
Lecture 11: Proving Correctness

CS 5002: Discrete Math

Adrienne Slaughter, Tamara Bonaci

Northeastern University

December 9, 2018

CS 5002: Discrete Math ©Northeastern University Fall 2018 1

1 Mergesort Analysis

2 Proof Techniques

Proof by Counterexample

Proof by Induction

Mathematical Induction

Building block: The Well-Ordering Property

Applying Mathematical Induction to Algorithms

Proof by Loop Invariant Examples

3 Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018 2

Mergesort: Analysis

We do 2 things in our analysis:

� What’s the runtime?

� Is it correct?

CS 5002: Discrete Math ©Northeastern University Fall 2018 3

Mergesort: What’s the runtime?

Recall the runtime of Mergesort:

T (n) =

{
Θ(1) if n ≤ 1

2T (n2) + Θ(n) otherwise

CS 5002: Discrete Math ©Northeastern University Fall 2018 4

Example: Recursion Tree

T (n) = 2T (n/2) + n

n

(n2)

T (n4)

.

.

.

T (1)

.

.

.

T (1)

T (n4)

.

.

.

T (1)

.

.

.

T (1)

(n2)

T (n4)

.

.

.

T (1)

.

.

.

T (1)

T (n4)

.

.

.

T (1)

.

.

.

T (1)

4 ·
(
n
4

)
= n

(n
2
) + (n

2
) = n

n

lg n

CS 5002: Discrete Math ©Northeastern University Fall 2018 5

Mergesort: Runtime Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018 6

Mergesort: Correctness Proof

CS 5002: Discrete Math ©Northeastern University Fall 2018 7

Agenda

� Review of Mergesort

� Ways to prove algorithms correct

� Counterexample

� Induction

� Loop Invariant

� Proving Mergesort correct

� Other types of proofs

� Contradiction

� Cases

� Contrapositive

� Chain of i�s

CS 5002: Discrete Math ©Northeastern University Fall 2018 8

Section 2

Proof Techniques

CS 5002: Discrete Math ©Northeastern University Fall 2018 9

Proving Correctness

How to prove that an algorithm is correct?

Proof by:

� Counterexample (indirect proof)

� Induction (direct proof)

� Loop Invariant

Other approaches: proof by cases/enumeration, proof by chain of i�s, proof

by contradiction, proof by contrapositive

CS 5002: Discrete Math ©Northeastern University Fall 2018 10

Proving Correctness

How to prove that an algorithm is correct?

Proof by:

� Counterexample (indirect proof)

� Induction (direct proof)

� Loop Invariant

Other approaches: proof by cases/enumeration, proof by chain of i�s, proof

by contradiction, proof by contrapositive

CS 5002: Discrete Math ©Northeastern University Fall 2018 11

Proof by Counterexample

Searching for counterexamples is the best way to disprove the correctness

of some things.

� Identify a case for which something is NOT true

� If the proof seems hard or tricky, sometimes a counterexample works

� Sometimes a counterexample is just easy to see, and can shortcut a

proof

� If a counterexample is hard to find, a proof might be easier

CS 5002: Discrete Math ©Northeastern University Fall 2018 12

Proof by Induction

Failure to find a counterexample to a given algorithm does not mean “it is

obvious” that the algorithm is correct.

Mathematical induction is a very useful method for proving the correctness

of recursive algorithms.

1 Prove base case

2 Assume true for arbitrary value n

3 Prove true for case n + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 13

Proof by Loop Invariant

� Built o� proof by induction.

� Useful for algorithms that loop.

Formally: find loop invariant, then prove:

1 Define a Loop Invariant

2 Initialization

3 Maintenance

4 Termination

Informally:

1 Find p, a loop invariant

2 Show the base case for p

3 Use induction to show the rest.

CS 5002: Discrete Math ©Northeastern University Fall 2018 14

1 Mergesort Analysis

2 Proof Techniques

Proof by Counterexample

Proof by Induction

Mathematical Induction

Building block: The Well-Ordering Property

Applying Mathematical Induction to Algorithms

Proof by Loop Invariant Examples

3 Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018 15

Proof by Counterexample

Used to prove statements false, or algorithms either incorrect or

non-optimal

CS 5002: Discrete Math ©Northeastern University Fall 2018 16

Counterexample: Examples

� Prove or disprove: dx + ye = dxe+ dye.

� Proof by counterexample: x = 1
2 and y = 1

2

� Prove or disprove: “Every positive integer is the sum of two squares

of integers”

� Proof by counterexample: 3

� Prove or disprove: ∀x∀y(xy ≥ x) (over all integers)

� Proof by counterexample: x = −1, y = 3;xy = −3;−3 6≥ −1

CS 5002: Discrete Math ©Northeastern University Fall 2018 17

Counterexample: Examples

� Prove or disprove: dx + ye = dxe+ dye.
� Proof by counterexample: x = 1

2 and y = 1
2

� Prove or disprove: “Every positive integer is the sum of two squares

of integers”

� Proof by counterexample: 3

� Prove or disprove: ∀x∀y(xy ≥ x) (over all integers)

� Proof by counterexample: x = −1, y = 3;xy = −3;−3 6≥ −1

CS 5002: Discrete Math ©Northeastern University Fall 2018 18

Counterexample: Examples

� Prove or disprove: dx + ye = dxe+ dye.
� Proof by counterexample: x = 1

2 and y = 1
2

� Prove or disprove: “Every positive integer is the sum of two squares

of integers”

� Proof by counterexample: 3

� Prove or disprove: ∀x∀y(xy ≥ x) (over all integers)

� Proof by counterexample: x = −1, y = 3;xy = −3;−3 6≥ −1

CS 5002: Discrete Math ©Northeastern University Fall 2018 19

Counterexample: Examples

� Prove or disprove: dx + ye = dxe+ dye.
� Proof by counterexample: x = 1

2 and y = 1
2

� Prove or disprove: “Every positive integer is the sum of two squares

of integers”

� Proof by counterexample: 3

� Prove or disprove: ∀x∀y(xy ≥ x) (over all integers)

� Proof by counterexample: x = −1, y = 3;xy = −3;−3 6≥ −1

CS 5002: Discrete Math ©Northeastern University Fall 2018 20

Counterexample: Examples

� Prove or disprove: dx + ye = dxe+ dye.
� Proof by counterexample: x = 1

2 and y = 1
2

� Prove or disprove: “Every positive integer is the sum of two squares

of integers”

� Proof by counterexample: 3

� Prove or disprove: ∀x∀y(xy ≥ x) (over all integers)

� Proof by counterexample: x = −1, y = 3;xy = −3;−3 6≥ −1

CS 5002: Discrete Math ©Northeastern University Fall 2018 21

Counterexample: Examples

� Prove or disprove: dx + ye = dxe+ dye.
� Proof by counterexample: x = 1

2 and y = 1
2

� Prove or disprove: “Every positive integer is the sum of two squares

of integers”

� Proof by counterexample: 3

� Prove or disprove: ∀x∀y(xy ≥ x) (over all integers)

� Proof by counterexample: x = −1, y = 3;xy = −3;−3 6≥ −1

CS 5002: Discrete Math ©Northeastern University Fall 2018 22

Example: Greedy Algorithms

Greedy Algorithm: An algorithm that selects the best choice at each step,

instead of considering all sequences of steps that may lead to an optimal

solution.

