A6: RELATIONS

There is no branch of mathematics, however abstract, whic may not some day be applied to phenomena in real world. – Nicolai Ivanovitch Lobachevsky (1792-1856)

Course: CS 5002 Fall 2018 Due: 21 Oct 2018, Midnight

OBJECTIVES

After you complete this assignment, you will be comfortable Rosen: with:

- · Relations and their properites
- · Matrix representations of relations
- · Equivalence relations and partial orderings
- · Closures of relations
- *n*-ary relations

RELEVANT READING

- 9.1: Relations and Their Properties
- 9.2: *n*-ary Relations and Their Applications
- 9.3: Representing Relations
- 9.4: Closures of Relations
- 9.5 Equivalence Relations
- 9.6 Partial Orderings

NEXT WEEK'S READING

· Lists, stacks and queues

EXERCISES

Problem 1: Definition of a relation

Let's consider the following **congruence modulo 3** relation R, defined from the set of integers, \mathbb{Z} to the set of integers \mathbb{Z} as follows:

$$m \ R \ n \iff 3 | (m-n)$$

- (a) (1 point) Is 10 R 1? Please explain why or why not.
 - (a) ____
- (b) (1 point) Is $(8, 1) \in R$? Please explain why or why not.
 - (b)_____
- (c) (1 point) List five integers n such that n R 0.

(c)_____

- (d) (1 point) List five integers n such that n R 2.
 - (d)_____

Problem 2: Definition of a relation

Let A be the set of all strings of a's and b's of length 4. Let's define a relation R on A as follows: For all $s, t \in A$,

 $s \ R \ t \iff s$ has the same first two characters as t.

Points: _____ out of 4

(b)_____

(c) (1 point) Is aaaa R aaab?

(c)_____

Problem 3: Properites of relations

Let R be the "greater than or equal to" relation on the set of real numbers, formally defined as follows:

for all $x, y \in \mathbb{R}, x \ R \ y \iff x \ge y$.

Please show your work to determine whether or not the given relation is:

(a) (1 point) Reflexive:

(b) (1 point) Symmetric:

(c) (1 point) Anti-symmetric:

(d) (1 point) Transitive:

Problem 4: Properites of relations

Let A be a Cartesian product $\mathbb{R} \times \mathbb{R}$, and let F be a relation defined on A as follows: For all (x_1, y_1) and $(x_2, y_2) \in A : (x_1, y_1) F (x_2, y_2) \iff x_1 = x_2$ Please show your work to determine whether or not the given relation is:

(a) (1 point) Reflexive:

(b) (1 point) Symmetric:

(c) (1 point) Anti-symmetric:

(d) (1 point) Transitive:

Problem 5: Properties of relations

Let R be a relation operating on the set of all Web pages, defined as follows: everyone who visits Web page a has also visited Web page b.

Please show your work to determine whether or not the given relation is:

(a) (1 point) Reflexive:

(b) (1 point) Symmetric:

(c) (1 point) Anti-symmetric:

(d) (1 point) Transitive:

Problem 6: Combining Relations

Let A be the set of all ALIGN students on our campus, and let B be the set of all books available in the Northeastern University libraries. Let relation R_1 consist of all ordered pairs (a, b), where student a is required to read book b in a course. Similarly, let relation R_2 consist of all ordered pairs (a, b), where student a has read book b.

Describe (in words) the ordered pairs in each of the combined relations:

(a)	(1 point) $R_1 \cup R_2$
	(a)
(b)	(1 point) $R_1 \cap R_2$
	(b)
(c)	(1 point) $R_1 - R_2$
	(c)
(d)	(1 point) $R_2 - R_1$
	(d)

Problem 7: Combining relations

Let R be the relation $\{(2,5), (2,6), (3,6), (3,7), (4,5)\}$, and let S be the relation $\{(3,5), (4,5), (4,6), (5,6)\}$. Find the composition $S \circ R$.

Problem 8: *n*-ary relations

 $\mbox{ List all triples in the relation } \{(a,b,c) | a,b,c \mbox{ are integers such that } 0 < a < b < c < 5 \}.$

Problem 9: Matrix representation of a relation

Represent each of these relations on the set $\{1, 2, 3\}$ with a matrix, such that the elements of the given set are listed in an increasing order:

(a) (1 point) $\{(1,1),(1,2),(1,3)\}$

(b) (1 point) $\{(1,2),(2,1),(2,2),(3,3)\}$

(c) (1 point) $\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$

(d) (1 point) $\{(1,3),(3,1)\}$

Problem 10: Matrix representation and properties of relations

Represent each of these relations on the set $\{1, 2, 3\}$ with a matrix, such that the elements of the given set are listed in an increasing order:

Use matrix representation of a relation to determine whether the following relations are reflexive and symmetric.

