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Today's topics:

Introduction to Artificial Intelligence

Introduction to Artificial Neural Networks

Examples of some basic neural networks

Using Python for Artificial Intelligence

Example: PyTorch
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1950: : 

1951: First AI program

1965:  (first chat bot)

1974: First autonomous vehicle

1997:  at Chess

2004: First Autonomous Vehicle challenge

2011: 

2016: 

2017: 

 

Video Introduction

Alan Turing Turing Test

Eliza

Deep Blue beats Gary Kasimov

IBM Watson beats Jeopardy winners

Deep Mind beats Go champion

AlphaGo Zero beats Deep Mind
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NNs learn relationship between cause and effect or organize
large volumes of data into orderly and informative patterns.
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A Neural Network is a biologically inspired information
processing idea, modeled after our brain.
A neural network is a large number of highly
interconnected processing elements (neurons) working
together
Like people, they learn from experience (by example)
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Neural networks take their inspiration from neurobiology
This diagram is the human neuron:
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A biological neuron has
three types of main
components; dendrites,
soma (or cell body) and axon 
Dendrites receives signals
from other neurons 
The soma, sums the
incoming signals.  When
sufficient input is received,
the cell fires; that is it
transmit a signal over its
axon to other cells. 
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An artificial neural network (ANN) is an information
processing system that has certain performance
characteristics in common with biological nets.
Several key features of the processing elements of ANN
are suggested by the properties of biological neurons:
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1. The processing element receives many signals.

2. Signals may be modified by a weight at the receiving synapse.

3. The processing element sums the weighted inputs.

4. Under appropriate circumstances (sufficient input), the neuron
transmits a single output.

5. The output from a particular neuron may go to many other neurons.
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From experience: examples / training data
Strength of connection between the neurons is stored as a weight-
value for the specific connection.
Learning the solution to a problem = changing the connection weights
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ANNs have been developed as generalizations of mathematical
models of neural biology, based on the assumptions that:

 

1. Information processing occurs at many simple elements called
neurons.

2. Signals are passed between neurons over connection links.
3. Each connection link has an associated weight, which, in typical neural

net, multiplies the signal transmitted.
4. Each neuron applies an activation function to its net input to

determine its output signal.
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Model of a neuron
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A neural net consists of a large number of simple processing elements
called neurons, units, cells or nodes. 

Each neuron is connected to other neurons by means of directed
communication links, each with associated weight. 

The weight represent information being used by the net to solve a
problem. 

Each neuron has an internal state, called its activation or activity level,
which is a function of the inputs it has received. Typically, a neuron
sends its activation as a signal to several other neurons.

It is important to note that a neuron can send only one signal at a time,
although that signal is broadcast to several other neurons.
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Neural networks are configured for a specific application, such as
pattern recognition or data classification, through a learning process

In a biological system, learning involves adjustments to the synaptic
connections between neurons

This is the same for artificial neural networks (ANNs)!
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A neuron receives input, determines
the strength or the weight of the
input, calculates the total weighted
input, and compares the total
weighted with a value (threshold)
The value is in the range of 0 and 1
 If the total weighted input greater
than or equal the threshold value, the
neuron will produce the output, and if
the total weighted input less than the
threshold value, no output will be
produced
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Slides modified from Graham Kendall's Introduction to Artificial Intelligence
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Slides modified from Graham Kendall's Introduction to Artificial Intelligence
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Let's model a slightly more complicated neural network:

1. If we touch something cold we perceive heat

2. If we keep touching something cold we will perceive cold

3. If we touch something hot we will perceive heat

 

We will assume that we can only change things on discrete time steps
If cold is applied for one time step then heat will be perceived

If a cold stimulus is applied for two time steps then cold will be
perceived

If heat is applied at a time step, then we should perceive heat
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Slides modified from Graham Kendall's Introduction to Artificial Intelligence

Lecture 11: Introduction to Artificial Neural Networks (ANNs)Lecture 11: Introduction to Artificial Neural Networks (ANNs)

It takes time for
the stimulus
(applied at X1 and
X2) to make its
way to Y1 and
Y2 where we
perceive either
heat or cold

At t(0), we apply a stimulus to X1 and X2

At t(1) we can update Z1, Z2 and Y1

At t(2) we can perceive a stimulus at Y2

At t(2+n) the network is fully functional
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Slides modified from Graham Kendall's Introduction to Artificial Intelligence
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We want the system to
perceive cold if a cold
stimulus is applied for two
time steps

Y2(t) = X2(t – 2) AND X2(t – 1)

 

X2(t – 2) X2( t – 1) Y2(t)

1 1 1

1 0 0

0 1 0

0 0 0
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We want the system to
perceive heat if either a hot
stimulus is applied or a cold
stimulus is applied (for one
time step) and then removed

Y1(t) = [ X1(t – 1) ] OR [ X2(t – 3)
AND NOT X2(t – 2) ]

X2(t – 3) X2(t – 2) AND NOT X1(t – 1) OR

1 1 0 1 1

1 0 1 1 1

0 1 0 1 1

0 0 0 1 1

1 1 0 0 0

1 0 1 0 1

0 1 0 0 0

0 0 0 0 0
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The network shows

Y1(t) = X1(t – 1) OR Z1(t – 1)

Z1(t – 1) = Z2( t – 2) AND NOT X2(t – 2)

Z2(t – 2) = X2(t – 3)

Substituting, we get

Y1(t) = [ X1(t – 1) ] OR [ X2(t – 3) AND NOT X2(t – 2) ]

which is the same as our original requirements
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This is great...but how do you build a network that learns?