� It’s usually straight-forward to find a greedy algorithm that is

feasible, but hard to find a greedy algorithm that is optimal
� Either prove the solution optimal, or find a counterexample such that

the algorithm yields a non-optimal solution

� An algorithm can be greedy even if it doesn’t produce an optimal

solution

CS 5002: Discrete Math ©Northeastern University Fall 2018 23

Example: Interval Scheduling

The Problem: We have a resource r, such as a classroom, and a bunch of

requests q : {start, finish}. How can we schedule the requests to use the

resource?

� We want to identify a set S of requests such that no requests overlap.

� Ideally, the S that we find contains the maximum number of requests.

CS 5002: Discrete Math ©Northeastern University Fall 2018 24

Example: Interval Scheduling

The Problem: We have a resource r, such as a classroom, and a bunch of

requests q : {start, finish}. How can we schedule the requests to use the

resource?

� We want to identify a set S of requests such that no requests overlap.

� Ideally, the S that we find contains the maximum number of requests.

CS 5002: Discrete Math ©Northeastern University Fall 2018 25

Example: Interval Scheduling

The Problem: We have a resource r, such as a classroom, and a bunch of

requests q : {start, finish}. How can we schedule the requests to use the

resource?

� We want to identify a set S of requests such that no requests overlap.

� Ideally, the S that we find contains the maximum number of requests.

CS 5002: Discrete Math ©Northeastern University Fall 2018 26

In this diagram, we see three sets of requests.

Which set of requests is the preferred choice for the interval scheduling

problem as defined?

time

Solution: A simple heuristic that is an example of a greedy algorithm.

CS 5002: Discrete Math ©Northeastern University Fall 2018 27

In this diagram, we see three sets of requests.

Which set of requests is the preferred choice for the interval scheduling

problem as defined?

time

Solution: A simple heuristic that is an example of a greedy algorithm.

CS 5002: Discrete Math ©Northeastern University Fall 2018 28

Interval Scheduling: Simple Greedy Algorithm

Input: Array A of requests q : {start, finish} such that

(q1 = {s1, f1}, q2 = {s2, f2}, . . . qn = {sn, fn})
Output: S is the set of talks scheduled

Schedule(A):

1 Sort talks by start time; reorder so that s1 ≤ s2 ≤ . . . ≤ sn
2 S = ∅
3 for j = 1 to n:
4 if qj is compatible with S:
5 return S

CS 5002: Discrete Math ©Northeastern University Fall 2018 29

Interval Scheduling: Visually

time

time

CS 5002: Discrete Math ©Northeastern University Fall 2018 30

Interval Scheduling: Visually

time

time

CS 5002: Discrete Math ©Northeastern University Fall 2018 31

Interval Scheduling: Visually

time

time

CS 5002: Discrete Math ©Northeastern University Fall 2018 32

Interval Scheduling: Visually

time

time

CS 5002: Discrete Math ©Northeastern University Fall 2018 33

Interval Scheduling: Correct Greedy Algorithm

Input: Array A of requests q : {start, finish} such that

(q1 = {s1, f1}, q2 = {s2, f2}, . . . qn = {sn, fn})
Output: S is the set of talks scheduled

Schedule(A):

1 Sort talks by finish time; reorder so that f1 ≤ f2 ≤ . . . ≤ fn
2 S = ∅
3 for j = 1 to n:
4 if qj is compatible with S:
5 . The current request doesn’t conflict with any others we’ve chosen

6 S = S∪ qj . Add it to the set of scheduled

7 return S

CS 5002: Discrete Math ©Northeastern University Fall 2018 34

Interval Scheduling: Proving the simple wrong

� Greedy algorithms are easy to design, but hard to prove correct

� Usually, a counterexample is the best way to do this

CS 5002: Discrete Math ©Northeastern University Fall 2018 35

Proof by Counterexample

Searching for counterexamples is the best way to disprove the correctness

of some things.

� Think about small examples

� Think about examples on or around your decision points

� Think about extreme examples (big or small)

CS 5002: Discrete Math ©Northeastern University Fall 2018 36

Summary: Counterexamples

� Sometimes it’s easy to provide a counterexample

� It’s usually enough to provide a counterexample to prove something

wrong or False

� In algorithms, particularly useful for proving heuristics or greedy

algorithms wrong or non-optimal

CS 5002: Discrete Math ©Northeastern University Fall 2018 37

1 Mergesort Analysis

2 Proof Techniques

Proof by Counterexample

Proof by Induction

Mathematical Induction

Building block: The Well-Ordering Property

Applying Mathematical Induction to Algorithms

Proof by Loop Invariant Examples

3 Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018 38

Consider the Equation

n∑
i=1

i =
n(n + 1)

2

How do we prove this true?

CS 5002: Discrete Math ©Northeastern University Fall 2018 39

Consider the Equation

n∑
i=1

i =
n(n + 1)

2

How do we prove this true?

CS 5002: Discrete Math ©Northeastern University Fall 2018 40

Consider the Equation: It’s true for some numbers…

n∑
i=1

i = n(n+1)
2

Case n = 1 :
1∑

i=1

i =

Case n = 5 :

5∑
i=1

i =

Case n = 30 :

30∑
i=1

i =

How do we prove this true?

Just because we proved this true for a couple of instances doesn’t mean

we’ve proved it!

CS 5002: Discrete Math ©Northeastern University Fall 2018 41

Consider the Equation: It’s true for some numbers…

n∑
i=1

i = n(n+1)
2

Case n = 1 :
1∑

i=1

i =

Case n = 5 :

5∑
i=1

i =

Case n = 30 :

30∑
i=1

i =

How do we prove this true?

Just because we proved this true for a couple of instances doesn’t mean

we’ve proved it!

CS 5002: Discrete Math ©Northeastern University Fall 2018 42

Consider the Equation: It’s true for some numbers…

n∑
i=1

i = n(n+1)
2

Case n = 1 :
1∑

i=1

i =

Case n = 5 :

5∑
i=1

i =

Case n = 30 :

30∑
i=1

i =

How do we prove this true?

Just because we proved this true for a couple of instances doesn’t mean

we’ve proved it!

CS 5002: Discrete Math ©Northeastern University Fall 2018 43

Consider the Equation: It’s true for some numbers…

n∑
i=1

i = n(n+1)
2

Case n = 1 :
1∑

i=1

i =

Case n = 5 :

5∑
i=1

i =

Case n = 30 :

30∑
i=1

i =

How do we prove this true?

Just because we proved this true for a couple of instances doesn’t mean

we’ve proved it!

CS 5002: Discrete Math ©Northeastern University Fall 2018 44

Table of Contents

1 Mergesort Analysis

2 Proof Techniques

Proof by Counterexample

Proof by Induction

Mathematical Induction

Building block: The Well-Ordering Property

Applying Mathematical Induction to Algorithms

Proof by Loop Invariant Examples

3 Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018 45

Mathematical Induction

1 Prove the formula for the smallest number that can be used in the

given statement.

