A6: RELATIONS

There is no branch of mathematics, however abstract, whic may not some day be applied to phenomena in real world. - Nicolai Ivanovitch Lobachevsky (1792-1856)

Course: CS 5002

Fall 2018
Due: 21 Oct 2018, Midnight

OBJECTIVES

After you complete this assignment, you will be comfortable with:

- Relations and their properites
- Matrix representations of relations
- Equivalence relations and partial orderings
- Closures of relations
- n-ary relations

RELEVANT READING

Rosen:

- 9.1: Relations and Their Properties
- 9.2: n-ary Relations and Their Applications
- 9.3: Representing Relations
- 9.4: Closures of Relations
- 9.5 Equivalence Relations
- 9.6 Partial Orderings

NEXT WEEK'S READING

- Lists, stacks and queues

EXERCISES

Problem 1: Definition of a relation

Let's consider the following congruence modulo 3 relation R, defined from the set of integers, \mathbb{Z} to the set of integers \mathbb{Z} as follows:

$$
m R n \Longleftrightarrow 3 \mid(m-n)
$$

(a) (1 point) Is $10 R$ 1? Please explain why or why not.
(a)
(b) (1 point) Is $(8,1) \in R$? Please explain why or why not.
(b)
(c) (1 point) List five integers n such that $n R 0$.
(c)
(d) (1 point) List five integers n such that $n R 2$.
(d)

Problem 2: Definition of a relation

Let A be the set of all strings of $a^{\prime} \mathrm{s}$ and b^{\prime} s of length 4. Let's define a relation R on A as follows: For all $s, t \in A$, $s R t \Longleftrightarrow s$ has the same first two characters as t.
\qquad
(a) (1 point) Is abaa R abba?
(a)
(b) (1 point) Is $a a b b R$ bbaa?
(b)
(c) (1 point) Is aaaa R aaab?
(c)

Problem 3: Properites of relations

Let R be the "greater than or equal to" relation on the set of real numbers, formally defined as follows:
for all $x, y \in \mathbb{R}, x \quad$, $y \Longleftrightarrow x \geq y$.
Please show your work to determine whether or not the given relation is:
(a) (1 point) Reflexive:
\square
(b) (1 point) Symmetric:
\square
(c) (1 point) Anti-symmetric:
\qquad out of 6
(d) (1 point) Transitive:
\square

Problem 4: Properites of relations

Let A be a Cartesian product $\mathbb{R} \times \mathbb{R}$, and let F be a relation defined on A as follows:
For all $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in A:\left(x_{1}, y_{1}\right) F\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2}$
Please show your work to determine whether or not the given relation is:
(a) (1 point) Reflexive:
\square
(b) (1 point) Symmetric:
\qquad out of 3
\square
(c) (1 point) Anti-symmetric:
\square
(d) (1 point) Transitive:
\square

Problem 5: Properties of relations

Let R be a relation operating on the set of all Web pages, defined as follows: everyone who visits Web page a has also visited Web page b.

Please show your work to determine whether or not the given relation is:
(a) (1 point) Reflexive:
\qquad
(b) (1 point) Symmetric:
\square
(c) (1 point) Anti-symmetric:
\square
(d) (1 point) Transitive:
\qquad out of 3
\square

Problem 6: Combining Relations

Let A be the set of all ALIGN students on our campus, and let B be the set of all books available in the Northeastern University libraries. Let relation R_{1} consist of all ordered pairs (a, b), where student a is required to read book b in a course. Similarly, let relation R_{2} consist of all ordered pairs (a, b), where student a has read book b.
Describe (in words) the ordered pairs in each of the combined relations:
(a) (1 point) $R_{1} \cup R_{2}$
(a)
(b) (1 point) $R_{1} \cap R_{2}$
(b)
(c) (1 point) $R_{1}-R_{2}$
(c)
(d) (1 point) $R_{2}-R_{1}$
(d)

Problem 7: Combining relations

Let R be the relation $\{(2,5),(2,6),(3,6),(3,7),(4,5)\}$, and let S be the relation $\{(3,5),(4,5),(4,6),(5,6)\}$. Find the composition $S \circ R$.
\qquad

Problem 8: n-ary relations
List all triples in the relation $\{(a, b, c) \mid a, b, c$ are integers such that $0<a<b<c<5\}$.
\square

Problem 9: Matrix representation of a relation

Represent each of these relations on the set $\{1,2,3\}$ with a matrix, such that the elements of the given set are listed in an increasing order:
(a) (1 point) $\{(1,1),(1,2),(1,3)\}$
\qquad out of 3
(b) (1 point) $\{(1,2),(2,1),(2,2),(3,3)\}$
\square
(c) $(1$ point $)\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
\square
(d) $(1$ point $)\{(1,3),(3,1)\}$
\qquad out of 3
\square
Problem 10: Matrix representation and properties of relations
Represent each of these relations on the set $\{1,2,3\}$ with a matrix, such that the elements of the given set are listed in an increasing order:

