A9: FIRST ALGORITHMS

I'm not counting any chickens. -Jeff Bridges
Course: CS 5002
Fall 2018
Due: 18 Nov 2018, Midnight

OBJECTIVES

After you complete this assignment, you will be comfortable with:

- Order of functions
- Asymptotic analysis
- Calculating runtime
- Becoming familiar with binary search, selection sort
- Representing algorithms (pseudocode, english, code)

RELEVANT READING

Rosen:

- Algorithms Unlocked:
- Chapter 1: What are Algorithms and Why Should You Care?
- Chapter 2: How to Describe and Evaluate Algorithms
- Rosen:
- Chapter 3.2: Growth of Functions

NEXT WEEK'S READING

- Cormen: Algorithms Unlocked, pp 40-59 (mergesort, quicksort)
- Rosen: Chapter 8.3: Divide-and-Conquer Algorithms and Recurrence Relations

EXERCISES

Question 1

For the input given below, how many times is binary search called to find the word wordmaker? Indicate which elements are looked at in order. (for example, does the algorithm look at element 1 , then 2 , then $3, \ldots$?

1. aaerially
2. korfballs
3. aardvarks
4. lapboards
5. lazulitic
6. abashment
7. mendelson
8. curtained
9. escocheon
10. escondido
11. flagstaff
12. guildship
13. hammerkop
14. hearsiest
15. interplay
16. jumillite
17. mudcapped
18. nailproof
19. nailsmith
20. overwhelm
21. putrefies
22. ragouting
23. rejoining
24. sensitive
25. shelfmate
26. skellying
27. triturate
28. triturium
29. tulipwood
30. unsoberly
31. unsolders
32. wordmaker
33. wowserish
34. wrastling
35. yickering
36. yikkering
37. yobberies
38. yobbishly
39. yockernut
40. yohimbine
41. yoicksing
42. youthhood
43. youthiest
44. yumminess
45. zachariah
46. zaglossus
47. zambezian
48. zastrugas
49. zoetropic
50. zolaesque

Question 2

Rank these functions in terms of order of growth. That is, find an arrangement of functions $g_{1}, g_{2}, \ldots g_{n}$ such that $g_{1}=\Omega\left(g_{2}\right), g_{2}=\Omega\left(g_{3}\right), \ldots$. When multiple functions have the same order, please indicate so.

1. $\lg (\lg n)$
2. n^{2}
3. n !
4. $(\lg n)$!
5. $\left(\frac{3}{2}\right)^{n}$
6. $2^{\lg n}$
7. $(n+1)$!
8. $\ln n$
9. $n \lg n$
10. n^{3}
11. $\lg (n!)$
12. $\ln n$
13. $2^{2^{n}}$
14. $n^{2}+\log n$ \square

Question 3

For each function $f(n)$ below, indicate whether the function $f(n)$ is $O(g(n)), \Omega(g(n))$, or $\Theta(g(n))$, where $g(n)=n^{2}$.
(a) $3 x+42$
(a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad
(e) \qquad
(f)
\qquad out of 20

Question 4

For this pseudocode, describe the algorithm in English.

```
COMPUTE( }n\mathrm{ )
    p=0
    q=1
    for }i=1\mathrm{ to }
        q=q\cdoti
        p=p+n
    return p+q
```

(a) Describe what the algorithm is doing in "natural language".

(b) What is the runtime of this algorithm? Use $\operatorname{Big}-\Theta$ notation.
\square

Question 5

This question pertains to the following function.

```
MYSTERY(n)
    r=0
    for i=1 to n-1
        for }j=i+1 to 
            for }k=1\mathrm{ to }
            r=r+1
    return r
```

(a) What value is returned by this function? Express your answer as a function of n.

(b) What is the worst-case running time, using Big-O?
\square
\qquad out of 8

Question 6

This question pertains to the following algorithm:
Input: Array A.
DoSomething (A)

```
p= true
while p
    for }i=1\mathrm{ to A.length
        if }A[i]>A[i+1
            a=A[i]
            A[i] =A[i+1]
            A[i+1]=a
            p= true
    if not p
            break
    p= fALSE
    for }i=A.length - 2 to 0
        if }A[i]>A[i+1
            q=A[i+1]
            A[i+1] = A[i]
            A[i] =q
            p= TRUE
```

(a) Describe the algorithm in English. Relate it back to an algorithm we've either talked about in class or had in our reading.

(b) What is the best case run time for this algorithm in terms of Big- Θ ? Provide an example of the best case input.
\square
\qquad out of 9
(c) What is the worst case run time for this algorithm in terms of Big- Θ ? Provide an example of the worst case input.
\square
(d) What is the average case run time for this algorithm in terms of Big- Θ ?
\square
Question 7
Write pseudocode to implement the algorithm described below:
Input: an array
Output: a sorted array
For every element in an array, if the previous element is less than the current element, move to the next element. Otherwise, swap the elements and move to the previous element. If there is no previous element, just move to the next element. If there is no next element, you're done.
(a) Write pseudocode to express the algorithm.
\square
\qquad out of 17
(b) What's the average case running time of this algorithm?

(c) What's the worst case running time of this algorithm? Provide an example of a worst-case input.
(d) What's the best case running time of this algorithm? Provide an example of a best-case input.
\square

Question 8

Suppose the following algorithm is used to evaluate the polynomial $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$: Input: Array A such element $A[i]=a_{i}$
evaluate (A)
for $i=1$ to n
$x_{_}$pow $=x \cdot x$ pow
$p=p+A[i] \cdot x _$pow
(a) Describe the worst-case input for this algorithm.
(b) How many multiplications are done in the worst-case? How many additions?
\square
(c) How many multiplications are done on the average?

(d) Can you improve this algorithm? If so, explain how and provide some pseudocode.
\square
\qquad out of 9

Question 9

This question pertains to the following algorithm:

```
doThis \((A, i, j)\)
if \(i>j\)
        return
\(m=\lfloor(i+j) / 2\rfloor\)
doThis \((A, i, m)\)
doThis \((A, m+1, j)\)
if \(A[j]<A[m]\)
        \(a=A[j]\)
        \(A[j]=A[m]\)
        \(A[m]=a\)
doThis \((A, i, j-1)\)
```

(a) Describe what this algorithm is doing; and specifically, how it is accomplishing it.

(b) Provide an example of an input that will produce the worst-case runtime.
\square

SUBMISSION DETAILS

Things to submit:

- Submit the following on Blackboard for Assignment 9:
- The written parts of this assignment as a .pdf named "CS5002_[lastname]_A9.pdf". For example, Ben Bitdiddle's file would be named "CS5002_Bitdiddle_A9.pdf". (There should be no brackets around your name).
- Make sure your name is in the document as well (e.g., written on the top of the first page).