2 Assume it’s true for an arbitrary number n.

3 Use the previous steps to prove that it’s true for the next number n+ 1.

CS 5002: Discrete Math ©Northeastern University Fall 2018 46

Example

A simple example:

Theorem: For all prices p ≥ 8 cents, the price p can be paid using only

5-cent and 3-cent coins

CS 5002: Discrete Math ©Northeastern University Fall 2018 47

Step 1: Proving true for smallest number

Show the theorem holds for price p = 8 cents.

CS 5002: Discrete Math ©Northeastern University Fall 2018 48

Step 2: Assume true for arbitrary n

Assume that theorem is true for some p ≥ 8.

CS 5002: Discrete Math ©Northeastern University Fall 2018 49

Step 3: Show true for n+ 1

Show the theorem is true for price p + 1
Inductive step:

� Assume price p ≥ 8 can be paid using only 3-cent and 5-cent coins.

� Need to prove that price p + 1 can be paid using only 3-cent and 5-cent

coins.

Main idea: “reduce” from price p + 1 to price p.

CS 5002: Discrete Math ©Northeastern University Fall 2018 50

Step 3: Show true for n+ 1

If we have 100 5-cent coins, and 100 3-cent coins (for a total of p = $8.00),

how can we modify the number of 5-cent and 3-cent coins so that we can

make the p + 1 price (p + 1 = $8.01)?

� 40 5-cent coins + 200 3-cent coins ($2.00 + $6.00 = $8.00)

� 39 5-cent coins + 202 3-cent coins ($1.95 + $6.06 = $8.01)

� 99 5-cent coins + 102 3-cent coins ($4.95 + $3.06 = $8.01)

CS 5002: Discrete Math ©Northeastern University Fall 2018 51

Step 3: Show true for n+ 1

Assume that p = 5n + 3m where n,m ≥ 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b ≥ 0. Partition to

cases:

� Case 1: n ≥ 1. We have more than 1 5-cent piece.

� In this case, p + 1 = 5 · (n− 1) + 3 · (m + 2).
� Remove one 5-cent piece, add 2 3-cent pieces.

� Case 2: m ≥ 3. We have more than 3 3-cent pieces.

� p + 1 = 5 · (n + 2) + 3 · (m− 3).
� Add 2 5-cent pieces, remove 3 3-cent pieces

� Case 3: n = 0,m ≤ 2. We have no 5-cent pieces, and 2 or fewer 3-cent

pieces.

� p = 5n + 3m ≤ 6, which is a contradiction to p ≥ 8

CS 5002: Discrete Math ©Northeastern University Fall 2018 52

Step 3: Show true for n+ 1

Assume that p = 5n + 3m where n,m ≥ 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b ≥ 0. Partition to

cases:

� Case 1: n ≥ 1. We have more than 1 5-cent piece.

� In this case, p + 1 = 5 · (n− 1) + 3 · (m + 2).

� Remove one 5-cent piece, add 2 3-cent pieces.

� Case 2: m ≥ 3. We have more than 3 3-cent pieces.

� p + 1 = 5 · (n + 2) + 3 · (m− 3).
� Add 2 5-cent pieces, remove 3 3-cent pieces

� Case 3: n = 0,m ≤ 2. We have no 5-cent pieces, and 2 or fewer 3-cent

pieces.

� p = 5n + 3m ≤ 6, which is a contradiction to p ≥ 8

CS 5002: Discrete Math ©Northeastern University Fall 2018 53

Step 3: Show true for n+ 1

Assume that p = 5n + 3m where n,m ≥ 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b ≥ 0. Partition to

cases:

� Case 1: n ≥ 1. We have more than 1 5-cent piece.

� In this case, p + 1 = 5 · (n− 1) + 3 · (m + 2).
� Remove one 5-cent piece, add 2 3-cent pieces.

� Case 2: m ≥ 3. We have more than 3 3-cent pieces.

� p + 1 = 5 · (n + 2) + 3 · (m− 3).
� Add 2 5-cent pieces, remove 3 3-cent pieces

� Case 3: n = 0,m ≤ 2. We have no 5-cent pieces, and 2 or fewer 3-cent

pieces.

� p = 5n + 3m ≤ 6, which is a contradiction to p ≥ 8

CS 5002: Discrete Math ©Northeastern University Fall 2018 54

Step 3: Show true for n+ 1

Assume that p = 5n + 3m where n,m ≥ 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b ≥ 0. Partition to

cases:

� Case 1: n ≥ 1. We have more than 1 5-cent piece.

� In this case, p + 1 = 5 · (n− 1) + 3 · (m + 2).
� Remove one 5-cent piece, add 2 3-cent pieces.

� Case 2: m ≥ 3. We have more than 3 3-cent pieces.

� p + 1 = 5 · (n + 2) + 3 · (m− 3).
� Add 2 5-cent pieces, remove 3 3-cent pieces

� Case 3: n = 0,m ≤ 2. We have no 5-cent pieces, and 2 or fewer 3-cent

pieces.

� p = 5n + 3m ≤ 6, which is a contradiction to p ≥ 8

CS 5002: Discrete Math ©Northeastern University Fall 2018 55

Step 3: Show true for n+ 1

Assume that p = 5n + 3m where n,m ≥ 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b ≥ 0. Partition to

cases:

� Case 1: n ≥ 1. We have more than 1 5-cent piece.

� In this case, p + 1 = 5 · (n− 1) + 3 · (m + 2).
� Remove one 5-cent piece, add 2 3-cent pieces.

� Case 2: m ≥ 3. We have more than 3 3-cent pieces.

� p + 1 = 5 · (n + 2) + 3 · (m− 3).

� Add 2 5-cent pieces, remove 3 3-cent pieces

� Case 3: n = 0,m ≤ 2. We have no 5-cent pieces, and 2 or fewer 3-cent

pieces.

� p = 5n + 3m ≤ 6, which is a contradiction to p ≥ 8

CS 5002: Discrete Math ©Northeastern University Fall 2018 56

Step 3: Show true for n+ 1

Assume that p = 5n + 3m where n,m ≥ 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b ≥ 0. Partition to

cases:

� Case 1: n ≥ 1. We have more than 1 5-cent piece.

� In this case, p + 1 = 5 · (n− 1) + 3 · (m + 2).
� Remove one 5-cent piece, add 2 3-cent pieces.

� Case 2: m ≥ 3. We have more than 3 3-cent pieces.

� p + 1 = 5 · (n + 2) + 3 · (m− 3).
� Add 2 5-cent pieces, remove 3 3-cent pieces

� Case 3: n = 0,m ≤ 2. We have no 5-cent pieces, and 2 or fewer 3-cent

pieces.

� p = 5n + 3m ≤ 6, which is a contradiction to p ≥ 8

CS 5002: Discrete Math ©Northeastern University Fall 2018 57

Step 3: Show true for n+ 1

Assume that p = 5n + 3m where n,m ≥ 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b ≥ 0. Partition to

cases:

� Case 1: n ≥ 1. We have more than 1 5-cent piece.

� In this case, p + 1 = 5 · (n− 1) + 3 · (m + 2).
� Remove one 5-cent piece, add 2 3-cent pieces.

