
A7: LINEAR DATA STRUCTURES
Bad programmers worry about the code. Good programmers worry about data structures
and their relationships. — Linus Torvalds (Dec 28, 1969)
Course: CS 5002
Fall 2018
Due: November 4, 2018, Midnight

OBJECTIVES
A�er you complete this assignment, you will be comfortable
with:
• The notion of a data structures

• The need for di�erent data structures

• Linked lists

• Doubly linked lists

• Stacks

• �eues

RELEVANT READING
• Introduction to Data Structures

• Basic Data Structures in Python

• Linked List

• Doubly Linked List

• Stack

• �eue

NEXTWEEK’S READING
• Rosen
• 6.1 The Basics of Counting

• 6.2 The Pigeonhole Principle

• 6.3 Permutations and Combinations

• 6.4 Binomial Coe�icients and Identities

• 6.5 Generalized Permutations and Combinations

EXERCISES

Problem 1: What is a Linked List?
Determine whether or not the following statements are true for the linked list:

(a) (points) Linked list is a linear data structure with elements stored at a contiguous location.

(a)

(b) (points) Linked list is a linear data structure with elements not stored at a contiguous location.

(b)

(c) (points) All elements of a linked list are integers.

(c)

(d) (points) Elements in a linked list are connected using pointers.

(d)

Page 1 of 20 Points: out of 3

https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-00-introduction-to-computers-and-engineering-problem-solving-spring-2012/lecture-notes/MIT1_00S12_Lec_35.pdf
http://interactivepython.org/runestone/static/pythonds/BasicDS/toctree.html
https://www.thecodingdelight.com/linked-list-data-structure/amp/
https://www.thecodingdelight.com/doubly-linked-list/amp/
https://www.i-programmer.info/babbages-bag/263-stacks.html
https://www.thecodingdelight.com/queue-data-structure-array-implementation/amp/

(e) (points) An element of a linked list is a node, containing two a�ributes: value and pointer to the next element in
the list.

(e)

(f) (points) An element of a linked list is a node, containing two a�ributes: value and pointer to the previous
element in the list.

(f)

What is a Stack?

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 38	

•  Is there another way to think about a stack? !
•  Stack – a constrained data collection where clients are limited to use only

limited optimized methods (pop, push, peek) !
•  Stack – a list with restriction that insertions and deletions can be

performed in only one position, the end of the list, called the top !

push()!

Stack!

Top!

Bottom! 1	

2	

3	

pop(), peek()!

Figure 1: Graphical representation of a stack, used in Problem 2.

Problem 2: What is a Stack?

(a) (1 point) In class, we used a stack of book or a stack of pancakes as real life examples of stacks. Give three more
real life examples of stacks.

(a)

(b) (1 point) Consider the following graphical representation of a stack, depicted in Figure 1. What is the size of the
given stack?

(b)

(c) (1 point) Figure 1 also depicts operation peek(). What is the di�erence between operations peek() and pop()?

(c)

(d) (1 point) Redraw the stack from figure 1 a�er we execute operation pop() two times.

(e) (1 point) Redraw the stack from figure 1 a�er we execute operation push(5) two times.

A7: Linear Data Structures Page 2 of 20 Points: out of 5

What is a Queue?!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 54	

•  Queue – a data collection that retrieves elements in the FIFO order (first in,
first out)!
•  Elements are stored in order of insertion, but don't have indexes !

•  Client can only:!
•  Add to the end of the queue, !
•  Examine/remove the front of the queue !
!

•  Basic queue operations:!
•  Add (enqueue) - add an element to the back of the queue !
•  Peek - examine the front element !
•  Remove (dequeue) - remove the front element !

1	 2	 3	 4	 5	

Front! Back!
add!peek/

remove!

Figure 2: Graphical representation of a stack, used in Problem 3.

Problem 3: What is a�eue?

(a) (1 point) In class, we used an example of people waiting in line as a real life example of a queue. Give three more
real life examples of queues.

(a)

(b) (1 point) Consider the following graphical representation of a queue, depicted in Figure 2. What is the size of the
given queue?

