A[j — 1))
J=J-1

a b W N

Maintenance An inner loop where we start from ¢ and work our way down,

swapping values until we find the location for a[i] in the
sorted section of the data

CS 5002: Discrete Math ©Northeastern University Fall 2018

Insertion Sort

InsertionSort(A)

1 fori = 1to A.length

j=i

while j > 0 and A[j — 1] > A[j]
Swap(A[j], A[j — 1))
J=J-1

a b W N

Termination And the end of the for loop, i = len(A). That means that the

array A[0 : A.length — 1] is now sorted, which is the entire
array.

CS 5002: Discrete Math ©Northeastern University Fall 2018

New example: BUBBLESORT

Fall 2018

Bubble Sort: Outer Loop

BubbleSort(A)

1 fori = 1to A.length —1

2 for j = A.lengthtoi+ 1

3 if A[j] < Alj—1]

4 Swap(A[j], Alj — 1]

©Northeastern University Fall 2018

CS 5002: Discrete Math

Bubble Sort: Outer Loop

BubbleSort(A)

1 fori = 1to A.length —1
for j = A.lengthtoi+ 1
if AJj] < Alj —1]
Swap(A[j], Alj — 1]

A w N

Invariant At the start of each iteration of the for loop on line 1, the
subarray A[l : i — 1] is sorted

CS 5002: Discrete Math ©Northeastern University Fall 2018

Bubble Sort: Outer Loop

BubbleSort(A)

1 fori = 1to A.length —1

2 for j = A.lengthtoi+ 1

3 if A[j] < A[j —1]

4 Swap(A[j], Alj — 1]

Initialization Prior to the first iteration, the array A[l : i — 1] is empty
(i = 1). That (empty) subarray is sorted by definition.

rtheastern University Fall 2018

CS 5002: Discrete Math

Bubble Sort: Outer Loop

BubbleSort(A)

1 fori = 1to A.length —1

2 for j = A.lengthto i+ 1

3 if A[j] < A[j—1]

4 Swap(A[j], Alj — 1]

Maintenance Given the guarantees of the inner loop, at the end of each
iteration of the for loop at line 1, the value at A[i] is the
smallest value in the range A[i : A.range]. Since the values in
Ali : i — 1] were sorted and were less than the value in A[i],
the values in the range A[1 : 7] are sorted.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Bubble Sort: Outer Loop

BubbleSort(A)

1 fori = 1to A.length — 1

2 for j = A.lengthtoi+ 1

3 if Ajj] < Alj —1]

4 Swap(A[j], Alj — 1]

Termination The for loop at line 1 ends when i equals A.length — 1. Based
on the maintenance proof, this means that all values in
A[l : A.length — 1] are sorted and less than the value at
Allength]. So, by definition, the values in A[1 : A.length] are
sorted.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Now we need to do the inner loop.

Fall 2018

Bubble Sort: Inner Loop

BubbleSort(A)

1 fori = 1to A.length —1

2 for j = A.lengthtoi+ 1

3 if A[j] < Alj—1]

4 Swap(A[j], Alj — 1]

CS 5002: Discrete Math ©Northeastern University Fall 2018

Bubble Sort: Inner Loop

BubbleSort(A)

1 fori = 1to A.length — 1

2 for j = A.lengthtoi+ 1

3 if A[j] < Alj—1]

4 Swap(A[j], Alj — 1]

Invariant At the start of each iteration of the for loop on line 2, the

value at location A[j] is the smallest value in the subrange
from A[j : A.length)

CS 5002: Discrete Math ©Northeastern University Fall 2018

Bubble Sort: Inner Loop

BubbleSort(A)

1 fori = 1to A.length — 1

2 for j = A.lengthtoi+ 1

3 if A[j] < A[j —1]

4 Swar(A[j], Alj - 1]

Initialization Prior to the first iteration, j = A.length. The subarray
Alj : A.length] contains a single value (A[j]) and the value at
Alj] is (trivially) the smallest value in the range from
Alj : Alength))

rtheastern University Fall 2018 122

CS 5002: Discrete Math

Bubble Sort: Inner Loop

BubbleSort(A)

1 fori = 1to A.length —1

2 for j = A.lengthtoi+ 1

3 if Ajj] < Alj—1]

4 Swap(A[j], Alj — 1]

Maintenance The if statement on line 3 compares the elements at A[j] and
Alj — 1], swapping A[j] into A[j — 1] if it is the lower value
and leaving them in place, if not. Given the initial condition
that the value in A[j] was the smallest value in the range
Alj : A.length], this means the value in A[j — 1] is now the
smallest value in the range A[j — 1 : A.length]. This also
means that every value in the subarray A[j : A.length] is
greater than the value at A[j — 1].