� Case 2: m ≥ 3. We have more than 3 3-cent pieces.

� p + 1 = 5 · (n + 2) + 3 · (m− 3).
� Add 2 5-cent pieces, remove 3 3-cent pieces

� Case 3: n = 0,m ≤ 2. We have no 5-cent pieces, and 2 or fewer 3-cent

pieces.

� p = 5n + 3m ≤ 6, which is a contradiction to p ≥ 8

CS 5002: Discrete Math ©Northeastern University Fall 2018 58

Step 3: Show true for n+ 1

Assume that p = 5n + 3m where n,m ≥ 0 are integers.

We need to show that p + 1 = 5a + 3b for integers a, b ≥ 0. Partition to

cases:

� Case 1: n ≥ 1. We have more than 1 5-cent piece.

� In this case, p + 1 = 5 · (n− 1) + 3 · (m + 2).
� Remove one 5-cent piece, add 2 3-cent pieces.

� Case 2: m ≥ 3. We have more than 3 3-cent pieces.

� p + 1 = 5 · (n + 2) + 3 · (m− 3).
� Add 2 5-cent pieces, remove 3 3-cent pieces

� Case 3: n = 0,m ≤ 2. We have no 5-cent pieces, and 2 or fewer 3-cent

pieces.

� p = 5n + 3m ≤ 6, which is a contradiction to p ≥ 8

CS 5002: Discrete Math ©Northeastern University Fall 2018 59

Just a li�le thought…

Now that we’ve proven the theorem, we can use it to derive an algorithm:

CS 5002: Discrete Math ©Northeastern University Fall 2018 60

The Algorithm

Input: price p ≥ 8.
Output: integers n,m ≥ 0 so that p = 5n + 3m

PayWithThreeCentsAndFiveCents(p):

1 Let x = 8, n = 1,m = 1 (so that x = 5n + 3m).

2 while x < p:
3 x = x + 1
4 if n ≥ 1:
5 n := n− 1
6 m := m + 2
7 else
8 n := n + 2
9 m := m− 3
10 return (n,m)

CS 5002: Discrete Math ©Northeastern University Fall 2018 61

Back to our original proof…

n∑
i=1

i = n(n+1)
2

CS 5002: Discrete Math ©Northeastern University Fall 2018 62

Step 1: Proving true for smallest number

n∑
i=1

i = n(n+1)
2

Case n = 1 :
1∑

i=1
i =

CS 5002: Discrete Math ©Northeastern University Fall 2018 63

Step 2: Assume true for arbitrary n

Assumed.

CS 5002: Discrete Math ©Northeastern University Fall 2018 64

Proof: Summing n integers

n∑
i=1

i = n(n+1)
2

Proof:

� Does it hold true for n = 1?
1 = 1(1+1)

2 X

� Assume it works for n X

� Prove that it’s true when n is replaced by n + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 65

Proof Step 3: Summing n integers

Starting with n:

n∑
i=1

i =
n(n + 1)

2
(1)

1 + 2 + 3 + ...(n− 1) + n =
n(n + 1)

2
(2)

1 + 2 + 3 + ... + ((n + 1)− 1) + (n + 1) =
(n + 1)[(n + 1) + 1]

2
(3)

1 + 2 + 3 + ... + n + (n + 1) =
(n + 1)(n + 2)

2
(4)

(1 + 2 + 3 + ... + n) + (n + 1) =
(n + 1)(n + 2)

2
(5)

n(n + 1)

2
+ (n + 1) =

(n + 1)(n + 2)

2

(6)

CS 5002: Discrete Math ©Northeastern University Fall 2018 66

Proof Step 3: Summing n integers

Rewriting the le� hand side…

n∑
i=1

i =
n(n + 1)

2
(1)

1 + 2 + 3 + ...(n− 1) + n =
n(n + 1)

2
(2)

1 + 2 + 3 + ... + ((n + 1)− 1) + (n + 1) =
(n + 1)[(n + 1) + 1]

2
(3)

1 + 2 + 3 + ... + n + (n + 1) =
(n + 1)(n + 2)

2
(4)

(1 + 2 + 3 + ... + n) + (n + 1) =
(n + 1)(n + 2)

2
(5)

n(n + 1)

2
+ (n + 1) =

(n + 1)(n + 2)

2

(6)

CS 5002: Discrete Math ©Northeastern University Fall 2018 67

Proof Step 3: Summing n integers

Replace n with n + 1

n∑
i=1

i =
n(n + 1)

2
(1)

1 + 2 + 3 + ...(n− 1) + n =
n(n + 1)

2
(2)

1 + 2 + 3 + ... + ((n + 1)− 1) + (n + 1) =
(n + 1)[(n + 1) + 1]

2
(3)

1 + 2 + 3 + ... + n + (n + 1) =
(n + 1)(n + 2)

2
(4)

(1 + 2 + 3 + ... + n) + (n + 1) =
(n + 1)(n + 2)

2
(5)

n(n + 1)

2
+ (n + 1) =

(n + 1)(n + 2)

2

(6)

CS 5002: Discrete Math ©Northeastern University Fall 2018 68

Proof Step 3: Summing n integers

Simplifying

n∑
i=1

i =
n(n + 1)

2
(1)

1 + 2 + 3 + ...(n− 1) + n =
n(n + 1)

2
(2)

1 + 2 + 3 + ... + ((n + 1)− 1) + (n + 1) =
(n + 1)[(n + 1) + 1]

2
(3)

1 + 2 + 3 + ... + n + (n + 1) =
(n + 1)(n + 2)

2
(4)

(1 + 2 + 3 + ... + n) + (n + 1) =
(n + 1)(n + 2)

2
(5)

n(n + 1)

2
+ (n + 1) =

(n + 1)(n + 2)

2

(6)

CS 5002: Discrete Math ©Northeastern University Fall 2018 69

Proof Step 3: Summing n integers

Re-grouping on the le� side

n∑
i=1

i =
n(n + 1)

2
(1)

1 + 2 + 3 + ...(n− 1) + n =
n(n + 1)

2
(2)

1 + 2 + 3 + ... + ((n + 1)− 1) + (n + 1) =
(n + 1)[(n + 1) + 1]

2
(3)

1 + 2 + 3 + ... + n + (n + 1) =
(n + 1)(n + 2)

2
(4)

(1 + 2 + 3 + ... + n) + (n + 1) =
(n + 1)(n + 2)

2
(5)

n(n + 1)

2
+ (n + 1) =

(n + 1)(n + 2)

2

(6)

CS 5002: Discrete Math ©Northeastern University Fall 2018 70

Proof Step 3: Summing n integers

Replace our known (assumed) formula from #2

n∑
i=1

i =
n(n + 1)

2
(1)

1 + 2 + 3 + ...(n− 1) + n =
n(n + 1)

2
(2)

1 + 2 + 3 + ... + ((n + 1)− 1) + (n + 1) =
(n + 1)[(n + 1) + 1]

2
(3)

1 + 2 + 3 + ... + n + (n + 1) =
(n + 1)(n + 2)

2
(4)

(1 + 2 + 3 + ... + n) + (n + 1) =
(n + 1)(n + 2)

2
(5)

n(n + 1)

2
+ (n + 1) =

(n + 1)(n + 2)

2
(6)

CS 5002: Discrete Math ©Northeastern University Fall 2018 71

Proof Step 3: Summing n integers (pt 2)

Established a common denominator

n(n + 1)

2
+

2(n + 1)

2
=

(n + 1)(n + 2)

2
(7)

n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)

2
(8)

(n + 1)(n + 2)

2
=

(n + 1)(n + 2)

2

X

(9)

We’ve proved that the formula holds for n + 1.

