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Agenda

� What is Sorting?

� Intro to Divide and Conquer

� A first Divide and Conquer problem: Mergesort: The Algorithm

� Analyzing runtime: Recursion Trees

� Proving correctness: Induction

� If time, more on Divide and Conquer

CS 5002: Discrete Math ©Northeastern University Fall 2018 3



Section 1

A first problem: Sorting
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Why sorting?

Learning sorts is like learning scales for musicians.
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Applications of Sorting

It turns out that sorting makes a bunch of other problems really easy to
solve:

⌅ Searching: Binary search is great, but requires sorted data. Once
data is sorted, it’s easy to search.

⌅ Closest pair: Given a set ofm numbers, how do you find the pair of
numbers that have the smallest di�erence between them?

⌅ Element uniqueness: Are there any duplicates in a given set of n
items? (A special case of the closest pair)

⌅ Frequency distribution: Given a set of n items, which element
occurs the largest number of times in the set? Note, this enables not
just calculating frequencies, but can also support the question “How
many times does item k occur?”.

⌅ Selection: What is the kth largest number in an array? If the array is
sorted, lookup is constant.
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Sorting Orders

Collections can be sorted in di�erent orders:

⌅ An array a[0 . . . n] is in increasing order if a[i] < a[j] for all i < j
where 0  i < j  n

⌅ [1, 2, 3, 4, 5]

⌅ An array a[0 . . . n] is in decreasing order if a[i] > a[j] for all i < j
where 0  i < j  n

⌅ [5, 4, 3, 2, 1]
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Sorting Orders, cont.

In addition to sorting in either increasing or decreasing order:

⌅ An array a[0 . . . n] is in non-increasing where a[i] � a[j] for all i < j
where 0  i < j  n

⌅ [5, 4, 4, 3, 2, 2, 2]
⌅ Elements can be repeated

⌅ An array a[0 . . . n] is in non-decreasing order if a[i]  a[j] for all
i < j where 0  i < j  n

⌅ [1, 2, 2, 2, 3, 4, 4, 5]
⌅ Again, elements can be repeated
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Divide and Conquer

Three Steps:
1 Divide the problem into a number of subproblems.
2 Conquer the subproblems by solving them recursively.
3 Combine the solutions to the subproblems into the solution for the

original problem.
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Divide and Conquer: Applied to Merge Sort

1 Divide the problem into a number of subproblems: Split the input into
two sub-lists.

2 Conquer the subproblems by solving them recursively: Sort each list
half.

3 Combine the solutions to the subproblems into the solution for the
original problem: Merge the sorted halves together.
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Merge Sort

M�����S���(A, low, high)
1 if (low < high)
2 mid = b(low + high)/2c
3 M�����S���(A, low, mid)
4 M�����S���(A, mid+1, high)
5 M����(A, low, mid, high)

M����(A, low, mid, high)
1 L = A[low:mid]
2 R = A[mid+1, high]
3 if L[0] < R[0]:
4 A[low] = L[0]
5 else
6 A[low] = R[0]
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Merge Sort

M�����S���(A, low, high)
1 if (low < high)
2 mid = b(low + high)/2c
3 M�����S���(A, low, mid)
4 M�����S���(A, mid+1, high)
5 M����(A, low, mid, high)

M����(A, low, mid, high)
1 L = A[low:mid]
2 R = A[mid+1, high]
3 if L[0] < R[0]:
4 A[low] = L[0]
5 else
6 A[low] = R[0]
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)
7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)
7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

2. Start by specifying you want to sort the entire array: Mergesort(A, 1, 10)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 5

2 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)
7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

3. Find the mid point. mid = 1 + floor(10/2) - 1 = 5
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)
7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

4.Sort the le� side (when we’re done sorting the le�, we’ll sort the right):
Mergesort(A, 1, 5)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3

Mergesort(A, 1, 3)
2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)
7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

5. Find the midpoint of the le� side mid = 3
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)
7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

6. … and sort the le� of that. Mergesort(A, 1, 3)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)
7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

Find the midpoint, sort the le�. Mid = 2; Mergesort(A, 1, 2)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 2

2

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)
7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

8. Find the midpoint, sort the le�.
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)
7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

9. One more time, sort the le�. Since low = high, we’re done with the le�.
We move to the next line, which is Mergesort(A, 2, 2)– that is, sorting the

right.
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)

Merge(A, 1, 1, 2)
7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

10. Sort the right. Since low = high, we’re done with the right.
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)

Merge(A, 1, 1, 2)

7
Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

11. Merge the le� and right. Merge(A, 1, 2, 2)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7
Mergesort(A, 3, 3)

Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

12. Sort the right Mergesort(A, 3, 3)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3
Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7

Mergesort(A, 3, 3)

Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

13. Merge the le� and right. Merge(A, 1, 2, 3), which means we’re done with
Mergesort(A, 1, 3)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3

Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

14. Sort the right Mergesort(A, 4, 5)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3

Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9

2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

15. Sort the le�. Mergesort(A, 4, 4)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3

Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

16. Sort the right. Mergesort(A, 5, 5)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3

Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

17. Merge the le� and right. Merge(A, 4, 4, 5)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3

Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9

1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

18. Merge the le� and right. Merge(A, 1, 3, 5)
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2Mergesort(A, 1, 5)

L: 1 H: 5M: 3

Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

19. The le� half is sorted. Do the same for the right.
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2

Mergesort(A, 1, 5)

L: 1 H: 5M: 3

Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9

20. Merge the two halves together into a sorted output.
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2

Mergesort(A, 1, 5)

L: 1 H: 5M: 3

Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9
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Merge Sort: The Algorithm, Graphically

2 3 7 9 2 4 8 5 1 6A:

Low: 1 High: 10

Mergesort(A, 1, 10)

Mid: 52 3 7 9 2

Mergesort(A, 1, 5)

L: 1 H: 5M: 3

Mergesort(A, 1, 3)

2 3 7

L: 1 H: 3M

Mergesort(A, 1, 2)

2 3

L: 1H: 22

L: 1, H: 1

Mergesort(A, 1, 1)

3

L: 2, H: 2

Mergesort(A, 2, 2)Merge(A, 1, 1, 2)

7

Mergesort(A, 3, 3)Merge(A, 1, 2, 3)

Mergesort(A, 4, 5)
9 2

9 2

2 9

2 2 3 7 9 1 4 5 6 8

1 2 2 3 4 5 6 7 8 9
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Merge Sort: The Algorithm, Graphically
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Mergesort: Analysis

We do 2 things in our analysis:

⌅ What’s the runtime?
⌅ Is it correct?

CS 5002: Discrete Math ©Northeastern University Fall 2018 64



Mergesort: What’s the runtime?

What’s the runtime of Mergesort?

⌅ We’ll start by saying that T (n) is the runtime of Mergesort on an input
of size n.

⌅ If the size of the input to Mergesort is small (that is, 1), the runtime is
easy: ⇥(1).

⌅ If the size of the input is bigger, say, n, the runtime is the time it takes
to run Mergesort on each half, plus the runtime of Merge:

⌅ T (n2 ) + T (n2 ) + T (Merge)

⌅ T (Merge) = ⇥(n)

⌅ ) T (n
2

) + T (n
2

) +⇥(n)

T (n) =

(
⇥(1) if n  1

2T (n
2

) +⇥(n) otherwise
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Mergesort: What’s the runtime?

What’s the runtime of Mergesort?

� We’ll start by saying that T (n) is the runtime of Mergesort on an input

of size n.

� If the size of the input to Mergesort is small (that is, 1), the runtime is

easy: Θ(1).