We have to use input to predict output

We can do this using a mathematical algorithm called backpropogation,
which measures statistics from input values and output values.

Backpropogation uses a  training set

We are going to use the following training set:

Example borrowed from: How to build a simple neural network in 9 lines of Python code

Can you figure
out what the
question mark
should be?
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This is great...but how do you build a network that learns?

We have to use input to predict output

We can do this using a mathematical algorithm called backpropogation,
which measures statistics from input values and output values.

Backpropogation uses a  training set

We are going to use the following training set:

Example borrowed from: How to build a simple neural network in 9 lines of Python code

Can you figure
out what the
question mark
should be?

The output is always
equal to the value of
the leftmost input
column. Therefore
the answer is the
‘?’ should be 1.
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We start by giving each input a weight, which will be a positive or negative
number.

Large numbers (positive or negative) will have a large effect on the
neuron's output.

We start by setting each weight to a random number, and then we train:

1. Take the inputs from a training set example, adjust them by the weights,
and pass them through a special formula to calculate the neuron’s output.

2. Calculate the error, which is the difference between the neuron’s output
and the desired output in the training set example.

3. Depending on the direction of the error, adjust the weights slightly.

4. Repeat this process 10,000 times. 

Example borrowed from: How to build a simple neural network in 9 lines of Python code
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Example borrowed from: How to build a simple neural network in 9 lines of Python code

Eventually the weights of the neuron will reach an optimum for the
training set. If we allow the neuron to think about a new situation, that

follows the same pattern, it should make a good prediction.
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Example borrowed from: How to build a simple neural network in 9 lines of Python code

What is this special formula that we're going to use to calculate the
neuron's output?
First, we take the weighted sum of the neuron's inputs:
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weight  × input  =∑ i i weight  ×1 input  +1 weight  ×2 input  +2 weight  ×3 input  3

Next we normalize this, so the result is between 0 and 1. For this, we
use a mathematically convenient function, called the Sigmoid function:

1+e−x
1

The Sigmoid function looks
like this when plotted:
Notice the characteristic "S"
shape, and that it is bounded by
1 and 0.
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Example borrowed from: How to build a simple neural network in 9 lines of Python code

We can substitute the first function into the Sigmoid:
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During the training, we have to adjust the weights. To calculate this,
we use the Error Weighted Derivative formula:

1+e− weight  ×input  (∑ i i)
1

error × input × SigmoidCurvedGradient(output)

What's going on with this formula?

1. We want to make an adjustment proportional to the size of the error
2. We multiply by the input, which is either 1 or 0
3. We multiply by the . gradient (steepness) of the Sigmoid curve
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Example borrowed from: How to build a simple neural network in 9 lines of Python code
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What's going on with this formula?

1. We want to make an adjustment proportional to the size of the error
2. We multiply by the input, which is either 1 or 0
3. We multiply by the . gradient (steepness) of the Sigmoid curve

Why the gradient of the Sigmoid?

1. We used the Sigmoid curve to calculate the output of the
neuron.

2. If the output is a large positive or negative number, it
signifies the neuron was quite confident one way or another.

3. From the diagram, we can see that at large numbers, the
Sigmoid curve has a shallow gradient.

4. If the neuron is confident that the existing weight is correct,
it doesn’t want to adjust it very much. Multiplying by the
Sigmoid curve gradient achieves this. 
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Example borrowed from: How to build a simple neural network in 9 lines of Python code
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The gradient of the Sigmoid curve, can be found by taking the
derivative (remember calculus?)

So by substituting the second equation into the first equation (from
two slides ago), the final formula for adjusting the weights is:

SigmoidCurvedGradient(output) = output × (1 − output)

error × input × output × (1 − output)

There are other, more advanced formulas, but this one is pretty
simple.

33

https://medium.com/technology-invention-and-more/how-to-build-a-simple-neural-network-in-9-lines-of-python-code-cc8f23647ca1


Example borrowed from: How to build a simple neural network in 9 lines of Python code
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Finally, Python!

We will use the numpy module, which is a mathematics library for Python.