 $\{(1,2),(2,1),(2,2),(3,3)\}$

(a) (1 point) Matrix representation?

	(a)
(b)	(1 point) Reflexive?
	(b)
(c)	(1 point) Symmetric?
	(c)
$\{(1,$	$\{3\}, \{3,1\}\}$
(a)	(1 point) Matrix representation?
	(a)
(b)	(1 point) Reflexive?
	(b)
(c)	(1 point) Symmetric?

(c)_____ Problem 11: Closures

Let R be the relation on the set $\{2, 4, 6, 8\}$ containing ordered pairs (2, 4), (4, 4), (4, 6), (6, 2), (6, 6) and (8, 2). Please show your work to find:

(a) (2 points) Reflexive closure of R

(b) (2 points) Symmetric closure of ${\cal R}$

Problem 12: Equivalence relations

Consider the following relations defined on set $\{0, 1, 2, 3\}$. Show your work to determine whether or not the given relations are equivalence relations.

(a) (3 points) $\{(0,0), (1,1), (2,2), (3,3)\}$

(b) (4 points) $\{(0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2), (3,3)\}$

Problem 13: Equivalence relations

Consider the following relations defined on the set of all people. Show your work to determine whether or not the given relations are equivalence relations.

(a) (4 points) $\{(a,b)|a \text{ and } b \text{ are the same age}\}$

(b) (4 points) $\{(a, b)|a \text{ and } b \text{ have the same parents}\}$

(c) (4 points) $\{(a,b)|a \text{ and } b \text{ speak a common language}\}$

Problem 14: Equivalence relations

Consider the following relations defined on the set of all functions from \mathbb{Z} to \mathbb{Z} . Show your work to determine whether or not the given relations are equivalence relations.

(a) (4 points) $\{(f,g)|f(1) = g(1)\}$

(b) (4 points) $\{(f,g)|f(0)=g(1) \text{ and } f(1)=g(0)\}$

Problem 15: Partitions

Which of the given collections of subsets are partitions of the set $\{-3, -2, -1, 0, 1, 2, 3\}$?

(a) (1 point) $\{-3, -1, 1, 3\}, \{-2, 0, 2\}$

(b) (1 point) $\{-3, -2, -1, 0\}, \{0, 1, 2, 3\}$

(b)_____

- (c) (1 point) $\{-3,3\}, \{-2,2\}, \{-1,1\}, \{0\}$
 - (c)_____

(d) (1 point) $\{-3,-2,2,3\},\{-1,1\}$

(d)_____

Problem 16: Partial ordering

Consider the following relations on set $\{0, 1, 2, 3\}$. Show your work to determine which of the given relations are partial orderings.

(a) (4 points) $\{(0,0), (1,1), (2,2), (3,3)\}$

(b) (4 points) $\{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3)\}$

Problem 17: Equivalence relations

Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if a + d = b + c. Show that R is an equivalence relation.

Problem 18: Equivalence relations

Suppose that R_1 and R_2 are equivalence relations on the set S. Show your work to determine whether the intersection combination of R_1 and R_2 , $R_1 \cap R_2$, is an equivalence relation.

PROGRAMMING PROBLEMS

Problem 19: Reflexivity of a relation

Write a simple Python program that, given the matrix representing a relation on a finite set, determines whether the given relation is reflexive.

Problem 20: Symmetry of a relation

Write a simple Python program that, given the matrix representing a relation on a finite set, determines whether the given relation is symmetric.

A6: Relations

Question	Points	Score
Definition of a relation	4	
Definition of a relation	3	
Properites of relations	4	
Properites of relations	4	
Properties of relations	4	
Combining Relations	4	
Combining relations	2	
<i>n</i> -ary relations	2	
Matrix representation of a relation	4	
Matrix representation and properties of relations	6	
Closures	4	
Equivalence relations	7	
Equivalence relations	12	
Equivalence relations	8	
Partitions	4	
Partial ordering	8	
Equivalence relations	5	
Equivalence relations	5	
Reflexivity of a relation	5	
Symmetry of a relation	5	
Total:	100	

SUBMISSION DETAILS

Things to submit:

- Submit the following on Blackboard for Assignment 6:
 - The written parts of this assignment as a .pdf named "CS5002_[lastname]_A6.pdf". For example, my file would be named "CS5002_Bonaci_A6.pdf". (There should be no brackets around your name).
 - Make sure your name is in the document as well (e.g., written on the top of the first page).