� If the size of the input is bigger, say, n, the runtime is the time it takes

to run Mergesort on each half, plus the runtime of Merge:

� T (n
2 ) + T (n

2 ) + T (Merge)

� T (Merge) = Θ(n)

� ⇒ T (n2 ) + T (n2 ) + Θ(n)

T (n) =

{
Θ(1) if n ≤ 1

2T (n2 ) + Θ(n) otherwise
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Mergesort: What’s the runtime?

What’s the runtime of Mergesort?

⌅ We’ll start by saying that T (n) is the runtime of Mergesort on an input
of size n.

⌅ If the size of the input to Mergesort is small (that is, 1), the runtime is
easy: ⇥(1).

⌅ If the size of the input is bigger, say, n, the runtime is the time it takes
to run Mergesort on each half, plus the runtime of Merge:

⌅ T (n2 ) + T (n2 ) + T (Merge)

⌅ T (Merge) = ⇥(n)

⌅ ) T (n
2

) + T (n
2

) +⇥(n)

T (n) =

(
⇥(1) if n  1

2T (n
2

) +⇥(n) otherwise
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Mergesort: What’s the runtime?

What’s the runtime of Mergesort?

� We’ll start by saying that T (n) is the runtime of Mergesort on an input

of size n.

� If the size of the input to Mergesort is small (that is, 1), the runtime is

easy: Θ(1).

� If the size of the input is bigger, say, n, the runtime is the time it takes

to run Mergesort on each half, plus the runtime of Merge:

� T (n
2 ) + T (n

2 ) + T (Merge)

� T (Merge) = Θ(n)

� ⇒ T (n2 ) + T (n2 ) + Θ(n)

T (n) =

{
Θ(1) if n ≤ 1

2T (n2 ) + Θ(n) otherwise
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Mergesort: What’s the runtime?

What’s the runtime of Mergesort?

⌅ We’ll start by saying that T (n) is the runtime of Mergesort on an input
of size n.

⌅ If the size of the input to Mergesort is small (that is, 1), the runtime is
easy: ⇥(1).

⌅ If the size of the input is bigger, say, n, the runtime is the time it takes
to run Mergesort on each half, plus the runtime of Merge:

⌅ T (n2 ) + T (n2 ) + T (Merge)

⌅ T (Merge) = ⇥(n)

⌅ ) T (n
2

) + T (n
2

) +⇥(n)

T (n) =

(
⇥(1) if n  1

2T (n
2

) +⇥(n) otherwise
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Runtime of a Divide and Conquer Algorithm

A divide and conquer algorithm has 3 steps: divide into subproblems, solve
the subproblems, combine to solve the original problem.

Let’s say that D(n) is the time it takes to divide into subproblems.

We break the problem into a problems, by dividing the input into b chunks.

C(n) is the time it takes to combine the subproblems together.

This means that we can specify that the runtime of a Divide and Conquer
algorithm will fit the structure:

T (n) =

(
⇥(1) if n  c

aT (n/b) +D(n) + C(n) otherwise

We see that our Mergesort analysis fits this pa�ern!
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Runtime of a Divide and Conquer Algorithm

A divide and conquer algorithm has 3 steps: divide into subproblems, solve

the subproblems, combine to solve the original problem.

Let’s say that D(n) is the time it takes to divide into subproblems.

We break the problem into a problems, by dividing the input into b chunks.

C(n) is the time it takes to combine the subproblems together.

This means that we can specify that the runtime of a Divide and Conquer

algorithm will fit the structure:

T (n) =

{
Θ(1) if n ≤ c
aT (n/b) +D(n) + C(n) otherwise

We see that our Mergesort analysis fits this pa�ern!
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Runtime of a Divide and Conquer Algorithm

A divide and conquer algorithm has 3 steps: divide into subproblems, solve
the subproblems, combine to solve the original problem.

Let’s say that D(n) is the time it takes to divide into subproblems.

We break the problem into a problems, by dividing the input into b chunks.

C(n) is the time it takes to combine the subproblems together.

This means that we can specify that the runtime of a Divide and Conquer
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(
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Runtime of a Divide and Conquer Algorithm

A divide and conquer algorithm has 3 steps: divide into subproblems, solve
the subproblems, combine to solve the original problem.

Let’s say that D(n) is the time it takes to divide into subproblems.

We break the problem into a problems, by dividing the input into b chunks.

C(n) is the time it takes to combine the subproblems together.

This means that we can specify that the runtime of a Divide and Conquer
algorithm will fit the structure:

T (n) =
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⇥(1) if n  c
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Mergesort

Our Mergesort analysis fits this pa�ern!

T (n) =

{
Θ(1) if n ≤ c
aT (n/b) +D(n) + C(n) otherwise

T (n) =

{
Θ(1) if n ≤ 1

2T (n2 ) + Θ(n) otherwise

a =?

b =?

C(n) =?

D(n) =?

CS 5002: Discrete Math ©Northeastern University Fall 2018 79

Evening



Mergesort

Our Mergesort analysis fits this pa�ern!

T (n) =

(
⇥(1) if n  c

aT (n/b) +D(n) + C(n) otherwise

T (n) =

(
⇥(1) if n  1

2T (n
2

) +⇥(n) otherwise

a =?

b =?

C(n) =?

D(n) =?
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Recurrences

These runtimes are examples of a recurrence relation:
a function defined in terms of itself.

We need to figure out how to give us bounds on the recurrences for the
runtime.

There are 3 approaches:

1 Substitution
2 Master method
3 Recursion trees (sometimes called iteration; referred to as “unrolling”

the recurrence).
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Example: Recursion Tree

T (n) = 2T (n/2) + n2

n2

T (n
2

) T (n
2

)
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Example: Recursion Tree

T (n) = 2T (n/2) + n2

n2

(

n

2

)

2

T (n
4

) T (n
4

)

(

n

2

)

2

T (n
4

) T (n
4

)

Repeat this again.
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T (n) = 2T (n/2) + n2

n2

(

n

2

)

2

T (n
4

)

...
...

T (n
4

)

...
...

(

n

2

)

2

T (n
4

)

...
...

T (n
4

)

...
...

4 ·
�
n

4

�
2

=

1

4

n2

(

n

2

)

2

+ (

n

2

)

2

=

1

2

n2

n2

lg n

If we keep doing this, we’ll have a tree of lg n levels.
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T (n) = 2T (n/2) + n2

n2

(

n

2

)

2

T (n
4

)

...
...

T (n
4

)

...
...

(

n

2

)

2

T (n
4

)

...
...

T (n
4

)

...
...

4 ·
�
n

4

�
2

=

1

4

n2

(

n

2

)

2

+ (

n

2

)

2

=

1

2

n2

n2

lg n

If we keep doing this, we’ll have a tree of lg n levels.
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T (n) = 2T (n/2) + n2

n2

(

n

2

)

2

T (n
4

)

...

T (1)

...

T (1)

T (n
4

)

...

T (1)

...

T (1)

(

n

2

)

2

T (n
4

)

...

T (1)

...

T (1)

T (n
4

)

...

T (1)

...

T (1)

4 ·
�
n

4

�
2

=

1

4

n2

(

n

2

)

2

+ (

n

2

)

2

=

1

2

n2

n2

lg n

Keep doing this until we get to the base case, which is an input of size 1.
Now we have the tree. The next few slides will show how we calculate the

bound overall.
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Example: Recursion Tree

T (n) = 2T (n/2) + n2

n2

T (n2 ) T (n2 )
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Example: Recursion Tree

T (n) = 2T (n/2) + n2

n2

(n2 )2

T (n4 ) T (n4 )

(n2 )2

T (n4 ) T (n4 )

Repeat this again.
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T (n) = 2T (n/2) + n2

n2

(n2 )2

T (n4 )

.