We want to use four methods:

1. exp — the natural exponential
2. array — creates a matrix
3. dot — multiplies matrices
4. random — gives us random numbers

array() creates list-like arrays that are faster than regular lists. E.g., for the training
set we saw earlier:

training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T

1
2

The ‘.T’ function, transposes the matrix
from horizontal to vertical. So the
computer is storing the numbers like this: ⎣⎢

⎢⎢⎡
0
1
1
0

0
1
0
1

1
1
1
1⎦⎥
⎥⎥⎤
⎣⎢
⎢⎢⎡

0
1
1
0⎦⎥
⎥⎥⎤
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Example borrowed from: How to build a simple neural network in 9 lines of Python code
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In 10 lines of Python code:

from numpy import exp, array, random, dot
training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T
random.seed(1)
synaptic_weights = 2 * random.random((3, 1)) - 1
for iteration in range(10000):
    output = 1 / (1 + exp(-(dot(training_set_inputs, synaptic_weights))))
    synaptic_weights += dot(training_set_inputs.T, (training_set_outputs - output) 
                                                            * output * (1 - output))
print 1 / (1 + exp(-(dot(array([1, 0, 0]), synaptic_weights))))

1
2
3
4
5
6
7
8
9

10
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Example borrowed from: How to build a simple neural network in 9 lines of Python code
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With comments, and in a Class:

from numpy import exp, array, random, dot
 
 
class NeuralNetwork():
    def __init__(self):
        # Seed the random number generator, so it generates the same numbers
        # every time the program runs.
        random.seed(1)
 
        # We model a single neuron, with 3 input connections and 1 output connection.
        # We assign random weights to a 3 x 1 matrix, with values in the range -1 to 1
        # and mean 0.
        self.synaptic_weights = 2 * random.random((3, 1)) - 1
 
    # The Sigmoid function, which describes an S shaped curve.
    # We pass the weighted sum of the inputs through this function to
    # normalise them between 0 and 1.
    def __sigmoid(self, x):
        return 1 / (1 + exp(-x))
 
    # The derivative of the Sigmoid function.
    # This is the gradient of the Sigmoid curve.
    # It indicates how confident we are about the existing weight.
    def __sigmoid_derivative(self, x):
        return x * (1 - x)
 
    # We train the neural network through a process of trial and error.
    # Adjusting the synaptic weights each time.
    def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
        for iteration in range(number_of_training_iterations):
            # Pass the training set through our neural network (a single neuron).
            output = self.think(training_set_inputs)
 
            # Calculate the error (The difference between the desired output
            # and the predicted output).
            error = training_set_outputs - output
 
            # Multiply the error by the input and again by the gradient of the Sigmoid curve.
            # This means less confident weights are adjusted more.
            # This means inputs, which are zero, do not cause changes to the weights.
            adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))
 
            # Adjust the weights.
            self.synaptic_weights += adjustment
 
    # The neural network thinks.
    def think(self, inputs):
        # Pass inputs through our neural network (our single neuron).
        return self.__sigmoid(dot(inputs, self.synaptic_weights))
 
 
if __name__ == "__main__":
 
    #Intialise a single neuron neural network.
    neural_network = NeuralNetwork()
 
    print("Random starting synaptic weights: ")
    print(neural_network.synaptic_weights)
 
    # The training set. We have 4 examples, each consisting of 3 input values
    # and 1 output value.
    training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
    training_set_outputs = array([[0, 1, 1, 0]]).T
 
    # Train the neural network using a training set.
    # Do it 10,000 times and make small adjustments each time.
    neural_network.train(training_set_inputs, training_set_outputs, 10000)
 
    print("New synaptic weights after training: ")
    print(neural_network.synaptic_weights)
 
    # Test the neural network with a new situation.
    print("Considering new situation [1, 0, 0] -> ?: ")
    print(neural_network.think(array([1, 0, 0])))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Too small! Let's do this in
PyCharm

https://github.com/miloharper/s
imple-neural-network
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Example borrowed from: How to build a simple neural network in 9 lines of Python code
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When we run the code, we get something like this:

Random starting synaptic weights:
[[-0.16595599]
[ 0.44064899]
[-0.99977125]]
 
New synaptic weights after training:
[[ 9.67299303]
[-0.2078435 ]
[-4.62963669]]
 
Considering new situation [1, 0, 0] -> ?:
[ 0.99993704]

1
2
3
4
5
6
7
8
9

10
11
12

First the neural network assigned itself random weights, then trained itself
using the training set. Then it considered a new situation [1, 0, 0] and predicted
0.99993704. The correct answer was 1. So very close!
This was one neuron doing one task, but if we had millions of these working
together, we could create a much more robust network!
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Lecture 11: Example: PyTorchLecture 11: Example: PyTorch
The example we just finished is pretty tiny, and involves only one
neuron.
If we want to do more powerful neural networks, we should use a
library. One of the most widely used machine learning library is called
PyTorch, and it is open source and available for many platforms.
PyTorch allows you to use Graphics Processing Units (GPUs) for doing
the substantial processing necessary for large machine learning
problems
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