A2: FUNCTIONS AND INTEGER FUNCTIONS

If you think dogs can't count, try putting three dog biscuits in your pocket and then giving Fido only two of them. -Phil Pastoret

Course: CS 5002 Fall 2018 Due: September 23, 2018, Midnight

OBJECTIVES

After you complete this assignment, you will be comfortable with:

- Variables
- · Functions, writing and using them
- · Domain and codomains of functions
- · Injection, surjections and bijections
- Invertible functions
- Composition of functions

FUNCTION PROBLEMS

Problem 1: Function Definitons

- (a) Let $A = \{-5, 0, 5\}$ and $B = \{b, c, d, e\}$. Define a function $f : A \to B$, represented with the arrow diagram in Figure 1:
- (b) Let $C = \{5, 6, 7, 8\}$ and $D = \{z, y, x, w\}$. Define a function $g : C \to D$, represented with the arrow diagram in Figure 2:
- (c) Let $E = \{-10, 10, 100\}$ and $F = \{00, 10, 11\}$. Define a function $h : E \to F$, represented with the arrow diagram in Figure 3.

Problem 2: Valid functions

Let $X = \{25, 77, 555\}$ and $Y = \{6, 7, 8, 9\}$. Which of the arrow diagrams, depicted in Figures 4–7, represent a valid function $f : X \to Y$?

If an arrow diagram is not a valid function, please explain why is thst.

- (a) Arrow diagram represented in Figure 4.
- (b) Arrow diagram represented in Figure 5.
- (c) Arrow diagram represented in Figure 6.
- (d) Arrow diagram represented in Figure 7.

Problem 3: Valid functions

- Is f a function from \mathbb{Z} to \mathbb{R} if f defined as:
- (a) f(x) = x
- (b) $f(x) = \pm x$
- (c) $f(x) = \sqrt{x^2 + 1}$

RELEVANT READING

- Rosen, 2.3 Functions
- Online Discrete Math: Chapter 0.1, 0.2, 0.4 (Intro, Functions)

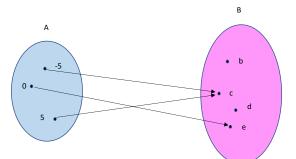


Figure 1: Arrow diagram representing a function used in Problem 1(a).

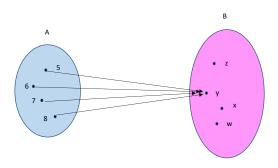


Figure 2: Arrow diagram representing a function used in Problem 1(b).

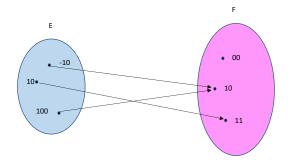


Figure 3: Arrow diagram representing a function used in Problem 1(c).

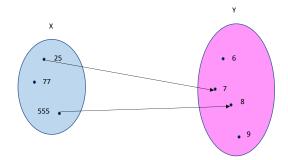


Figure 4: Arrow diagram representing a function used in Problem 2(a).

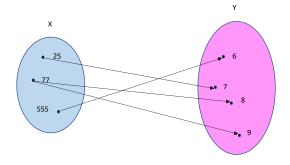


Figure 5: Arrow diagram representing a function used in Problem 2(b).

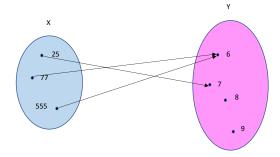


Figure 6: Arrow diagram representing a function used in Problem 2(c).

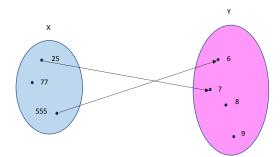


Figure 7: Arrow diagram representing a function used in Problem 2(d).

(d) $f(x) = \frac{1}{x^2 - 4}$

(e) $f(x) = \frac{1}{x}$

Problem 4: Domain and codomain of a function

Indicate whether or not the following statements are true. Please justify your answer.

- (a) If two elements in the domain of a function are equal, then their images in the co-domain are equal.
- (b) If two elements in the codomain of a function are equal, then their preimages in the domain are also equal.
- (c) A function can have the same output for more than one input.
- (d) A function can have the same input for more than one output.

Problem 5: Domain and range of a function

Find the domain and range of these functions.

- (a) The function that assigns to each non-negative number its last digit.
- (b) The function that asigns the next largest integer to some positive number.
- (c) The function that assigns to a bit string the number of bits in the string.
- (d) The function that assigns to a bit string the number of ones in the string minus the number of zeros in the string.
- (e) The function that assigns to a bit string the number of bits left over when a bit string is split into bytes, which are blocks of eight bits.
- (f) The function that assigns to each pair of positive integers the first integer in the pair.
- (g) The function that assigns to each positive integer its largest decimal digit.
- (h) The function that assigns to a bit string the longest string of ones in the string.
- (i) The function that assigns to each pair of positive integers the maximum of these two integers.
- (j) The function that assigns to each positive integer the number of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 that do not appear as decimal digits of that integer.