.

.

.

.

.

T (n4 )

.

.

.

.

.

.

(n2 )2

T (n4 )

.

.

.

.

.

.

T (n4 )

.

.

.

.

.

.

4 ·
(
n
4

)2
= 1

4n
2

(n
2
)2 + (n

2
)2 = 1

2
n2

n2

lg n

If we keep doing this, we’ll have a tree of lg n levels.
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T (n) = 2T (n/2) + n2

n2

(n2 )2

T (n4 )

.

.

.

.

.

.

T (n4 )

.

.

.

.

.

.

(n2 )2

T (n4 )

.

.

.

.

.

.

T (n4 )

.

.

.

.

.

.

4 ·
(
n
4

)2
= 1

4n
2

(n
2
)2 + (n

2
)2 = 1

2
n2

n2

lg n

If we keep doing this, we’ll have a tree of lg n levels.
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T (n) = 2T (n/2) + n2

n2

(n2 )2

T (n4 )

.

.

.

T (1)

.

.

.

T (1)

T (n4 )

.

.

.

T (1)

.

.

.

T (1)

(n2 )2

T (n4 )

.

.

.

T (1)

.

.

.

T (1)

T (n4 )

.

.

.

T (1)

.

.

.

T (1)

4 ·
(
n
4

)2
= 1

4n
2

(n
2
)2 + (n

2
)2 = 1

2
n2

n2

lg n

Keep doing this until we get to the base case, which is an input of size 1.

Now we have the tree. The next few slides will show how we calculate the

bound overall.
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⌅ Add up amount of work done at each node
⌅ Add up work done at the bo�om level
⌅ Add up work done at all the levels above the bo�om

⌅ Sum over all levels: the amount of work done on each level times the
number of nodes on that level.
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Computing the work done at the base case (bo�om) layer
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Computing the work done at the base case (bo�om) layer

CS 5002: Discrete Math ©Northeastern University Fall 2018 93



Computing the work done on all the other layers
The height of the tree is:

Amount of work done on each level i:

Amount of work done on all levels other than the bo�om 1:

lgn�1X

i=0

1

2

i

n

2

=

n

2

lgn�1X

i=0

1

2

i

= n

2 ·
✓
2�

1

2

lgn�1

◆

= n

2 ·
✓
2�

1

2

lgn/1

◆
Using the log quotient rule

= n

2 ·
✓
2�

1

n

◆
Using def of log: blogb x

= x

= 2n

2 � n

lgn�1X

i=0

1

2

i

n

2

= ⇥(n

2

)

1
https://en.wikipedia.org/wiki/Summation#Known_summation_expressions
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Computing the work done on all the other layers
The height of the tree is:

Amount of work done on each level i:

Amount of work done on all levels other than the bo�om 1:

lgn�1X

i=0

1

2

i

n

2

=

n

2

lgn�1X

i=0

1

2

i

= n

2 ·
✓
2�

1

2

lgn�1

◆

= n

2 ·
✓
2�

1

2

lgn/1

◆
Using the log quotient rule

= n

2 ·
✓
2�

1

n

◆
Using def of log: blogb x

= x

= 2n

2 � n

lgn�1X

i=0

1

2

i

n

2

= ⇥(n

2

)

1
https://en.wikipedia.org/wiki/Summation#Known_summation_expressions
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Computing the work done on all the other layers

The height of the tree is:

Amount of work done on each level i:

Amount of work done on all levels other than the bo�om
1
:

lgn−1∑
i=0

1

2i
n2 =

n2
lgn−1∑
i=0

1

2i

= n2 ·
(

2−
1

2lgn−1

)
= n2 ·

(
2−

1

2lgn/1

)
Using the log quotient rule

= n2 ·
(

2−
1

n

)
Using def of log: blogb x = x

= 2n2 − n
lgn−1∑
i=0

1

2i
n2 = Θ(n2)

1https://en.wikipedia.org/wiki/Summation#Known_summation_expressions
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Computing the work done on all the other layers
The height of the tree is:

Amount of work done on each level i:

Amount of work done on all levels other than the bo�om 1:
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1

n
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Using def of log: blogb x
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= 2n
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lgn�1X
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1

2

i

n

2

= ⇥(n

2

)

1
https://en.wikipedia.org/wiki/Summation#Known_summation_expressions
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Finishing up

Pu�ing it all together:

We said the amount of work done in the bo�om layer is ⇥(n), and the amount of work done in all the
other layers is ⇥(n

2

).

Therefore:

T (n) = 2T (n/2) + n

2

= ⇥(n

2

) +⇥(n) ) ⇥(n

2

).
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Helpful notes on tree math

When it comes to recurrence trees, we know the number of leaves, because we (usually) keep dividing
the input until the size of the input is 1; that means each of the input is represented as a leaf at some

point. That gives us n leaves.

You can assume this for recurrences, unless you have reason to believe otherwise. For example,
sometimes we have 4 branches with size n/2 at each node. In this case, we’ll have more than n nodes at

the bo�om.

If k is the size of the split of the input:

Number of leaves of the tree (full): kh, where h is the height of the tree.

If we know the number of leaves of the tree, we can calculate the height of the tree.

Assume n is the number of leaves:

k

h

= n , log

k

n = h

When it comes to recurrences of the form T (n) = aT (n/b) + c, the height of the tree is log
b

n.
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A more complex example

T (n) = T (n/3) + T (2n/3) + n

n

n

3

n

9

...
...

2n

9

...
...

2n

3

2n

9

...
...

4n

9

...
...

n

n

n

log

3/2

n

) A bound for the recurrence is O(n log n)
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A more complex example
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) A bound for the recurrence is O(n log n)
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FIX THIS‼!

T (n) = 3T (bn/4c) +⇥

�
n2

�

n2

(

n

4

)

2

T ( n

16

)

...
...

T ( n

16

)

...
...

T ( n

16

)

...
...

(

n

4

)

2

T ( n

16

)

...
...

T ( n

16

)

...
...

(

n

4

)

2

T ( n

16

)

...
...

T ( n

16

)

...
...

4 ·
�
n

4

�
2

=

1

4

n2

(

n

2

)

2

+ (

n

2

)

2

=

1

2

n2

n2

If we keep doing this, we’ll have a tree of lg n levels.

CS 5002: Discrete Math ©Northeastern University Fall 2018 103



T (n) = 3T (bn/4c) +⇥

�
n2

�
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T (n) = 2T (n/2) + n2

n2
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n

2

)

2

T (n
4

)

...

T (1)

...

T (1)

T (n
4

)

...

T (1)

...

T (1)

(

n

2

)

2

T (n
4

)

...

T (1)

...

T (1)

T (n
4

)

...

T (1)

...

T (1)

4 ·
�
n

4

�
2

=

1

4

n2

(

n

2

)

2

+ (

n

2

)

2

=

1

2

n2

n2

lg n

Keep doing this until we get to the base case, which is an input of size 1.
Now we have the tree. The next few slides will show how we calculate the

bound overall.
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Section 4

Master Theorem
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Plan:
⌅ Introduce the whole Master Theorem
⌅ Break down the Master Theorem and specify definitions
⌅ Restate the Master Theorem to develop intuition
⌅ Use the Master Theorem to solve some recurrences
⌅ Use the Master Theorem to analyze an algorithm
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Subsection 1

Defining the Master Theorem
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Master Theorem: The Whole Thing.