CS 5002: Discrete Math ©Northeastern University Fall 2018

Bubble Sort: Inner Loop

BubbleSort(A)

1 fori = 1to A.length — 1
for j = A.lengthtoi+ 1
if Alj] < AJj— 1]
Swap(A[j], Alj — 1]

A w N

Termination 2 The for loop on line 2 terminates when j = 7 4 1 and given
the Maintenance property, this means that the value at A[i]
(which is A[j — 1]) will be the smallest value in the range
Ali : Arange] (A[j — 1: A.range])

CS 5002: Discrete Math ©Northeastern University Fall 2018

Back to proving Mergesort correct

CS 5002: Discrete Math ©Northeastern University Fall 2018

The Merge Algorithm

MERGE(A, low, mid, high)

1 L =A[low:mid] > (L is a new array copied from A[low:mid])

2 R =A[mid+1, high] > (R is a new array copied from A[mid+1, high])
3 i=1j=1

4 for k =low to high:

5 if L[i] < R[j]:

6 A[k] = L[i]

7 1=1+1

8 else

9 ATK] = Rj]
10 j=j+1

CS 5002: Discrete Math ©Northeastern University Fall 2018 126

Merge Sort Invariant

Invariant At the start of each for loop iteration, the array starting at
Alk] with length k — low contains the k — low smallest
elements, in increasing sorted order

CS 5002: Discrete Math ©Northeastern University Fall 2018

Merge Sort Invariant

Invariant At the start of each for loop iteration, the array starting at
Alk] with length k — low contains the k — low smallest
elements, in increasing sorted order

Initialization Prior to the first iteration, the array starting at A[k] with

length k — low is empty because k — low = 0. L and R are
assumed sorted.

CS 5002: Discrete Math ©Northeastern University Fall 2018

Merge Sort Invariant

Invariant At the start of each for loop iteration, the array starting at
Alk] with length k — low contains the k — low smallest
elements, in increasing sorted order

Initialization Prior to the first iteration, the array starting at A[k] with
length k — low is empty because k — low = 0. L and R are
assumed sorted.

Maintenance Since L and R are sorted, the value at L[i] is the smallest in L
and the value at R[j] is the smallest in R. The smallest of
these is the smallest in the union of L and R, which is

Allow : high]. Copy that into A[k].

CS 5002: Discrete Math ©Northeastern University Fall 2018

Merge Sort Invariant

Invariant At the start of each for loop iteration, the array starting at
Alk] with length k — low contains the k — low smallest
elements, in increasing sorted order

Initialization Prior to the first iteration, the array starting at A[k] with
length k& — low is empty because k — low = 0. L and R are
assumed sorted.

Maintenance Since L and R are sorted, the value at L[i] is the smallest in L
and the value at R[j] is the smallest in R. The smallest of
these is the smallest in the union of L and R, which is
Allow : high]. Copy that into A[k].

Termination On the last iteration, & = high + 1. This means that the array
at A[low] with length k — low(low - high + 1) is sorted,
which is the array A[low : high|. A[low ... high] is sorted.

k —low = (high 4+ 1) — low = high — low + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018

Steps to Loop Invariant Proof

After finding your loop invariant:
B Initialization
B Prior to the loop initiating, does the property hold?
B Maintenance
B After each loop iteration, does the property still hold, given the
initialization properties?
B Termination

B After the loop terminates, does the property still hold? And for what
data?

CS 5002: Discrete Math ©Northeastern University Fall 2018

Things to remember

B Algorithm termination is necessary for proving correctness of the
entire algorithm.

B Loop invariant termination is necessary for proving the behavior of
the given loop.

CS 5002: Discrete Math

©Northeastern Fall 2018

Summary: Proof by Loop Invariant

Proof by Loop Invariant is based on induction and has 4 steps:
© Define loop invariant
® Show initialization
® Show maintenance
® Show termination
We:
B Defined proof by loop invariant

B Examples:

B Linear Search
B Insertion Sort
B Bubble Sort
B Merge Sort

CS 5002: Discrete Math ©Northeastern University Fall 2018

H Mergesort Analysis

Proof Techniques
|
]

Summary

Fall 2018

Why Mergesort matters

B Merge sort used to be king due to media
B tape drives
B Resurfaced a few years ago
B magnetic hard drives
B Systems work is about the ratio of available resources

B memory vs 10
B CPU vs memory
B local IO vs network

CS 5002: Discrete Math ©Northeastern University Fall 2018

Good proofs

State your plan A good proof begins by explaining the general line of
reasoning, for example, “We use case analysis” or “We argue by
contradiction.”

Keep a flow Sometimes proofs are written like mathematical mosaics, with
juicy tidbits of independent reasoning sprinkled throughout. This is
not good. The steps of an argument should follow one another in an
intelligible order.

A proof is an essay, not a calculation. Many students initially write proofs
the way they compute integrals. The result is a long sequence of
expressions without explanation, making it very hard to follow. This is
bad. A good proof usually looks like an essay with some equations
thrown in. Use complete sentences.

Avoid excessive symbolism. Your reader is probably good at understanding

words, but much less skilled at reading arcane mathematical symbols.
Use words where you reasonably can.

Revise and simplify. Your readers will be grateful.

CS 5002: Discrete Math ©Northeastern University

Fall 2018

Summary

B Approaches to proving algorithms correct
B Counterexamples

m Helpful for greedy algorithms, heuristics
B Induction

B Based on mathematical induction
B Once we prove a theorem, can use it to build an algorithm

B Loop Invariant
B Based on induction
B Key is finding an invariant

B Lots of examples

CS 5002: Discrete Math ©Northeastern University Fall 2018

El Mergesort Analysis

F Proof Techniques
m Proof by Counterexample
m Proof by Induction
= Mathematical Induction
= Building block: The Well-Ordering Property
= Applying Mathematical Induction to Algorithms
m Proof by Loop Invariant Examples

Summary

Fall 2018

	Mergesort Analysis
	Proof Techniques
	Proof by Counterexample
	Proof by Induction
	Proof by Loop Invariant Examples

	
	Summary