Problem 6: Domain and range of a function

Consider the following functions of two variables, x, y, defined as:

- (a) $f: X \times Y \to \mathbb{Z}$, where $X = \{1, 2, 3\}, Y = \{-2, -1, 0\}$, such that $f(x, y) = \frac{x-y}{3}$.
- (b) $g: X \times Y \to \mathbb{Z}$, where $X = \{-2, 0, 2\}, Y = \{4, 6, 8\}$ such that $g(x, y) = \frac{x-y}{4}$.

Please find the domain, the codomain and the range for the given functions.

Problem 7: One-to-one functions

Determine whether each of the functions $f : \mathbb{Z} \to \mathbb{Z}$ is a **one-to-one** function.

- (a) f(x) = x 1
- (b) $f(x) = x^2 + 1$
- (c) $f(x) = x^3$
- (d) $f(x) = \left\lceil \frac{x}{2} \right\rceil$

Problem 8: One-to-one functions

Consider the following function from the set of ALIGN students, taking CS 5002. Under what conditions is the function **one-to-one**, if it assigns to a student their:

- (a) Mobile phone number?
- (b) Student identification number?
- (c) Final grade in the class?
- (d) Home town?

Problem 9: Onto functions

All but two of the following statements are correct ways to express the fact that a function is **onto**. Find the two that are incorrect. Please justify your answer.

- (a) f is onto \leftrightarrow every element in its codoman is the image of some element in its domain.
- (b) f is onto \leftrightarrow every element in its domain has a corresponding image in its codomain.
- (c) f is onto $\leftrightarrow \forall y \in Y, \exists x \in X$ such that f(x) = y.
- (d) f is onto $\leftrightarrow \forall x \in X, \exists y \in Y$ such that f(x) = y.
- (e) f is onto \leftrightarrow the range of f is the same as the codomain of f.

Problem 10: Onto functions

Determine whether or not the following function are **onto** function if $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$:

- (a) f(x,y) = x + y
- (b) $f(x,y) = x^2 + y^2$
- (c) f(x, y) = x
- (d) f(x, y) = |x|
- (e) f(x, y) = x y

Problem 11: One-to-one correspondence

Determine whether or not the following functions are bijections from \mathbb{R} to \mathbb{R} :

- (a) f(x) = -3x + 4
- (b) $f(x) = x^2 + 1$
- (c) $f(x) = \frac{x^2+1}{x^2+2}$

(d)
$$f(x) = x^3$$

(e) $f(x) = x^5 + 1$

Problem 12: Increasing and decreasing functions

- (a) Give an example of a function that is **one-to-one**, but not **onto**.
- (b) Give an example of an increasing function from \mathbb{R} to \mathbb{R} that is not **one-to-one**.

Problem 13: Partial and total functions

For each of these partial functions, determine its domain, codomain, domain of definition, and the set of values for which it is undefined. Also, determine if a function is a **total function**.

(a)
$$f: \mathbb{Z} \to \mathbb{R}, f(x) = \frac{1}{x}$$

(b)
$$f: \mathbb{Z} \to \mathbb{Z}, f(x) = \left\lceil \frac{x}{2} \right\rceil$$

- (c) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}, f(x, y) = \frac{x}{y}$
- (d) $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, f(x, y) = x \cdot y$
- (e) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, f(x, y) = x y$, if x > y

Problem 14: Composition of functions

Consider the following functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$, defined as:

$$\begin{array}{rcl} f(x) & = & x+3\\ g(x) & = & -x \end{array}$$

Please find $f \circ g$ and $g \circ f$.

Problem 15: Composition of functions

Let f(x) = ax + b and g(x) = cx + d, where a, b, c and d are constants. Determine the necessary and sufficient conditions on the constants a, b, c, and d so that $f \circ g = g \circ f$.

Problem 16: Invertible functions

Prove that some function f(x) = ax + b from \mathbb{R} to \mathbb{R} , where a and b are constants, is invertible when $a \neq 0$, and find its inverse.

Points: _____ out of 45

Problem 17: Integer functions

Let x be a real number. Show that:

$$\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$$

SUBMISSION DETAILS

- This assignment is due by 11:59 pm PST on Sunday, September 23, 2018.
- Please submit it on Blackboard as a .pdf named "CS5002_[lastname]_A2.pdf". For example, my file would be named "CS5002_Bonaci_A2.pdf". (There should be no brackets around your name).
- Make sure your name is in the document as well (e.g., written on the top of the first page).

HELPFUL HINTS

- Start early!
- · Ask clarification questions on Piazza.

Question	Points	Score
Function Defintions	3	
Valid functions	4	
Valid functions	5	
Domain and codomain of a function	4	
Domain and range of a function	10	
Domain and range of a function	4	
One-to-one functions	8	
One-to-one functions	8	
Onto functions	5	
Onto functions	10	
One-to-one correspondence	10	
Increasing and decreasing functions	3	
Partial and total functions	10	
Composition of functions	4	
Composition of functions	4	
Invertible functions	4	
Integer functions	4	
Total:	100	