If a recurrence satisfies the form:

T (n) = aT (n/b) + f(n)

a is a constant such that a � 1

b is a constant such that b > 1

f(n) is a function

1 If f(n) = O(nlog

b

a�✏

) for some constant ✏ > 0, then T (n) = ⇥(nlog

b

a

)

2 If f(n) = ⇥(nlog

b

a

), then T (n) = ⇥(nlog

b

a

lg n)

3 If f(n) = ⌦(nlog

b

a+✏

) for some constant ✏ > 0, and if
af(n/b)  cf(n) for some c < 1, then T (n) = ⇥(f(n)).
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Master Theorem: The recurrence structure

T (n) = aT (n/b) + f(n)

a is a constant such that a � 1

b is a constant such that b > 1

f(n) is a function

1 a is the number of subproblems you solve
⌅ You have to have at least one subproblem to solve.

2 b is the number of groups you split the input into
⌅ You have to have to divide the input into at least 2 groups

3 f(n) is the function that describes the breaking/combination of the
input/results

⌅ f(n) must be a polynomial (can’t be 2n)
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1 a is the number of subproblems you solve
⌅ You have to have at least one subproblem to solve.

2 b is the number of groups you split the input into
⌅ You have to have to divide the input into at least 2 groups

3 f(n) is the function that describes the breaking/combination of the
input/results

⌅ f(n) must be a polynomial (can’t be 2n)
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Reminder: Asymptotic Notation

Big-O: asymptotic upper bound
f(x) = O(g(x)) means that f(x) is lower than/less than g(x)

Big-⇥: asymptotically tight bound
f(x) = ⇥(g(x)) means that f(x) is similar to g(x)

Big-⌦: asymptotic lower bound
f(x) = ⌦(g(x)) means that f(x) is bigger than g(x)
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Master Theorem: Focusing on f(n)

T (n) = aT (n/b) + f(n)

1 If f(n) is smaller than (nlog

b

a

), then T (n) = ⇥(nlog

b

a

)

⌅ If the time spent to split or combine the input is less than the time to
compute the function on smaller input, then the running time is
bounded by the actual computing on the smaller part.

2 If f(n) is about (nlog

b

a

), then T (n) = ⇥(nlog

b

a

lg n)

⌅ If the time spent to split or combine the input is about the same time to
compute the function on smaller input, then the running time is a
combination.

3 If f(n) is bigger than (nlog

b

a

) then T (n) = ⇥(f(n)).

⌅ If the time spent to split or combine the input is more than the time to
compute the function on smaller input, then the running time is
approximated by that function.
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b

a

), then T (n) = ⇥(nlog

b

a

lg n)
⌅ If the time spent to split or combine the input is about the same time to

compute the function on smaller input, then the running time is a
combination.

3 If f(n) is bigger than (nlog

b

a

) then T (n) = ⇥(f(n)).
⌅ If the time spent to split or combine the input is more than the time to

compute the function on smaller input, then the running time is
approximated by that function.
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Extra constraint for Case 3

af(n/b)  cf(n)for some c < 1

The “regularity” condition; usually not relevant.
However, an example is shown at the end.
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Subsection 3

Examples
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Example1: Merge Sort

T (n) = 2T (n/2) +⇥(n)

1 a = 2; b = 2

2 f(n) = ⇥(n)

3 How does f(n) compare to nlog

b

a ! nlog

2

2 ! n1 ! n?
4 ⇥(n) = ⇥(n), so Case 2 applies.
5 T (n) = ⇥(nlog

b

a

lg n) ! ⇥(nlog

2

2

lg n) ! ⇥(n lg n)

X
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Example1: Merge Sort
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a ! nlog
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2 ! n1 ! n?
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Example1: Merge Sort

T (n) = 2T (n/2) + Θ(n)

1 a = 2; b = 2

2 f(n) = Θ(n)

3 How does f(n) compare to nlogb a → nlog2 2 → n1 → n?

4 Θ(n) = Θ(n), so Case 2 applies.

5 T (n) = Θ(nlogb a lg n)→ Θ(nlog2 2 lg n)→ Θ(n lg n)

X
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Example1: Merge Sort

T (n) = 2T (n/2) +⇥(n)

1 a = 2; b = 2

2 f(n) = ⇥(n)

3 How does f(n) compare to nlog

b

a ! nlog

2

2 ! n1 ! n?
4 ⇥(n) = ⇥(n), so Case 2 applies.
5 T (n) = ⇥(nlog

b

a

lg n) ! ⇥(nlog

2

2

lg n) ! ⇥(n lg n) X
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Example 2

T (n) = 2

nT (n/2) + nn

1 a = 2

n

; b = 2

2 Trick question: a is not a constant! ) Can’t use the Master Theorem.
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Example 3

T (n) =
p
2T (n/2) + log n

1 a =

p
2; b = 2

2 f(n) = log n

3 How does f(n) compare to nlog

b

a ! nlog

2

p
2 ! n1/2 !

p
n?

4 f(n) = O(

p
n), so Case 1 applies.

5 ) T (n) = ⇥(nlog

b

a

) ! ⇥(

p
n)

X
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Example 3

T (n) =
p
2T (n/2) + log n

1 a =

p
2; b = 2

2 f(n) = log n

3 How does f(n) compare to nlog

b

a ! nlog

2

p
2 ! n1/2 !

p
n?

4 f(n) = O(

p
n), so Case 1 applies.

5 ) T (n) = ⇥(nlog

b

a

) ! ⇥(

p
n) X
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2 3 4 5 6 7 8

1
2
4
8
16
32
64
128
256
512
1024
2048
4096 n!

nn

2

n

n2

n log(n)

n
p
n log(n)

1

Growth of Functions
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Example 4

T (n) = 4T (n/2) + n/ log n

1 a = 4; b = 2

2 f(n) = n

logn

3 How does f(n) compare to nlog

2

4 ! n2?
4 n

logn

= O(n2

), so Case 1 applies.

5 ) T (n) = ⇥(nlog

b

a

) ! ⇥(n2

)

X
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Example 4

T (n) = 4T (n/2) + n/ log n

1 a = 4; b = 2

2 f(n) = n

logn

3 How does f(n) compare to nlog

2

4 ! n2?
4 n

logn

= O(n2

), so Case 1 applies.

5 ) T (n) = ⇥(nlog

b

a

) ! ⇥(n2

)X
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Example 5

T (n) = 3T (n/4) + n log n

1 a = 3; b = 4

2 f(n) = n log n

3 How does f(n) compare to nlog

4

3 ! n0.79...?
4 f(n) grows faster/is bigger,) Case 3 applies
5 ) T (n) = ⇥(f(n)) = ⇥(n log n)

X
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Example 5

T (n) = 3T (n/4) + n log n

1 a = 3; b = 4

2 f(n) = n log n

3 How does f(n) compare to nlog4 3 → n0.79...
?

4 f(n) grows faster/is bigger,⇒ Case 3 applies

5 ⇒ T (n) = Θ(f(n)) = Θ(n log n)

X
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Evening







Example 5

T (n) = 3T (n/4) + n log n

1 a = 3; b = 4

2 f(n) = n log n

3 How does f(n) compare to nlog

4

3 ! n0.79...?
4 f(n) grows faster/is bigger,) Case 3 applies
5 ) T (n) = ⇥(f(n)) = ⇥(n log n)X
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Example 6

.T (n) = 2T (n/4) + n0.51

1 a = 2; b = 4

2 f(n) = n0.51

3 How does f(n) compare to nlog

4

2 ! n1/2 ! n0.5?
4 f(n) = ⌦(

p
n) ) Case 3 applies

5 ) T (n) = ⇥(n0.51

)