CS 5002: Discrete Math ©Northeastern University Fall 2018 72

Proof Step 3: Summing n integers (pt 2)

Simplify

n(n + 1)

2
+

2(n + 1)

2
=

(n + 1)(n + 2)

2
(7)

n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)

2
(8)

(n + 1)(n + 2)

2
=

(n + 1)(n + 2)

2

X

(9)

We’ve proved that the formula holds for n + 1.

CS 5002: Discrete Math ©Northeastern University Fall 2018 73

Proof Step 3: Summing n integers (pt 2)

Factor out common factor n + 1

n(n + 1)

2
+

2(n + 1)

2
=

(n + 1)(n + 2)

2
(7)

n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)

2
(8)

(n + 1)(n + 2)

2
=

(n + 1)(n + 2)

2

X

(9)

We’ve proved that the formula holds for n + 1.

CS 5002: Discrete Math ©Northeastern University Fall 2018 74

Proof Step 3: Summing n integers (pt 2)

n(n + 1)

2
+

2(n + 1)

2
=

(n + 1)(n + 2)

2
(7)

n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)

2
(8)

(n + 1)(n + 2)

2
=

(n + 1)(n + 2)

2
X (9)

We’ve proved that the formula holds for n + 1.

CS 5002: Discrete Math ©Northeastern University Fall 2018 75

Proof Step 3: Summing n integers (pt 2)

n(n + 1)

2
+

2(n + 1)

2
=

(n + 1)(n + 2)

2
(7)

n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)

2
(8)

(n + 1)(n + 2)

2
=

(n + 1)(n + 2)

2
X (9)

We’ve proved that the formula holds for n + 1.

CS 5002: Discrete Math ©Northeastern University Fall 2018 76

Proof: Summing n integers

n∑
i=1

i = n(n+1)
2

Proof:

� Does it hold true for n = 1?
1 = 1(1+1)

2 X

� Assume it works for n X

� Prove that it’s true when n is replaced by n + 1 X

CS 5002: Discrete Math ©Northeastern University Fall 2018 77

Mathematical Induction

� Prove the formula for a base case

� Assume it’s true for an arbitrary number n

� Use the previous steps to prove that it’s true for the next number n + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 78

Table of Content

1 Mergesort Analysis

2 Proof Techniques

Proof by Counterexample

Proof by Induction

Mathematical Induction

Building block: The Well-Ordering Property

Applying Mathematical Induction to Algorithms

Proof by Loop Invariant Examples

3 Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018 79

The Well-Ordering Property

The Well-Ordering property

The positive integers are well-ordered. An ordered set is well-ordered if

each and every nonempty subset has a smallest or least element.

Every nonempty subset of the positive integers has a least element.

Note: this property is not true for the set of integers (in which there are

arbitrarily small negative numbers) or subsets of, e.g., the positive real

numbers (in which there are elements arbitrarily close to zero).

CS 5002: Discrete Math ©Northeastern University Fall 2018 80

The Well-Ordering Principle

An equivalent statement to the well-ordering principle is as follows:

The set of positive integers does not contain any infinite strictly decreasing

sequences.

CS 5002: Discrete Math ©Northeastern University Fall 2018 81

Proving Well-Ordered Principle with Induction
1

Let S be a subset of the positive integers with no least element.

1

adapted from: h�ps://brilliant.org/wiki/the-well-ordering-principle/

CS 5002: Discrete Math ©Northeastern University Fall 2018 82

Proving Induction with the Well-Ordered Principle

Suppose P is a property of an integer such that P (1) is true, and P (n)
being true implies that P (n + 1) is true.

CS 5002: Discrete Math ©Northeastern University Fall 2018 83

Template for proofs based on Well-Ordering

The Well-Ordering Principle can be used for proofs. A template:

To prove that “P (n) is true for all n ∈ N” using the Well Ordering Principle:

� Define the set C of counterexamples to P being true. Specifically,

define C ::== {n ∈ N|NOTP (n) is true}
� (The notation {n|Q(n)} means “the set of all elements n for which

Q(n)istrue.”)

� Assume for proof by contradiction that C is nonempty.

� By WOP, there will be a smallest element n in C .

� Reach a contradiction somehow-o�en by showing that P (n) is
actually true or by showing that there is another member of C that is

smaller than n. This is the open-ended part of the proof task.

� Conclude that C must be empty, that is, no counterexamples exist.

CS 5002: Discrete Math ©Northeastern University Fall 2018 84

Summary: Well-Ordering Property

� Let’s us order things

� Basis for proving that induction works

� Good to know about it; delve into more details on your own.

CS 5002: Discrete Math ©Northeastern University Fall 2018 85

1 Mergesort Analysis

2 Proof Techniques

Proof by Counterexample

Proof by Induction

Mathematical Induction

Building block: The Well-Ordering Property

Applying Mathematical Induction to Algorithms

Proof by Loop Invariant Examples

3 Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018 86

Mathematical Induction to Algorithmic Induction

� We’ve seen an example of mathematical induction

� We generated an algorithm from our proof

� We saw another example of mathematical induction

� Time to see another algorithm proof

CS 5002: Discrete Math ©Northeastern University Fall 2018 87

Insert Algorithm

Insert(A, e)

1 Add(A, e) . Add e at the end of A
2 for i = A.length− 1 to 1:
3 while A[i + 1] < A[i]:
4 A[i + 1] = A[i] . Move the larger one to the end

CS 5002: Discrete Math ©Northeastern University Fall 2018 88

We want to prove that for any element e and any list A:

1 The resulting list a�er Insert(A, e) is sorted

2 The resulting list a�er Insert(A, e) contains all of the elements of A,

plus element e.

Proving: Let’s say P (n) is defined for any list A and element e as:

� If sorted(A) and length(A) = n then sorted(insert(A, l)) and
elements(insert(A, e)) = elements(A) ∪ {e}

We want to prove that P (n) holds for all n ≥ 0.

CS 5002: Discrete Math ©Northeastern University Fall 2018 89

Proving Insertion Sort: Base Case

n = 0: Prove that P (0) holds.

� Let a list A such that sorted(A) = True and length(A) = 0.

� The only list with length zero is the empty list, so A = ∅. Therefore,
Insert(A, e) evaluates as follows:

� List [e] has one element, so it is sorted by definition. Hence, Insert(∅, e)
is sorted.

� Furthermore, elements(insert(e, [])) = elements([e]) = {e} =
{e} ∪A = {e} ∪ elements([]). Therefore, the base case holds.