(b)

(c) (1 point) Redraw the queue from Figure 2, a�er we dequeue one element from the given queue, and enqueue
element 20 into it.

(d) (1 point) Redraw the queue from part (c), a�er we dequeue two elements from it, and enqueue elements 25 and
30 into it.

(e) (1 point) Redraw the queue from part (d), a�er we dequeue three elements from it.

Problem 4: Simple Linked List Problem
Consider the following simple Python program, involving linked lists. State what gets printed out a�er every print()

method call.

1 #A7-A1 Simple linked list problem
2
3 myLinkedList = [1, 2, 3, 4, 5];
4 print(myLinkedList);
5
6 myLinkedList.append(6);
7 print(myLinkedList);
8
9 myLinkedList.remove(4);

A7: Linear Data Structures Page 3 of 20 Points: out of 8

10 print(myLinkedList);
11
12 myLinkedList.insert(3, 55);
13 print(myLinkedList);
14
15 myLinkedList.reverse();
16 print(myLinkedList);
17
18 print(myLinkedList.__len__());

(a) In line 4?

(a)

(b) In line 7?

(b)

(c) In line 10?

(c)

(d) In line 13?

(d)

(e) In line 16?

(e)

(f) In line 18?

(f)

Problem 5: Simple Stack Problem
Consider the following simple Python program, containing our own implementation of a Stack, MySimpleStack. State
what gets printed out a�er every print() method call.

1 class MySimpleStack:
2 def __init__(self):
3 self.items = []
4
5 def push(self, item):
6 self.items.append(item)
7
8 def pop(self):
9 return self.items.pop()
10
11 myTestStack = MySimpleStack();
12 myTestStack.push(’This’);
13 myTestStack.push(’is’);
14 myTestStack.push(’my’);
15 myTestStack.push(’Simple’);
16 myTestStack.push(’Stack’);
17
18 print(myTestStack.pop());
19 print(myTestStack.pop());
20 print(myTestStack.pop());
21 print(myTestStack.pop());
22 print(myTestStack.pop());

A7: Linear Data Structures Page 4 of 20 Points: out of 6

23
24 #print(mySimpleStack.pop());

(a) In line 18?

(a)

(b) In line 19?

(b)

(c) In line 20?

(c)

(d) In line 21?

(d)

(e) In line 22?

(e)

(f) If we uncomment line 24?

(f)

Problem 6: Simple�eue Problem
Consider the following simple Python program, containing our own implementation of a�eue, MySimpleQueue.
State what gets printed out a�er every print() method call.

1 class MySimpleQueue:
2 def __init__(self):
3 self.items = []
4
5 def enqueue(self, item):
6 self.items.insert(0,item)
7
8 def dequeue(self):
9 return self.items.pop()
10
11 myTestQueue = MySimpleQueue();
12 myTestQueue.enqueue(’This’);
13 myTestQueue.enqueue(’is’);
14 myTestQueue.enqueue(’my’);
15 myTestQueue.enqueue(’Simple’);
16 myTestQueue.enqueue(’Queue’);
17
18 print(myTestQueue.dequeue());
19 print(myTestQueue.dequeue());
20 print(myTestQueue.dequeue());
21 print(myTestQueue.dequeue());
22 print(myTestQueue.dequeue());
23
24 #print(myTestQueue.dequeue());

(a) In line 18?

(a)

A7: Linear Data Structures Page 5 of 20 Points: out of 3

(b) In line 19?

(b)

(c) In line 20?

(c)

(d) In line 21?

(d)

(e) In line 22?

(e)

(f) If we uncomment line 24?

(f)

Problem 7: Stack ADT
Consider our simple implementation of a stack, MySimpleStack, repeated below:

1 class MySimpleStack:
2 def __init__(self):
3 self.items = []
4
5 def push(self, item):
6 self.items.append(item)
7
8 def pop(self):
9 return self.items.pop()

The given implementation is correct, but a bit too simple for us - we don’t have a way to peek at the top of the stack,
or to determine whether or not the stack is empty, or what its size might be.