X
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Example 7

T (n) = 4T (n/2) + n2

1 a = 4; b = 2

2 f(n) = n2

3 How does f(n) compare to nlog

2

4 ! n2?
4 f(n) = ⇥(n2

) ) Case 2 applies
5 T (n) = ⇥(nlog

b

a

lg n) ! ⇥(n2

lg n)
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Example 7

T (n) = 4T (n/2) + n2

1 a = 4; b = 2

2 f(n) = n2

3 How does f(n) compare to nlog

2

4 ! n2?
4 f(n) = ⇥(n2

) ) Case 2 applies
5 T (n) = ⇥(nlog

b

a

lg n) ! ⇥(n2

lg n)

CS 5002: Discrete Math ©Northeastern University Fall 2018 174



Example 8

T (n) = T (n/2) + n(2� cosn)

1 a = 1; b = 2

2 f(n) = n(2� cosn)

3 How does f(n) compare to nlog

2

1 ! n0 ! 1?
4 f(n) = ⌦(1) ) Case 3 applies
5 BUT! Does this constraint hold?

af(n/b)  cf(n) for some c < 1

6 No2 )Master theorem does not apply.

2

Consider n = 2⇡k, where k is odd and arbitrarily large. For any such choice of n, you
can show that c � 3/2, thereby violating the regularity condition.
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Subsection 4

Applying to an algorithm
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Binary Search

The runtime of Binary Search can be defined by the recurrence:

T (n) = T (n/2) +O(1)

1 a = 1; b = 2

2 f(n) = O(1)

3 How does f(n) compare to nlog

2

1 ! n0 ! 1?
4 f(n) = ⇥(1) ) Case 2 applies
5 T (n) = ⇥(nlog

b

a

lg n) ! ⇥(lg n)
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Binary Search

The runtime of Binary Search can be defined by the recurrence:
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⌅ Introduce the whole Master Theorem
⌅ Break down the Master Theorem and specify definitions
⌅ Restate the Master Theorem to develop intuition
⌅ Use the Master Theorem to solve some recurrences
⌅ Use the Master Theorem to analyze an algorithm
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Subsection 5

Generating some intuition
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When does Case 1 hold?

Case 1 holds when there are “too many” leaves.
⌅ The time taken to calculate the subproblems outweighs the time it

takes to split input and combine the results.
⌅ The overall recurrence is more or less bounded by nlog

b

a

CS 5002: Discrete Math ©Northeastern University Fall 2018 191



When does Case 2 hold?

Case 2 holds when there is about the same amount of work done at each
level.
⌅ ⇥(n) means that f(n) is about the same as nlog

b

a

⌅ As you move down the tree, each problem gets smaller, but there are
more to solve.

⌅ If the sum of the internal evaluation costs (that is, f(n) at each level
are equal, the total running time is the cost per level (nlog

b

a

) times the
number of levels (log

b

n) for a total running time of O(nlog

b

a

lg n)
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When does Case 3 hold?

Case 3 holds when the “root” is too time consuming.
⌅ f(n) is bigger/grows faster than nlog

b

a+c

⌅ The size of the overall recurrence is dominated by f(n).
⌅ If the internal evaluation costs grow rapidly enough with n, then the

cost of the root evaluation may dominate. Of so, the total running time
is O(f(n)).
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Representative problems

⌅ Case 1 holds for heap construction and matrix multiplication
⌅ Case 2 is for mergesort and binary sort
⌅ Case 3 arises for more awkward algorithms, where the cost of

combining the sub-parts dominates everything else
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2

2

n

n!

4

n

2

n

n2

n log n

log n!

n

2

logn

log

2 n

p
log n

log log n

1

X
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Notes on Solving Recurrences

⌅ We usually ignore floors, ceilings, and boundary conditions
⌅ We usually assume that T (n) for a small enough n is ⇥(1) (constant)

⌅ Changing the value of T (1) doesn’t usually change the solution of the
recurrence enough to change the order of growth.
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Break
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Mergesort: Correctness Proof
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Slight aside: Induction proofs
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Section 6

Induction Proofs
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Subsection 1

Situating the Problem
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Consider the Equation

nX

i=1

i =
n(n+ 1)

2

How do we prove this true?

CS 5002: Discrete Math ©Northeastern University Fall 2018 215



Consider the Equation

nX

i=1

i =
n(n+ 1)

2
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Consider the Equation: It’s true for some numbers…
nP

i=1

i = n(n+1)

2

Case n = 1 :

1X

i=1

i =

Case n = 5 :

5X

i=1

i =

Case n = 30 :

30X

i=1

i =

How do we prove this true?

Just because we proved this true for a couple of instances doesn’t mean
we’ve proved it!
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Subsection 2

Mathematical Induction
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Mathematical Induction

⌅ Prove the formula for the smallest number that can be used in the
given statement.

⌅ Assume it’s true for an arbitrary number n.
⌅ Use the previous steps to prove that it’s true for the next number n+1.
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Step 1: Proving true for smallest number

nP
i=1

i = n(n+1)

2

Case n = 1 :

1P
i=1

i =
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Step 2: Assume true for arbitrary n

Assumed.
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Proof: Summing n integers

nP
i=1

i = n(n+1)

2

Proof:
⌅ Does it hold true for n = 1?

1 =

1(1+1)

2

X
⌅ Assume it works for n X
⌅ Prove that it’s true when n is replaced by n+ 1
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Proof Step 3: Summing n integers

Starting with n:

nX

i=1

i =
n(n+ 1)

2

(1)

1 + 2 + 3 + ...(n� 1) + n =

n(n+ 1)

2

(2)

1 + 2 + 3 + ...+ ((n+ 1)� 1) + (n+ 1) =

(n+ 1)[(n+ 1) + 1]

2

(3)

1 + 2 + 3 + ...+ n+ (n+ 1) =

(n+ 1)(n+ 2)

2

(4)

(1 + 2 + 3 + ...+ n) + (n+ 1) =

(n+ 1)(n+ 2)

2

(5)

n(n+ 1)

2

+ (n+ 1) =

(n+ 1)(n+ 2)

2

(6)
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Proof Step 3: Summing n integers

Rewriting the le� hand side…

nX

i=1

i =
n(n+ 1)

2

(1)

1 + 2 + 3 + ...(n� 1) + n =

n(n+ 1)

2

(2)

1 + 2 + 3 + ...+ ((n+ 1)� 1) + (n+ 1) =

(n+ 1)[(n+ 1) + 1]

2

(3)

1 + 2 + 3 + ...+ n+ (n+ 1) =

(n+ 1)(n+ 2)

2

(4)

(1 + 2 + 3 + ...+ n) + (n+ 1) =

(n+ 1)(n+ 2)

2

(5)

n(n+ 1)

2

+ (n+ 1) =

(n+ 1)(n+ 2)

2

(6)
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Proof Step 3: Summing n integers

Replace n with n+ 1

nX

i=1

i =
n(n+ 1)

2

(1)

1 + 2 + 3 + ...(n� 1) + n =

n(n+ 1)

2

(2)

1 + 2 + 3 + ...+ ((n+ 1)� 1) + (n+ 1) =

(n+ 1)[(n+ 1) + 1]

2

(3)

1 + 2 + 3 + ...+ n+ (n+ 1) =

(n+ 1)(n+ 2)

2

(4)

(1 + 2 + 3 + ...+ n) + (n+ 1) =

(n+ 1)(n+ 2)

2

(5)

n(n+ 1)

2

+ (n+ 1) =

(n+ 1)(n+ 2)