CS 5002: Discrete Math ©Northeastern University Fall 2018 90

Proving Insertion Sort: Assume true for n

a.k.a “The Invisible Step”

� Assume that P (n) holds. That is, for any element e and any sorted list

of length n, Insert(A, e) is sorted and contains all of the elements of A,

plus e. This is the induction hypothesis.

CS 5002: Discrete Math ©Northeastern University Fall 2018 91

Proving Insertion Sort: Inductive Step

We want to prove that P (n + 1) also holds.

� For any e, and any sorted A of length n + 1, Insert(A, e) is also sorted
and contains all elements of A, plus e.

� Let e be an arbitrary element, and A a sorted list of length n + 1. Let h
be the first element of A, and T be the rest of the elements of A, such

that h is less than all elements in T , and T is a sorted list of length n.
Also, elements(A) = elements{T} ∪ {h}

� The evaluation of Insert(A, e) proceeds as follows:

Thanks to the evaluation model by substitution, we have a formal way of

describing the execution of insert. According to that model, the evaluation

of Insert(A, e) proceeds as follows:
Insert(A, e)
-¿ (function evaluation and replacing l with h::t) match h::t with [] -¿ [e] —

x::xs -¿ if e ¡ x then n::l else x::(insert(e,xs))

-¿ (pa�ern matching) if e ¡ h then e::l else h::(insert(e,t))

CS 5002: Discrete Math ©Northeastern University Fall 2018 92

Case 1: If e < h is true, then Insert(A, e) = e + A.

We have the following:

� Since h is less than all elements in T , and e < h], it means that e is less
than all elements in h + T = A.

� We also know that A is sorted.

Together, the above imply that e + A is sorted. Therefore, Insert(A, e) is
sorted.

Also, elements(Insert(A, e)) = elements(e + A) = elements(A) ∪ {e}. So
P (n + 1) holds in this case.

CS 5002: Discrete Math ©Northeastern University Fall 2018 93

Case 2. If h ≤ e, then Insert(A, e) = h + Insert(T, e)
Let A′ = Insert(T, e).

� Because T is a sorted list of length n, it means that we can apply the

induction hypothesis. By the IH for element e and list T , the list
A′ = Insert(T, e) is sorted, and elements(A′) = elements(T) ∪ e.

� Since h + T is sorted, h is less than any element in elements(T).

� Further, h <= e. Therefore h is less than all elements in A′
. Since A′

is

sorted, Insert(A, e) = h + A′
is sorted.

� Finally:

elements(insert(A, e)) = elements(h + Insert(T, e))

= elements(h + A′)

= {h} ∪ elements(A′)

= {h} ∪ {e} ∪ elements(t)

= e ∪ h ∪ elements(t)

= {e} ∪ elements(A)

� Therefore, P (n + 1) holds in this case.

CS 5002: Discrete Math ©Northeastern University Fall 2018 94

Since the conclusion of P (n + 1) holds for all branches of evaluation, we
have proved the inductive step.

We can therefore conclude that P (n) holds for all n ≥ 0.

CS 5002: Discrete Math ©Northeastern University Fall 2018 95

Summay: Proof by Induction

Induction has three steps:

1 Base case

2 Assume true for n

3 Show true for n + 1

We:

� Defined proof by induction

� Defined Well-Ordering Property

� Example of mathematical induction

� Example of induction applied to Insertion Sort

CS 5002: Discrete Math ©Northeastern University Fall 2018 96

1 Mergesort Analysis

2 Proof Techniques

Proof by Counterexample

Proof by Induction

Mathematical Induction

Building block: The Well-Ordering Property

Applying Mathematical Induction to Algorithms

Proof by Loop Invariant Examples

3 Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018 97

Proof by Loop Invariant Is…

Invariant: something that is always true

A�er finding a candidate loop invariant, we prove:

1 Initialization: How does the invariant get initialized?

2 Loop Maintenance: How does the invariant change at each pass

through the loop?

3 Termination: Does the loop stop? When?

CS 5002: Discrete Math ©Northeastern University Fall 2018 98

Proof by Loop Invariant Is…

Invariant: something that is always true

A�er finding a candidate loop invariant, we prove:

1 Initialization: How does the invariant get initialized?

2 Loop Maintenance: How does the invariant change at each pass

through the loop?

3 Termination: Does the loop stop? When?

CS 5002: Discrete Math ©Northeastern University Fall 2018 99

Proof by Loop Invariant Is…

Invariant: something that is always true

A�er finding a candidate loop invariant, we prove:

1 Initialization: How does the invariant get initialized?

2 Loop Maintenance: How does the invariant change at each pass

through the loop?

3 Termination: Does the loop stop? When?

CS 5002: Discrete Math ©Northeastern University Fall 2018 100

Loop Invariant Proof Examples

We have a few examples:

� Linear Search

� Insertion Sort

� Bubble Sort

� Merge Sort

CS 5002: Discrete Math ©Northeastern University Fall 2018 101

LinearSearch(A, v)

1 for j = 1 toA.length:
2 if A[j] == v:
3 return j

4 return NIL

CS 5002: Discrete Math ©Northeastern University Fall 2018 102

LinearSearch(A, v)

1 for j = 1 toA.length:
2 if A[j] == v:
3 return j

4 return NIL

Loop Invariant . At the start of each iteration of the for loop on line 1, the

subarray A[1 : j − 1] does not contain the value v

CS 5002: Discrete Math ©Northeastern University Fall 2018 103

LinearSearch(A, v)

1 for j = 1 toA.length:
2 if A[j] == v:
3 return j

4 return NIL

Initialization Prior to the first iteration, the array A[1 : j − 1] is empty

(j == 1). That (empty) subarray does not contain the value v.

CS 5002: Discrete Math ©Northeastern University Fall 2018 104

LinearSearch(A, v)

1 for j = 1 toA.length:
2 if A[j] == v:
3 return j

4 return NIL

Maintenance Line 2 checks whether A[j] is the desired value (v). If it is, the
algorithm will return j, thereby terminating and producing

the correct behavior (the index of value v is returned, if v is

present). If A[j] 6= v, then the loop invariant holds at the end

of the loop (the subarray A[1 : j] does not contain the value

v).

CS 5002: Discrete Math ©Northeastern University Fall 2018 105

LinearSearch(A, v)

1 for j = 1 toA.length:
2 if A[j] == v:
3 return j

4 return NIL

Termination The for loop on line 1 terminates when j > A.length (that is,

n). Because each iteration of a for loop increments j by 1,
then j = n + 1. The loop invariant states that the value is not

present in the subarray of A[1 : j − 1]. Substituting n + 1 for

j, we have A[1 : n]. Therefore, the value is not present in the

original array A and the algorithm returns NIL.

CS 5002: Discrete Math ©Northeastern University Fall 2018 106

New example: Insertion Sort

CS 5002: Discrete Math ©Northeastern University Fall 2018 107

Insertion Sort

InsertionSort(A)

1 for i = 1 to A.length
2 j = i
3 while j > 0 and A[j − 1] > A[j]
4 Swap(A[j], A[j − 1])
5 j = j − 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 108

Insertion Sort

InsertionSort(A)

1 for i = 1 to A.length
2 j = i
3 while j > 0 and A[j − 1] > A[j]
4 Swap(A[j], A[j − 1])
5 j = j − 1

Invariant A[0 : i− 1] are sorted

CS 5002: Discrete Math ©Northeastern University Fall 2018 109

Insertion Sort

InsertionSort(A)

1 for i = 1 to A.length
2 j = i
3 while j > 0 and A[j − 1] > A[j]
4 Swap(A[j], A[j − 1])
5 j = j − 1

Initialization At the top of the first loop, this is A[0 : 0], which is vacuously

true.

