Course Wrap Up

CS 5002: Discrete Math

Tamara Bonaci, Adrienne Slaughter

Northeastern University

December 6, 2018

- 1 Week 1: Digital Logic and Number Representation
- 2 Week 2: Functions and Variables. Integer Functions
- 3 Week 3: Sums and Sequences
- 4 Week 4: Sets
- 5 Week 5: Introduction to Number Theory
- 6 Week 6: Relations and Recurrences
- Week 7: Introduction to Linear Data Structures
- 8 Week 8: Midterm
- 9 Week 9: Introduction to Combinatorics
- 10 Week 10: Introduction to Algorithms
- 11 Week 11: Divide and Conquer Algorithms
- Week 12: Algorithms Correctness. Proofs
- 18 Week 13: Graphs and Trees
- 14 Week 14: Introduction to Probability

Week 1: Digital Logic and Number Representation

Digital Logic and Number Representation

- Digital logic
 - Statements and propositions
 - Logic operators
 - Evaluating propositions
 - Logical equivalence
 - Predicates and Quantifiers
- Number representations
 - Decimal base
 - Binary base
 - Octal base
 - Hexadecimal base
- Relevance to computers and programming

Week 2: Functions and Variables. Integer Functions

Variables and Functions

- Variables
- Functions
 - Domain, codomain and range of a function
 - Partial functions
 - Injection, surjections and bijections
 - Increasing and decreasing functions
 - Inverse functions
 - Composition of a function
- Some important integer functions
 - Floor
 - Ceiling

Week 3: Sums and Sequences

Sums and Sequences

- Sequences
 - Geometric sequence
 - Arithmetic sequence
 - Recurrence relations
- Summations
 - Single sums
 - Double sums
- Recurrence relations
 - Closed forms
 - Forward iteration
 - Backward iteration

Week 4: Sets

Introduction to Sets and Matrices

Sets

- Special sets
- Set equality, subsets and Venn diagrams
- Power sets
- Set cardinality
- Set operation: union, intersection, complement, disjoint, set difference
- Membership table
- Set problems

Matrices

- Matrix addition
- Matrix multiplication

Week 5: Introduction to Number Theory

Introduction to Number Theory

- Divisibility and modular arithmetic
 - Divisibility
 - The division algoirthm
 - Congruences
- Prime and composite numbers
 - Unique prime factorization
 - Coprimes
 - Greatest Common Divisor (gcd)
 - **■** Euler Totient Function
 - Euclidean algorithm
- Linear congruences and modular inverses
- Extended Euclidean algorithm
- The Chinese Remainder theorem

Week 6: Relations and Recurrences

Introduction to Relations

- Relations and their properties
 - Binary relations
 - Functions as relations
 - Properties of relations reflexivity, symmetry, anti-symmetry, transitivity
 - Combining relations
- Representing relations
- Closures
- Equivalence relations
 - Equivalence classes
 - Set partitions
- Partial orderings
 - Comparable elements
 - Well-ordered set
 - Lexicographic order
- n-ary Relations

Week 7: Introduction to Linear Data Structures

Introduction to Linear Data Structures

- How do computers work?
- What is a data structure?
- Container data structures
 - LIFO order
 - FIFO order
- Stacks
- Queues
- Deques
- Arrays
- Implementation issues

Week 8: Midterm

Week 9: Introduction to Combinatorics

Introduction to Combinatorics

- Introduction to counting techiniques
 - Basic counting principles: the product, sum, subtraction and division rules
 - The pigeonhole principle
 - The generalized pigeonhole principle
- Permutations and combinations
 - Permutations without repetition
 - Combinations without repetition
 - Binomial coefficients and binomial theorem
 - Pascal identity and triangle
- Generalized permutations and combinations
 - Permuations with repetitons
 - Combinations with repetitions

Week 10: Introduction to Algorithms

Introduction to Algorithms

- Growth of functions
- Asymptotic analysis
 - Upper bound
 - Lower bound
 - Tight bound
- Logs, powers and exponents
- Adding functions
- Introduction to algorithms
 - Expressing algorithms
 - Example: linear search
 - Binary search
 - Selection sort
- Algorithm analysis
 - Time and space complexity
 - Correctness
- Representative problems

Week 11: Divide and Conquer Algorithms

Divide and Conquer Algorithms

- Introduction to sorting
 - Defining sorting
- Divide and Conquer
 - Merge sort algorithm
 - Merge sort analysis
- Solving recurrences
 - Recursion trees
 - Solving recurrences
- Algorithm correctness
 - Induction proofs
 - Mathematical induction
 - The well-ordering principle

23

Week 12: Algorithms Correctness. Proofs

Introduction to Proof Techniques

- Proof by counterexample
 - Greedy algorithms
 - Interval scheduling problem
- Proof by induction
 - Mathematical induction
 - The well-ordered property
 - Insertion sort
- Proof by loop invariant
 - Insertion sort
 - Bubble sort
 - Merge sort

Week 13: Graphs and Trees

Introduction to Graphs and Trees

Trees

- Tree definitions
- Kinds of trees
- Special trees
 - Binary trees
 - Binary search trees
 - Balanced trees
- Breath first search
- Depth first search
- Tree traversals
 - Pre-order traversal
 - In-order traversal
 - Post-order traaversal

Introduction to Graphs and Trees

- **■** Graphs
 - Graph defintions
 - Directed and undirected graphs
 - Weighted graphs
 - Representing graphs
 - Adjacency list
 - Adjacency matrix
 - Graph traversals: BFS and DFS
 - Shortest path problems Dijkstra's algorithm

28

Week 14: Introduction to Probability

Introduction to Probability

- Random experiment
- Sample space
- Event
- Probability
 - Axioms of probability
 - Elementary events
 - Equally likely events
- Conditional probability and independence
 - Conditional probability
 - The chain rule
 - The law of total probability
 - The Bayes' rule
 - Independence
 - Mutually exclusive events

Introduction to Probability

- Random variables
- Probability distribution
 - Cumulative distribution function
 - Probability mass function
- Expectation
 - **■** Expectation
 - Linearity of expectation
 - Variance
- Some important discrete probabilities
 - Bernoulli distribution
 - Binomial distribution
 - Geometric distribution
- Random processes