2

(6)
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Proof Step 3: Summing n integers

Simplifying

nX

i=1

i =
n(n+ 1)

2

(1)

1 + 2 + 3 + ...(n� 1) + n =

n(n+ 1)

2

(2)

1 + 2 + 3 + ...+ ((n+ 1)� 1) + (n+ 1) =

(n+ 1)[(n+ 1) + 1]

2

(3)

1 + 2 + 3 + ...+ n+ (n+ 1) =

(n+ 1)(n+ 2)

2

(4)

(1 + 2 + 3 + ...+ n) + (n+ 1) =

(n+ 1)(n+ 2)

2

(5)

n(n+ 1)

2

+ (n+ 1) =

(n+ 1)(n+ 2)

2

(6)
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Proof Step 3: Summing n integers

Re-grouping on the le� side

nX

i=1

i =
n(n+ 1)

2

(1)

1 + 2 + 3 + ...(n� 1) + n =

n(n+ 1)

2

(2)

1 + 2 + 3 + ...+ ((n+ 1)� 1) + (n+ 1) =

(n+ 1)[(n+ 1) + 1]

2

(3)

1 + 2 + 3 + ...+ n+ (n+ 1) =

(n+ 1)(n+ 2)

2

(4)

(1 + 2 + 3 + ...+ n) + (n+ 1) =

(n+ 1)(n+ 2)

2

(5)

n(n+ 1)

2

+ (n+ 1) =

(n+ 1)(n+ 2)

2

(6)
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Proof Step 3: Summing n integers

Replace our known (assumed) formula from #2

nX

i=1

i =
n(n+ 1)

2

(1)

1 + 2 + 3 + ...(n� 1) + n =

n(n+ 1)

2

(2)

1 + 2 + 3 + ...+ ((n+ 1)� 1) + (n+ 1) =

(n+ 1)[(n+ 1) + 1]

2

(3)

1 + 2 + 3 + ...+ n+ (n+ 1) =

(n+ 1)(n+ 2)

2

(4)

(1 + 2 + 3 + ...+ n) + (n+ 1) =

(n+ 1)(n+ 2)

2

(5)

n(n+ 1)

2

+ (n+ 1) =

(n+ 1)(n+ 2)

2

(6)
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Proof Step 3: Summing n integers (pt 2)

Established a common denominator

n(n+ 1)

2

+

2(n+ 1)

2

=

(n+ 1)(n+ 2)

2

(7)

n(n+ 1) + 2(n+ 1)

2

=

(n+ 1)(n+ 2)

2

(8)

(n+ 1)(n+ 2)

2

=

(n+ 1)(n+ 2)

2

X

(9)

We’ve proved that the formula holds for n+ 1.
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Proof Step 3: Summing n integers (pt 2)

Simplify

n(n+ 1)

2

+

2(n+ 1)

2

=

(n+ 1)(n+ 2)

2

(7)

n(n+ 1) + 2(n+ 1)

2

=

(n+ 1)(n+ 2)

2

(8)

(n+ 1)(n+ 2)

2

=

(n+ 1)(n+ 2)

2

X

(9)

We’ve proved that the formula holds for n+ 1.
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Proof Step 3: Summing n integers (pt 2)

Factor out common factor n+ 1

n(n+ 1)

2

+

2(n+ 1)

2

=

(n+ 1)(n+ 2)

2

(7)

n(n+ 1) + 2(n+ 1)

2

=

(n+ 1)(n+ 2)

2

(8)

(n+ 1)(n+ 2)

2

=

(n+ 1)(n+ 2)

2

X

(9)

We’ve proved that the formula holds for n+ 1.
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Proof Step 3: Summing n integers (pt 2)

n(n+ 1)

2

+

2(n+ 1)

2

=

(n+ 1)(n+ 2)

2

(7)

n(n+ 1) + 2(n+ 1)

2

=

(n+ 1)(n+ 2)

2

(8)

(n+ 1)(n+ 2)

2

=

(n+ 1)(n+ 2)

2

X (9)

We’ve proved that the formula holds for n+ 1.
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Proof Step 3: Summing n integers (pt 2)

n(n+ 1)

2

+

2(n+ 1)

2

=

(n+ 1)(n+ 2)

2

(7)

n(n+ 1) + 2(n+ 1)

2

=

(n+ 1)(n+ 2)

2

(8)

(n+ 1)(n+ 2)

2

=

(n+ 1)(n+ 2)

2

X (9)

We’ve proved that the formula holds for n+ 1.
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Proof: Summing n integers

nP
i=1

i = n(n+1)

2

Proof:
⌅ Does it hold true for n = 1?

1 =

1(1+1)

2

X
⌅ Assume it works for n X
⌅ Prove that it’s true when n is replaced by n+ 1 X
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Mathematical Induction

⌅ Prove the formula for a base case
⌅ Assume it’s true for an arbitrary number n
⌅ Use the previous steps to prove that it’s true for the next number n+ 1
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Subsection 3

Building block: The Well-Ordering Property
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The Well-Ordering Property

The Well-Ordering property

The positive integers are well-ordered. An ordered set is well-ordered if
each and every nonempty subset has a smallest or least element.

Every nonempty subset of the positive integers has a least element.

Note: this property is not true for the set of integers (in which there are
arbitrarily small negative numbers) or subsets of, e.g., the positive real

numbers (in which there are elements arbitrarily close to zero).
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The Well-Ordering Principle

An equivalent statement to the well-ordering principle is as follows:
The set of positive integers does not contain any infinite strictly decreasing

sequences.
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Proving Well-Ordered Principle with Induction3

Let S be a subset of the positive integers with no least element.
Clearly 1 62 S since it would be the least element if it were.

Let T be the complement of S, so 1 2 T .
Now suppose every positive integer  n is in T . Then if n+ 1 2 S it would
be the least element of S since every integer smaller than n+ 1 is in the

complement of S.
This is not possible, so n+ 1 2 T instead.

This implies that every positive integer is in T by strong induction.
Therefore, S is the empty set. X

3adapted from: h�ps://brilliant.org/wiki/the-well-ordering-principle/

CS 5002: Discrete Math ©Northeastern University Fall 2018 241



Proving Induction with the Well-Ordered Principle

Suppose P is a property of an integer such that P (1) is true, and P (n)
being true implies that P (n+ 1) is true.

Let S be the set of integers k such that P (k) is false.
Suppose S is nonempty and let k be its least element.

Since P (1) is true1 62 S so k 6= 1 so k � 1 is a positive integer, and by
minimality k � 1 62 S.

So by definition P (k� 1) is true, but then by the property of P given above,
P (k � 1) being true implies that P (k) is true.

So k 62 S; contradiction.
So S is empty; so P (k) is true for all k. X
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Back to proving Mergesort correct
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Subsection 4

Using Induction to Prove Recursive Algorithms Correct
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Recursion

A quick review on recursion:
⌅ Test whether input is a base case.
⌅ If not, break the input into smaller pieces and re-call the function with

the smaller pieces
⌅ Combine the smaller pieces together
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Recursion: Example

M���� ����
⌅ M����S��� one half
⌅ M����S��� the other
⌅ M����

⌅ Put them together “in the right order”

What’s the base case?

Input is 1 element (that is, low=high
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Recursion: Example

M���� ����
⌅ M����S��� one half
⌅ M����S��� the other
⌅ M����

⌅ Put them together “in the right order”

What’s the base case?

Input is 1 element (that is, low=high
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Recursion: Example

M���� ����
⌅ M����S��� one half
⌅ M����S��� the other
⌅ M����

⌅ Put them together “in the right order”

What’s the base case?