CS 5002: Discrete Math ©Northeastern University Fall 2018 110

Insertion Sort

InsertionSort(A)

1 for i = 1 to A.length
2 j = i
3 while j > 0 and A[j − 1] > A[j]
4 Swap(A[j], A[j − 1])
5 j = j − 1

Maintenance An inner loop where we start from i and work our way down,

swapping values until we find the location for a[i] in the

sorted section of the data

CS 5002: Discrete Math ©Northeastern University Fall 2018 111

Insertion Sort

InsertionSort(A)

1 for i = 1 to A.length
2 j = i
3 while j > 0 and A[j − 1] > A[j]
4 Swap(A[j], A[j − 1])
5 j = j − 1

Termination And the end of the for loop, i = len(A). That means that the

array A[0 : A.length− 1] is now sorted, which is the entire

array.

CS 5002: Discrete Math ©Northeastern University Fall 2018 112

New example: BubbleSort

CS 5002: Discrete Math ©Northeastern University Fall 2018 113

Bubble Sort: Outer Loop

BubbleSort(A)

1 for i = 1 to A.length− 1
2 for j = A.length to i + 1
3 if A[j] < A[j − 1]
4 Swap(A[j], A[j − 1]

CS 5002: Discrete Math ©Northeastern University Fall 2018 114

Bubble Sort: Outer Loop

BubbleSort(A)

1 for i = 1 to A.length− 1
2 for j = A.length to i + 1
3 if A[j] < A[j − 1]
4 Swap(A[j], A[j − 1]

Invariant At the start of each iteration of the for loop on line 1, the

subarray A[1 : i− 1] is sorted

CS 5002: Discrete Math ©Northeastern University Fall 2018 115

Bubble Sort: Outer Loop

BubbleSort(A)

1 for i = 1 to A.length− 1
2 for j = A.length to i + 1
3 if A[j] < A[j − 1]
4 Swap(A[j], A[j − 1]

Initialization Prior to the first iteration, the array A[1 : i− 1] is empty

(i = 1). That (empty) subarray is sorted by definition.

CS 5002: Discrete Math ©Northeastern University Fall 2018 116

Bubble Sort: Outer Loop

BubbleSort(A)

1 for i = 1 to A.length− 1
2 for j = A.length to i + 1
3 if A[j] < A[j − 1]
4 Swap(A[j], A[j − 1]

Maintenance Given the guarantees of the inner loop, at the end of each

iteration of the for loop at line 1, the value at A[i] is the
smallest value in the range A[i : A.range]. Since the values in
A[i : i− 1] were sorted and were less than the value in A[i],
the values in the range A[1 : i] are sorted.

CS 5002: Discrete Math ©Northeastern University Fall 2018 117

Bubble Sort: Outer Loop

BubbleSort(A)

1 for i = 1 to A.length− 1
2 for j = A.length to i + 1
3 if A[j] < A[j − 1]
4 Swap(A[j], A[j − 1]

Termination The for loop at line 1 ends when i equals A.length− 1. Based
on the maintenance proof, this means that all values in

A[1 : A.length− 1] are sorted and less than the value at

A[length]. So, by definition, the values in A[1 : A.length] are
sorted.

CS 5002: Discrete Math ©Northeastern University Fall 2018 118

Now we need to do the inner loop.

CS 5002: Discrete Math ©Northeastern University Fall 2018 119

Bubble Sort: Inner Loop

BubbleSort(A)

1 for i = 1 to A.length− 1
2 for j = A.length to i + 1
3 if A[j] < A[j − 1]
4 Swap(A[j], A[j − 1]

CS 5002: Discrete Math ©Northeastern University Fall 2018 120

Bubble Sort: Inner Loop

BubbleSort(A)

1 for i = 1 to A.length− 1
2 for j = A.length to i + 1
3 if A[j] < A[j − 1]
4 Swap(A[j], A[j − 1]

Invariant At the start of each iteration of the for loop on line 2, the

value at location A[j] is the smallest value in the subrange

from A[j : A.length]

CS 5002: Discrete Math ©Northeastern University Fall 2018 121

Bubble Sort: Inner Loop

BubbleSort(A)

1 for i = 1 to A.length− 1
2 for j = A.length to i + 1
3 if A[j] < A[j − 1]
4 Swap(A[j], A[j − 1]

Initialization Prior to the first iteration, j = A.length. The subarray
A[j : A.length] contains a single value (A[j]) and the value at

A[j] is (trivially) the smallest value in the range from

A[j : A.length])

CS 5002: Discrete Math ©Northeastern University Fall 2018 122

Bubble Sort: Inner Loop

BubbleSort(A)

1 for i = 1 to A.length− 1
2 for j = A.length to i + 1
3 if A[j] < A[j − 1]
4 Swap(A[j], A[j − 1]

Maintenance The if statement on line 3 compares the elements at A[j] and
A[j − 1], swapping A[j] into A[j − 1] if it is the lower value
and leaving them in place, if not. Given the initial condition

that the value in A[j] was the smallest value in the range

A[j : A.length], this means the value in A[j − 1] is now the

smallest value in the range A[j − 1 : A.length]. This also
means that every value in the subarray A[j : A.length] is
greater than the value at A[j − 1].

CS 5002: Discrete Math ©Northeastern University Fall 2018 123

Bubble Sort: Inner Loop

BubbleSort(A)

1 for i = 1 to A.length− 1
2 for j = A.length to i + 1
3 if A[j] < A[j − 1]
4 Swap(A[j], A[j − 1]

Termination 2 The for loop on line 2 terminates when j = i + 1 and given

the Maintenance property, this means that the value at A[i]
(which is A[j − 1]) will be the smallest value in the range

A[i : A.range] (A[j − 1 : A.range])

CS 5002: Discrete Math ©Northeastern University Fall 2018 124

Back to proving Mergesort correct

CS 5002: Discrete Math ©Northeastern University Fall 2018 125

The Merge Algorithm

Merge(A, low, mid, high)

1 L = A[low:mid] . (L is a new array copied from A[low:mid])

2 R = A[mid+1, high] . (R is a new array copied from A[mid+1, high])

3 i = 1, j = 1
4 for k =low to high:

5 if L[i] < R[j]:

6 A[k] = L[i]

7 i = i + 1
8 else
9 A[k] = R[j]

10 j = j + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 126

Merge Sort Invariant

Invariant At the start of each for loop iteration, the array starting at

A[k] with length k − low contains the k − low smallest

elements, in increasing sorted order

Initialization Prior to the first iteration, the array starting at A[k] with
length k − low is empty because k − low = 0. L and R are

assumed sorted.