This is where you come in. Please expand our simple implementation of a stack by implementing the following simple
methods:

• isEmpty() - returns True if the stack is empty, and False otherwise.

• size() - returns the number of elements on the stack.

• peek() - returns the value of the element on the top of the stack, but does not remove it.

(a) (1 point) Method isEmpty():

(b) (3 points) Method size():

A7: Linear Data Structures Page 6 of 20 Points: out of 4

(c) (1 point) Method peek():

Problem 8: List ADT
Consider our simple implementation of a list, MySimpleList, given below:

1 class MySimpleList:
2 def __init__(self):
3 self.head = None
4
5 def add(self, item):
6 temp = Node(item)
7 temp.setNext(self.head)
8 self.head = temp
9
10 class Node:
11 def __init__(self, initdata):
12 self.data = initdata
13 self.next = None
14
15 def getData(self):
16 return self.data
17
18 def getNext(self):
19 return self.next
20
21 def setData(self, newdata):
22 self.data = newdata
23
24 def setNext(self, newnext):
25 self.next = newnext
26
27 # myList = MySimpleList();
28 # myList.add(5);
29 # myList.add(6);
30
31 # print(myList.isEmpty());
32 # print(myList.size());
33 # print(myList.contains(5));
34 # print(myList.contains(7));

Once again, the given implementation is correct, but a bit too simple for us - we don’t have a way to see whether or
not our list contains some element, or to determine whether or not the list is empty, or what its size might be.

And again, this is where you come in. Please expand our simple implementation of a list by implementing the
following simple methods:

• isEmpty() - returns True if the list is empty, and False otherwise.

• size() - returns the number of elements in the list.

• contain(element) - returns True if the list contains element, and False otherwise.

A7: Linear Data Structures Page 7 of 20 Points: out of 1

(a) (1 point) Method isEmpty():

(b) (2 points) Method size():

(c) (3 points) Method contains():

Problem 9: Lists and Sets
A few weeks ago, we talked about sets, and we defined a set as a group of objects, usually with some relationship or
similar property. As it turns out, sets are also an important data structure in computer science, with the
distinguishing feature that elements of a set are unique.

Consider our simple, but incorrect implementation of a Set, provided below.

1 class MySimpleSet:
2 def __init__(self):
3 self.head = None
4
5 def add(self, item):
6 temp = Node(item)
7 temp.setNext(self.head)
8 self.head = temp
9
10 def remove(self, item):
11 current = self.head
12 previous = None
13 found = False

A7: Linear Data Structures Page 8 of 20 Points: out of 6

14 while not found:
15 if current.getData() == item:
16 found = True
17 else:
18 previous = current
19 current = current.getNext()
20
21 if previous == None:
22 self.head = current.getNext()
23 else:
24 previous.setNext(current.getNext())
25
26 class Node:
27 def __init__(self, initdata):
28 self.data = initdata
29 self.next = None
30
31 def getData(self):
32 return self.data
33
34 def getNext(self):
35 return self.next
36
37 def setData(self, newdata):
38 self.data = newdata
39
40 def setNext(self, newnext):
41 self.next = newnext
42
43 # mySet = MySimpleSet();
44 # mySet.add(5);
45 # mySet.add(6);
46 # mySet.add(5);

(a) (3 points) As you can observe, there is currently no di�erence between our implementations of List and Set.
That is intentional, because we want to implement a set using our simple linked list. Our implementation,
however, is not correct, because it allows our set to have duplicate elements in a Set. Please explain how do we
need to modify methods add(item) and remove(item) so that our implementation becomes correct.

(b) (3 points) Implement the necesssary changes in our code, so that our implementation of a Set becomes correct.

A7: Linear Data Structures Page 9 of 20 Points: out of 6

(c) (3 points) When thinking about sets as groups of objects, we know that we o�en care about finding a union or
an intersection of two or more sets. Assuming we now have a correct implementation of a Set, please explain
how would you implement a function union(anotherSet), that finds a union of your current set, and the set
anotherSet.