Input is 1 element (that is, low=high

CS 5002: Discrete Math ©Northeastern University Fall 2018 248



Mergesort: Proof of Correctness

M����S���
⌅ Prove the formula for the smallest number that can be used in the

given statement.
⌅ In algorithm-speak: Prove the algorithm correct for the base case

⌅ If the input is one element, it’s sorted, trivially.
⌅ If the input is 2 elements, merge ensures that the two elements get

sorted properly.
⌅ Assume it’s true for an arbitrary number n.

⌅ In algorithm-speak: Assume it works for an arbitrarily sized input of size
n.

⌅ Use the previous steps to prove that it’s true for the next number n+1.

⌅ In algorithm-speak: Use the above to prove that the algorithm works
when you add another element to the input.

⌅ When we callM����S��� on an array of size n (or n+ 1, same thing), it
recursively callsM�������� on input of size n/2

⌅ Since we assumed thatM����S��� works, as long as Merge works,
M����S��� works.

CS 5002: Discrete Math ©Northeastern University Fall 2018 249



Mergesort: Proof of Correctness

M����S���
⌅ Prove the formula for the smallest number that can be used in the

given statement.
⌅ In algorithm-speak: Prove the algorithm correct for the base case
⌅ If the input is one element, it’s sorted, trivially.

⌅ If the input is 2 elements, merge ensures that the two elements get
sorted properly.

⌅ Assume it’s true for an arbitrary number n.

⌅ In algorithm-speak: Assume it works for an arbitrarily sized input of size
n.

⌅ Use the previous steps to prove that it’s true for the next number n+1.

⌅ In algorithm-speak: Use the above to prove that the algorithm works
when you add another element to the input.

⌅ When we callM����S��� on an array of size n (or n+ 1, same thing), it
recursively callsM�������� on input of size n/2

⌅ Since we assumed thatM����S��� works, as long as Merge works,
M����S��� works.
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Mergesort: Proof of Correctness

M����S���
⌅ Prove the formula for the smallest number that can be used in the

given statement.
⌅ In algorithm-speak: Prove the algorithm correct for the base case
⌅ If the input is one element, it’s sorted, trivially.
⌅ If the input is 2 elements, merge ensures that the two elements get

sorted properly.

⌅ Assume it’s true for an arbitrary number n.

⌅ In algorithm-speak: Assume it works for an arbitrarily sized input of size
n.

⌅ Use the previous steps to prove that it’s true for the next number n+1.

⌅ In algorithm-speak: Use the above to prove that the algorithm works
when you add another element to the input.

⌅ When we callM����S��� on an array of size n (or n+ 1, same thing), it
recursively callsM�������� on input of size n/2

⌅ Since we assumed thatM����S��� works, as long as Merge works,
M����S��� works.
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Mergesort: Proof of Correctness

M����S���
⌅ Prove the formula for the smallest number that can be used in the

given statement.
⌅ In algorithm-speak: Prove the algorithm correct for the base case
⌅ If the input is one element, it’s sorted, trivially.
⌅ If the input is 2 elements, merge ensures that the two elements get

sorted properly.
⌅ Assume it’s true for an arbitrary number n.

⌅ In algorithm-speak: Assume it works for an arbitrarily sized input of size
n.

⌅ Use the previous steps to prove that it’s true for the next number n+1.

⌅ In algorithm-speak: Use the above to prove that the algorithm works
when you add another element to the input.

⌅ When we callM����S��� on an array of size n (or n+ 1, same thing), it
recursively callsM�������� on input of size n/2

⌅ Since we assumed thatM����S��� works, as long as Merge works,
M����S��� works.
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Mergesort: Proof of Correctness

M����S���
⌅ Prove the formula for the smallest number that can be used in the

given statement.
⌅ In algorithm-speak: Prove the algorithm correct for the base case
⌅ If the input is one element, it’s sorted, trivially.
⌅ If the input is 2 elements, merge ensures that the two elements get

sorted properly.
⌅ Assume it’s true for an arbitrary number n.

⌅ In algorithm-speak: Assume it works for an arbitrarily sized input of size
n.

⌅ Use the previous steps to prove that it’s true for the next number n+1.

⌅ In algorithm-speak: Use the above to prove that the algorithm works
when you add another element to the input.

⌅ When we callM����S��� on an array of size n (or n+ 1, same thing), it
recursively callsM�������� on input of size n/2

⌅ Since we assumed thatM����S��� works, as long as Merge works,
M����S��� works.
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Mergesort: Proof of Correctness

M����S���
⌅ Prove the formula for the smallest number that can be used in the

given statement.
⌅ In algorithm-speak: Prove the algorithm correct for the base case
⌅ If the input is one element, it’s sorted, trivially.
⌅ If the input is 2 elements, merge ensures that the two elements get

sorted properly.
⌅ Assume it’s true for an arbitrary number n.

⌅ In algorithm-speak: Assume it works for an arbitrarily sized input of size
n.

⌅ Use the previous steps to prove that it’s true for the next number n+1.

⌅ In algorithm-speak: Use the above to prove that the algorithm works
when you add another element to the input.

⌅ When we callM����S��� on an array of size n (or n+ 1, same thing), it
recursively callsM�������� on input of size n/2

⌅ Since we assumed thatM����S��� works, as long as Merge works,
M����S��� works.
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Mergesort: Proof of Correctness

M����S���
⌅ Prove the formula for the smallest number that can be used in the

given statement.
⌅ In algorithm-speak: Prove the algorithm correct for the base case
⌅ If the input is one element, it’s sorted, trivially.
⌅ If the input is 2 elements, merge ensures that the two elements get

sorted properly.
⌅ Assume it’s true for an arbitrary number n.

⌅ In algorithm-speak: Assume it works for an arbitrarily sized input of size
n.

⌅ Use the previous steps to prove that it’s true for the next number n+1.
⌅ In algorithm-speak: Use the above to prove that the algorithm works

when you add another element to the input.

⌅ When we callM����S��� on an array of size n (or n+ 1, same thing), it
recursively callsM�������� on input of size n/2

⌅ Since we assumed thatM����S��� works, as long as Merge works,
M����S��� works.
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Mergesort: Proof of Correctness

M����S���
⌅ Prove the formula for the smallest number that can be used in the

given statement.
⌅ In algorithm-speak: Prove the algorithm correct for the base case
⌅ If the input is one element, it’s sorted, trivially.
⌅ If the input is 2 elements, merge ensures that the two elements get

sorted properly.
⌅ Assume it’s true for an arbitrary number n.

⌅ In algorithm-speak: Assume it works for an arbitrarily sized input of size
n.

⌅ Use the previous steps to prove that it’s true for the next number n+1.
⌅ In algorithm-speak: Use the above to prove that the algorithm works

when you add another element to the input.
⌅ When we callM����S��� on an array of size n (or n+ 1, same thing), it

recursively callsM�������� on input of size n/2

⌅ Since we assumed thatM����S��� works, as long as Merge works,
M����S��� works.
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Mergesort: Proof of Correctness

M����S���
⌅ Prove the formula for the smallest number that can be used in the

given statement.
⌅ In algorithm-speak: Prove the algorithm correct for the base case
⌅ If the input is one element, it’s sorted, trivially.
⌅ If the input is 2 elements, merge ensures that the two elements get

sorted properly.
⌅ Assume it’s true for an arbitrary number n.

⌅ In algorithm-speak: Assume it works for an arbitrarily sized input of size
n.