Maintenance Since L and R are sorted, the value at L[i] is the smallest in L
and the value at R[j] is the smallest in R. The smallest of

these is the smallest in the union of L and R, which is

A[low : high]. Copy that into A[k].

Termination On the last iteration, k = high + 1. This means that the array

at A[low] with length k − low(low · high + 1) is sorted,
which is the array A[low : high]. A[low . . . high] is sorted.
k − low = (high + 1)− low = high− low + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 127

Merge Sort Invariant

Invariant At the start of each for loop iteration, the array starting at

A[k] with length k − low contains the k − low smallest

elements, in increasing sorted order

Initialization Prior to the first iteration, the array starting at A[k] with
length k − low is empty because k − low = 0. L and R are

assumed sorted.

Maintenance Since L and R are sorted, the value at L[i] is the smallest in L
and the value at R[j] is the smallest in R. The smallest of

these is the smallest in the union of L and R, which is

A[low : high]. Copy that into A[k].

Termination On the last iteration, k = high + 1. This means that the array

at A[low] with length k − low(low · high + 1) is sorted,
which is the array A[low : high]. A[low . . . high] is sorted.
k − low = (high + 1)− low = high− low + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 128

Merge Sort Invariant

Invariant At the start of each for loop iteration, the array starting at

A[k] with length k − low contains the k − low smallest

elements, in increasing sorted order

Initialization Prior to the first iteration, the array starting at A[k] with
length k − low is empty because k − low = 0. L and R are

assumed sorted.

Maintenance Since L and R are sorted, the value at L[i] is the smallest in L
and the value at R[j] is the smallest in R. The smallest of

these is the smallest in the union of L and R, which is

A[low : high]. Copy that into A[k].

Termination On the last iteration, k = high + 1. This means that the array

at A[low] with length k − low(low · high + 1) is sorted,
which is the array A[low : high]. A[low . . . high] is sorted.
k − low = (high + 1)− low = high− low + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 129

Merge Sort Invariant

Invariant At the start of each for loop iteration, the array starting at

A[k] with length k − low contains the k − low smallest

elements, in increasing sorted order

Initialization Prior to the first iteration, the array starting at A[k] with
length k − low is empty because k − low = 0. L and R are

assumed sorted.

Maintenance Since L and R are sorted, the value at L[i] is the smallest in L
and the value at R[j] is the smallest in R. The smallest of

these is the smallest in the union of L and R, which is

A[low : high]. Copy that into A[k].

Termination On the last iteration, k = high + 1. This means that the array

at A[low] with length k − low(low · high + 1) is sorted,
which is the array A[low : high]. A[low . . . high] is sorted.
k − low = (high + 1)− low = high− low + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 130

Steps to Loop Invariant Proof

A�er finding your loop invariant:

� Initialization

� Prior to the loop initiating, does the property hold?

� Maintenance

� A�er each loop iteration, does the property still hold, given the

initialization properties?

� Termination

� A�er the loop terminates, does the property still hold? And for what

data?

CS 5002: Discrete Math ©Northeastern University Fall 2018 131

Things to remember

� Algorithm termination is necessary for proving correctness of the

entire algorithm.

� Loop invariant termination is necessary for proving the behavior of

the given loop.

CS 5002: Discrete Math ©Northeastern University Fall 2018 132

Summary: Proof by Loop Invariant

Proof by Loop Invariant is based on induction and has 4 steps:

1 Define loop invariant

2 Show initialization

3 Show maintenance

4 Show termination

We:

� Defined proof by loop invariant

� Examples:

� Linear Search

� Insertion Sort

� Bubble Sort

� Merge Sort

CS 5002: Discrete Math ©Northeastern University Fall 2018 133

1 Mergesort Analysis

2 Proof Techniques

Proof by Counterexample

Proof by Induction

Mathematical Induction

Building block: The Well-Ordering Property

Applying Mathematical Induction to Algorithms

Proof by Loop Invariant Examples

3 Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018 134

Why Mergesort ma�ers

� Merge sort used to be king due to media

� tape drives

� Resurfaced a few years ago

� magnetic hard drives

� Systems work is about the ratio of available resources

� memory vs IO

� CPU vs memory

� local IO vs network

CS 5002: Discrete Math ©Northeastern University Fall 2018 135

Good proofs

State your plan A good proof begins by explaining the general line of

reasoning, for example, “We use case analysis” or “We argue by

contradiction.”

Keep a flow Sometimes proofs are wri�en like mathematical mosaics, with

juicy tidbits of independent reasoning sprinkled throughout. This is

not good. The steps of an argument should follow one another in an

intelligible order.

A proof is an essay, not a calculation. Many students initially write proofs

the way they compute integrals. The result is a long sequence of

expressions without explanation, making it very hard to follow. This is

bad. A good proof usually looks like an essay with some equations

thrown in. Use complete sentences.

Avoid excessive symbolism. Your reader is probably good at understanding

words, but much less skilled at reading arcane mathematical symbols.

Use words where you reasonably can.

Revise and simplify. Your readers will be grateful.

Introduce notation thoughtfully. Sometimes an argument can be greatly

simplified by introducing a variable, devising a special notation, or

defining a new term. But do this sparingly, since you’re requiring the

reader to remember all that new stu�. And remember to actually

define the meanings of new variables, terms, or notations; don’t just

start using them!

Structure long proofs. Long programs are usually broken into a hierarchy of

smaller procedures. Long proofs are much the same. When your proof

needed facts that are easily stated, but not readily proved, those fact

are best pulled out as preliminary lemmas. Also, if you are repeating

essentially the same argument over and over, try to capture that

argument in a general lemma, which you can cite repeatedly instead.

Be wary of the “obvious.” When familiar or truly obvious facts are needed

in a proof, it’s OK to label them as such and to not prove them. But

remember that what’s obvious to you may not be— and typically is

not—obvious to your reader.

Most especially, don’t use phrases like “clearly” or “obviously” in an

a�empt to bully the reader into accepting something you’re having

trouble proving. Also, go on the alert whenever you see one of these

phrases in someone else’s proof.

Finish. At some point in a proof, you’ll have established all the essential

facts you need. Resist the temptation to quit and leave the reader to

draw the “obvious” conclusion. Instead, tie everything together

yourself and explain why the original claim follows.

CS 5002: Discrete Math ©Northeastern University Fall 2018 136

Summary

� Approaches to proving algorithms correct

� Counterexamples

� Helpful for greedy algorithms, heuristics

� Induction

� Based on mathematical induction

� Once we prove a theorem, can use it to build an algorithm

� Loop Invariant

� Based on induction

� Key is finding an invariant

� Lots of examples

CS 5002: Discrete Math ©Northeastern University Fall 2018 137

1 Mergesort Analysis

2 Proof Techniques

Proof by Counterexample

Proof by Induction

Mathematical Induction

Building block: The Well-Ordering Property

Applying Mathematical Induction to Algorithms

Proof by Loop Invariant Examples

3 Summary

CS 5002: Discrete Math ©Northeastern University Fall 2018 138

	Mergesort Analysis
	Proof Techniques
	Proof by Counterexample
	Proof by Induction
	Proof by Loop Invariant Examples

	
	Summary