Problem 10: Lists and Matrices
A few weeks ago, we talked about matrices, and defined a matrix as a rectangular array of numbers. We said that a
matrix with m rows and n columns is called anm× n matrix.

An important class of matrices in data science are so called tall-and-skinny matrices, defined as matrices such that
the number of rows is much bigger than the number of columns (m >> n).

(a) (4 points) Consider the following simple implementation of a matrix, SimpleMatrix, provided below.

1 class MySimpleMatrix:
2 def __init__(self):
3 self.items = []
4
5 def initialize(self, items):
6 self.items = items
7
8 def isEmpty(self):
9 return self.items == []
10
11 def numRows(self):
12 return len(self.items)
13
14 def numColumns(self):
15 return len(self.items[0])
16

A7: Linear Data Structures Page 10 of 20 Points: out of 7

17 myMatrix = MySimpleMatrix();
18 myMatrix.initialize([[1, 2, 3], [2, 3, 4], [4, 5, 6], [5, 6, 7]]);
19 print(myMatrix.numRows());
20 print(myMatrix.numColumns());

Please explain how would you implement method isTallSkinny(muchBigger) that, given an input argument to
define what “much bigger” means, returns True if the given matrix is tall and skinny, and False otherwise.
For example, given a 10× 3, matrix, a function isTallSkinny(muchBigger) with muchBigger = 10 returns False,
because it is not true thatm ≥ 10 · n. On the other hand, if muchBigger = 2, the method returns True, because
m ≥ 2 · n.

(b) (4 points) Modify the given simple implementation of a matrix, SimpleMatrix, to implement method
isTallSkinny(muchBigger).

Problem 11: Bag-Of-Words Model
A Bag-Of-Words model is one of the fundamental data structures in Natural Language Processing (NLP). In this
model, some text is represented as a multiset (a bag) of its words, where we disregard grammar, and o�en also the
order of words.

In this problem, a bag-of-words is a data collection, containing words (Strings), where the words do not have to be
unique (i.e., duplicates are allowed), and there is no order within the collection.

(a) (4 points) Explain which of the data structures that we are already familiar with (list, stack, queue) could we use
to implement our BagOrWords, and how might we do that.

A7: Linear Data Structures Page 11 of 20 Points: out of 8

(b) (6 points) Implement the BagOfWords data structure, such that it includes at least the following methods:
• add(item)

• remove(item)

• contains(item)

• size()

Problem 12: Reversing a String
In many real life problems, we encounter the need to reverse some string. One way to do so is using a stack.

(a) (3 points) Explain how might we use a stack to reverse a string.

A7: Linear Data Structures Page 12 of 20 Points: out of 9

(b) (4 points) Consider our simple implementation of a stack, MySimpleStack, repreated here for convenience.

1 class MySimpleStack:
2 def __init__(self):
3 self.items = []
4
5 def push(self, item):
6 self.items.append(item)
7
8 def pop(self):
9 return self.items.pop()
10
11 myTestStack = MySimpleStack();
12 myTestStack.push(’This’);
13 myTestStack.push(’is’);
14 myTestStack.push(’my’);
15 myTestStack.push(’Simple’);
16 myTestStack.push(’Stack’);
17
18 print(myTestStack.pop());
19 print(myTestStack.pop());
20 print(myTestStack.pop());
21 print(myTestStack.pop());
22 print(myTestStack.pop());

Implement method reverseString(string) that reverses the given string, and prints out the reversed string,
using our implementation of a stack, MySimpleStack.

(c) (3 points) A palindrome is a word or phrase that reads the same when read from le� to right, as well as when
read from right to le�. Some examples of palindromes in English include: mom, Anna, kayak, radar, level and
noon. Explain how might you use a stack to check whether or not some string is a palindrome.

A7: Linear Data Structures Page 13 of 20 Points: out of 7

Problem 13: Mixing Stacks and�eues
Consider the following code, containing our simple implementations of a stack and a queue, MySimpleStack and
MySimpleQueue. State what gets printed out a�er every prettyPrint() method call.