⌅ Use the previous steps to prove that it’s true for the next number n+1.
⌅ In algorithm-speak: Use the above to prove that the algorithm works

when you add another element to the input.
⌅ When we callM����S��� on an array of size n (or n+ 1, same thing), it

recursively callsM�������� on input of size n/2
⌅ Since we assumed thatM����S��� works, as long as Merge works,

M����S��� works.
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Other Divide and Conquer problems

Related problems

⌅ Counting Inversions (info in the notes)
⌅ Closest Points
⌅ Integer Multiplication
⌅ Convolutions/FFT
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Summary

What problems did we work on today?

⌅ Sorting

What approaches did we use?

⌅ Divide and Conquer

What tools did we use?

⌅ Recurrences (to characterize run time of recursive algorithms)
⌅ Solving recurrences

⌅ Finding an upper bound/estimate
⌅ Substitution
⌅ Recurrence trees/Iteration/unrolling

⌅ Mathematical Induction
⌅ Practice the concept in math
⌅ Apply the concept in proving recursive algorithms correct
⌅ Apply the concept in using substitution for solving recurrences
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1 A first problem: Sorting
Sorting Defined

2 Divide and Conquer
Using Divide and Conquer to Merge Sort
Merge Sort Algorithm
Mergesort Graphically
Mergesort Analysis
Divide and Conquer Runtime (Generally)

3 Solving Recurrences
Recursion Trees/“Unrolling”

4 Master Theorem
Defining the Master Theorem
Restating the Master Theorem casually
Examples
Applying to an algorithm
Generating some intuition

5 Mergesort: Correctness
Mathematical Induction

6 Induction Proofs
Situating the Problem
Mathematical Induction
Building block: The Well-Ordering Property
Using Induction to Prove Recursive Algorithms Correct

7 Other Divide and Conquer Problems
8 Summary

Substitution

CS 5002: Discrete Math ©Northeastern University Fall 2018 260



Extra Slides
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Substitution

Using substitution starts with a simple premise:

⌅ Guess “the form of the solution”
⌅ Use induction to find the constants and show it works

CS 5002: Discrete Math ©Northeastern University Fall 2018 262



Example: Substitution Method

Recurrence:
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Example: Substitution Method

Let’s come up with a bound for this recurrence:

Original Recurrence: T (n) = 2T (bn/2c) + n (1)

Guess: T (n) = O(n lg n) (2)
T (n)  cn lg n (3)

T (bn/2c)  cbn/2c lg(bn/2c) (4)
T (n) = 2T (nbn/2c) + n  2(cb(n/2c lg(bn/2c)) + n (5)

 cn lg(n/2) + n (6)
= cn lg n� cn lg 2 + n (7)
= cn lg n� cn+ n (8)

T (n)  cn lg n

(9)
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Example: Substitution Method

Step 1: Make a guess:

Original Recurrence: T (n) = 2T (bn/2c) + n (1)
Guess: T (n) = O(n lg n) (2)

T (n)  cn lg n (3)
T (bn/2c)  cbn/2c lg(bn/2c) (4)

T (n) = 2T (nbn/2c) + n  2(cb(n/2c lg(bn/2c)) + n (5)
 cn lg(n/2) + n (6)
= cn lg n� cn lg 2 + n (7)
= cn lg n� cn+ n (8)

T (n)  cn lg n

(9)
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Example: Substitution Method

Now, we need to show #3, per definition of Big-O.
Apply inductive step, and assume that T (n) <= cn lg n for all m < n, in

particularm = bn/2c .

Original Recurrence: T (n) = 2T (bn/2c) + n (1)
Guess: T (n) = O(n lg n) (2)

T (n)  cn lg n (3)

T (bn/2c)  cbn/2c lg(bn/2c) (4)
T (n) = 2T (nbn/2c) + n  2(cb(n/2c lg(bn/2c)) + n (5)

 cn lg(n/2) + n (6)
= cn lg n� cn lg 2 + n (7)
= cn lg n� cn+ n (8)

T (n)  cn lg n

(9)
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Example: Substitution Method

Substitute bn/2c into the recurrence, since we know that
T (n)  cn lg nforn = bn/2c:

Original Recurrence: T (n) = 2T (bn/2c) + n (1)
Guess: T (n) = O(n lg n) (2)

T (n)  cn lg n (3)
T (bn/2c)  cbn/2c lg(bn/2c) (4)

T (n) = 2T (nbn/2c) + n  2(cb(n/2c lg(bn/2c)) + n (5)
 cn lg(n/2) + n (6)
= cn lg n� cn lg 2 + n (7)
= cn lg n� cn+ n (8)

T (n)  cn lg n

(9)
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Example: Substitution Method

Multiply both sides by 2 and add n

Original Recurrence: T (n) = 2T (bn/2c) + n (1)
Guess: T (n) = O(n lg n) (2)

T (n)  cn lg n (3)
T (bn/2c)  cbn/2c lg(bn/2c) (4)

T (n) = 2T (nbn/2c) + n  2(cb(n/2c lg(bn/2c)) + n (5)

 cn lg(n/2) + n (6)
= cn lg n� cn lg 2 + n (7)
= cn lg n� cn+ n (8)

T (n)  cn lg n

(9)
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Example: Substitution Method

Multiply the 2 into the first term. It’s  because n/2  floor(n/2).

Original Recurrence: T (n) = 2T (bn/2c) + n (1)
Guess: T (n) = O(n lg n) (2)

T (n)  cn lg n (3)
T (bn/2c)  cbn/2c lg(bn/2c) (4)

T (n) = 2T (nbn/2c) + n  2(cb(n/2c lg(bn/2c)) + n (5)
 cn lg(n/2) + n (6)

= cn lg n� cn lg 2 + n (7)
= cn lg n� cn+ n (8)

T (n)  cn lg n

(9)
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Example: Substitution Method

Recall, we need to show a solution that looks like line 3. Do something
about that n/2 term. Let’s use the log rule! (TODO: PUT THE REF HERE)

log

b

(1/a) = � log

b

a

Original Recurrence: T (n) = 2T (bn/2c) + n (1)
Guess: T (n) = O(n lg n) (2)

T (n)  cn lg n (3)
T (bn/2c)  cbn/2c lg(bn/2c) (4)

T (n) = 2T (nbn/2c) + n  2(cb(n/2c lg(bn/2c)) + n (5)
 cn lg(n/2) + n (6)
= cn lg n� cn lg 2 + n (7)

= cn lg n� cn+ n (8)
T (n)  cn lg n

(9)
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Example: Substitution Method

lg 2 = log

2

2 ! lg 2 = 1

Original Recurrence: T (n) = 2T (bn/2c) + n (1)
Guess: T (n) = O(n lg n) (2)

T (n)  cn lg n (3)
T (bn/2c)  cbn/2c lg(bn/2c) (4)

T (n) = 2T (nbn/2c) + n  2(cb(n/2c lg(bn/2c)) + n (5)
 cn lg(n/2) + n (6)
= cn lg n� cn lg 2 + n (7)
= cn lg n� cn+ n (8)

T (n)  cn lg n

(9)
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Example: Substitution Method

We needed to show that T (n)  cn lg n, and we’ve done it!

Original Recurrence: T (n) = 2T (bn/2c) + n (1)
Guess: T (n) = O(n lg n) (2)

T (n)  cn lg n (3)
T (bn/2c)  cbn/2c lg(bn/2c) (4)

T (n) = 2T (nbn/2c) + n  2(cb(n/2c lg(bn/2c)) + n (5)
 cn lg(n/2) + n (6)
= cn lg n� cn lg 2 + n (7)
= cn lg n� cn+ n (8)

T (n)  cn lg n (9)
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