Use matrix representation of a relation to determine whether the following relations are reflexive and symmetric.
$\{(1,2),(2,1),(2,2),(3,3)\}$
(a) (1 point) Matrix representation?
(a)
(b) (1 point) Reflexive?
(b)
(c) (1 point) Symmetric?
(c)
$\{(1,3),(3,1)\}$
(a) (1 point) Matrix representation?
(a)
(b) (1 point) Reflexive?
(b)
(c) (1 point) Symmetric?
(c) \qquad
Problem 11: Closures
Let R be the relation on the set $\{2,4,6,8\}$ containing ordered pairs $(2,4),(4,4),(4,6),(6,2),(6,6)$ and $(8,2)$. Please show your work to find:
(a) (2 points) Reflexive closure of R
\qquad out of 8
(b) (2 points) Symmetric closure of R
\square

Problem 12: Equivalence relations

Consider the following relations defined on set $\{0,1,2,3\}$. Show your work to determine whether or not the given relations are equivalence relations.
(a) (3 points) $\{(0,0),(1,1),(2,2),(3,3)\}$
(b) (4 points) $\{(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)\}$
\qquad out of 9

Problem 13: Equivalence relations
Consider the following relations defined on the set of all people. Show your work to determine whether or not the given relations are equivalence relations.
(a) (4 points) $\{(a, b) \mid a$ and b are the same age $\}$
\square
(b) (4 points) $\{(a, b) \mid a$ and b have the same parents $\}$
\qquad out of 8
(c) (4 points) $\{(a, b) \mid a$ and b speak a common language $\}$
\square

Problem 14: Equivalence relations

Consider the following relations defined on the set of all functions from \mathbb{Z} to \mathbb{Z}. Show your work to determine whether or not the given relations are equivalence relations.
(a) (4 points) $\{(f, g) \mid f(1)=g(1)\}$
\qquad out of 8
(b) (4 points) $\{(f, g) \mid f(0)=g(1)$ and $f(1)=g(0)\}$

Problem 15: Partitions

Which of the given collections of subsets are partitions of the set $\{-3,-2,-1,0,1,2,3\}$?
(a) (1 point) $\{-3,-1,1,3\},\{-2,0,2\}$
(a)
(b) (1 point) $\{-3,-2,-1,0\},\{0,1,2,3\}$
(b)
(c) (1 point) $\{-3,3\},\{-2,2\},\{-1,1\},\{0\}$
(c)
\qquad out of 7
(d) (1 point) $\{-3,-2,2,3\},\{-1,1\}$
(d)

Problem 16: Partial ordering

Consider the following relations on set $\{0,1,2,3\}$. Show your work to determine which of the given relations are partial orderings.
(a) (4 points) $\{(0,0),(1,1),(2,2),(3,3)\}$

(b) (4 points) $\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,2),(3,3)\}$
\qquad out of 9

PROBLEMS

Problem 17: Equivalence relations

Let R be the relation on the set of ordered pairs of positive integers such that $((a, b),(c, d)) \in R$ if and only if $a+d=b+c$. Show that R is an equivalence relation.
\qquad

Problem 18: Equivalence relations

Suppose that R_{1} and R_{2} are equivalence relations on the set S. Show your work to determine whether the intersection combination of R_{1} and $R_{2}, R_{1} \cap R_{2}$, is an equivalence relation.
\square

PROGRAMMING PROBLEMS

Problem 19: Reflexivity of a relation
Write a simple Python program that, given the matrix representing a relation on a finite set, determines whether the given relation is reflexive.
\qquad

Problem 20: Symmetry of a relation
Write a simple Python program that, given the matrix representing a relation on a finite set, determines whether the given relation is symmetric.
\qquad out of 5

Question	Points	Score
Definition of a relation	4	
Definition of a relation	3	
Properites of relations	4	
Properites of relations	4	
Properties of relations	4	
Combining Relations	4	
Combining relations	2	
n-ary relations	2	
Matrix representation of a relation	4	
Matrix representation and properties of relations	6	
Closures	4	
Equivalence relations	7	
Equivalence relations	12	
Equivalence relations	8	
Partitions	4	
Partial ordering	8	
Equivalence relations	5	
Equivalence relations	5	
Reflexivity of a relation	5	
Symmetry of a relation	5	
Total:	100	

SUBMISSION DETAILS

Things to submit:

- Submit the following on Blackboard for Assignment 6:
- The written parts of this assignment as a .pdf named "CS5002_[lastname]_A6.pdf". For example, my file would be named "CS5002_Bonaci_A6.pdf". (There should be no brackets around your name).
- Make sure your name is in the document as well (e.g., written on the top of the first page).
\qquad