1 class MySimpleStack:
2 def __init__(self):
3 self.items = []
4
5 def push(self, item):
6 self.items.append(item)
7
8 def pop(self):
9 return self.items.pop()
10
11 def prettyPrint(self):
12 for i in reversed(range (len(self.items))):
13 print(self.items[i])
14
15 class MySimpleQueue:
16 def __init__(self):
17 self.items = []
18
19 def enqueue(self, item):
20 self.items.insert(0, item)
21
22 def dequeue(self):
23 return self.items.pop()
24
25 def prettyPrint(self):
26 for i in reversed(range(len(self.items))):
27 print(self.items[i])
28
29
30 myStack = MySimpleStack();
31 myStack.push(’This’);
32 myStack.push(’is’);
33 myStack.push(’Test’);
34
35 myStack.prettyPrint();
36
37 myStack.pop()
38 myStack.prettyPrint();
39
40 myQueue = MySimpleQueue();
41 myQueue.enqueue(22);
42 myQueue.enqueue(55);
43 myQueue.enqueue(125);
44
45 myQueue.prettyPrint();
46
47 myQueue.dequeue();

A7: Linear Data Structures Page 14 of 20 Points: out of 6

48 myQueue.prettyPrint();
49
50 myNewStack = MySimpleStack();
51 myNewQueue = MySimpleQueue();
52
53 myNewQueue.enqueue(’A’);
54 myNewQueue.enqueue(’B’);
55 myNewQueue.enqueue(’C’);
56
57 print("Queue:")
58 myNewQueue.prettyPrint();
59
60 for i in reversed(range(len(myNewQueue.items))):
61 myNewStack.push(myNewQueue.dequeue());
62
63 print("Stack:")
64 myNewStack.prettyPrint();

(a) In line 35?

(a)

(b) In line 38?

(b)

(c) In line 45?

(c)

(d) In line 48?

(d)

(e) In line 58?

(e)

(f) In line 64?

(f)

Problem 14: Doubly Linked List
Similar to the linked list, a doubly linked list is a linked data structure that consists of sequentially linked records,
referred to as nodes. In the doubly linked list, however, every node contains three fields:

• Value,

• Link to the previous node in the sequnece,

• Link to the next node in the sequence.

Consider the following code, containing our simple implementation of a doubly linked list, SimpleDoublyLinkedList.
State what gets printed out a�er every prettyPrint() method call.

1 class Node(object):
2
3 def __init__(self, data, prev, next):
4 self.data = data
5 self.prev = prev
6 self.next = next

A7: Linear Data Structures Page 15 of 20 Points: out of 0

7
8
9 class SimpleDoublyLinkedList(object):
10 head = None
11 tail = None
12
13 def add(self, data):
14 temp = Node(data, None, None)
15 if self.head is None:
16 self.head = self.tail = temp
17 else:
18 temp.prev = self.tail
19 temp.next = None
20 self.tail.next = temp
21 self.tail = temp
22
23 def prettyPrint(self):
24 current_node = self.head
25 while current_node is not None:
26 print(current_node.data)
27 current_node = current_node.next
28
29 print("Case 1:");
30 myDLList = SimpleDoublyLinkedList();
31 myDLList.add(5);
32 myDLList.add(6);
33 myDLList.add(7);
34 myDLList.prettyPrint();
35
36 print("Case 2:");
37 myDLList.add(10);
38 myDLList.add(12);
39 myDLList.prettyPrint();
40
41 print("Case 3:");
42 myDLList.add(5);
43 myDLList.add(6);
44 myDLList.add(7);
45 myDLList.prettyPrint();

(a) (1 point) In line 33?

(a)

(b) (1 point) In line 39?

(b)

(c) (1 point) In line 45?

(d) (4 points) Explain how would you implement method prettyPrintReverse() that prints the whole doubly
linked list in a reverse order.

A7: Linear Data Structures Page 16 of 20 Points: out of 7

(e) (4 points) Implement method prettyPrintReverse() that prints the whole doubly linked list in a reverse order.

Problem 15: Double-Ended�eue (Deque)
Deque, typically pronounced deck, is a double-ended-queue. It is a linear collection of elements that supports the
insertion and removal of elements at both end points (front and rear). Deque is a richer abstract data type than both
Stack and�eue because it implements both stacks and queues at the same time.

Consider the following code, containing our simple implementations of a deque, MySimpleDeque. State what gets
printed out a�er every prettyPrint() method call.

1 class MySimpleDeque:
2 def __init__(self):
3 self.items = []
4
5 def isEmpty(self):
6 return self.items == []
7
8 def addFront(self, item):
9 self.items.append(item)
10
11 def addRear(self, item):
12 self.items.insert(0,item)
13
14 def removeFront(self):
15 return self.items.pop()
16
17 def removeRear(self):
18 return self.items.pop(0)
19
20 def size(self):
21 return len(self.items)
22
23 def prettyPrint(self):
24 for i in reversed(range(len(self.items))):

A7: Linear Data Structures Page 17 of 20 Points: out of 4

25 print(self.items[i])
26
27
28 myDeque = MySimpleDeque();
29 myDeque.addFront(1);
30 myDeque.addFront(2);
31 myDeque.addFront(3);
32
33 myDeque.prettyPrint();
34
35 myDeque.addRear(10);
36 myDeque.addRear(20);
37 myDeque.addRear(30);
38
39 myDeque.prettyPrint();
40
41 myDeque.removeFront();
42 myDeque.removeRear();
43
44 myDeque.prettyPrint();
45
46 myDeque.addRear(5);
47 myDeque.addRear(6);
48 myDeque.removeFront();
49 myDeque.addFront(7);
50
51 myDeque.prettyPrint();
52
53 myDeque.removeFront();
54 myDeque.removeRear();
55 myDeque.removeFront();
56 myDeque.removeRear();
57 myDeque.removeRear();
58
59 myDeque.prettyPrint();
60
61 myDeque.removeRear();
62 #myDeque.removeRear();

(a) (1 point) In line 33?

(a)
(b) (1 point) In line 39?

(b)
(c) (1 point) In line 44?

(c)
(d) (1 point) In line 51?

(d)
(e) (1 point) In line 59?

(e)
(f) (1 point) What would happen if we uncomment line 62?

(f)

A7: Linear Data Structures Page 18 of 20 Points: out of 6

(g) (2 points) Explain how would you implement method sumFrontBack(flag), that removes the front and the back
elements from the deque, sums them up, and depending on the flag, returns the sum back into the deque. If
flag = "Front", the sum is added to the front of the deque, if flag = "Rear", the sum is added to the back of
the deque. Otherwise, the sum is not added to the deque.

(h) (2 points) Implement method sumFrontBack(flag), that removes the front and the back elements from the
deque, sums them up, and depending on the flag, returns the sum back into the deque. If flag = "Front", the
sum is added to the front of the deque, if flag = "Rear", the sum is added to the back of the deque. Otherwise,
the sum is not added to the deque.

A7: Linear Data Structures Page 19 of 20 Points: out of 4

�estion Points Score

What is a Linked List? 3

What is a Stack? 5

What is a�eue? 5

Simple Linked List Problem 3

Simple Stack Problem 6

Simple�eue Problem 3

Stack ADT 5

List ADT 6

Lists and Sets 9

Lists and Matrices 8

Bag-Of-Words Model 10

Reversing a String 10

Mixing Stacks and�eues 6

Doubly Linked List 11

Double-Ended�eue (Deque) 10

Total: 100

SUBMISSION DETAILS
Things to submit:
• Submit the following on Blackboard for Assignment 7:
• The wri�en parts of this assignment as a .pdf named “CS5002 [lastname] A7.pdf”. For example, my file would be
named “CS5002 Bonaci A7.pdf”. (There should be no brackets around your name).

• Make sure your name is in the document as well (e.g., wri�en on the top of the first page).

A7: Linear Data Structures Page 20 of 20 Points: out of 0

