Lecture 10: Searching and Sorting

CS5001 / CS5003:
Intensive Foundations
of Computer Science

[—— |

7
’/;

PDF of this presentation

https://course.ccs.neu.edu/cs5001f19-sf/static/lectures/cs5001-10-searching-sorting.pdf

Lecture 10: Searching and Sorting
Today's topics:

e Searching

= |inear Search
= Binary Search

e Sorting

= Selection Sort
= |nsertion Sort
= Merge Sort

= Quicksort

Lecture 10: Searching

e Searching is when we find something in a data structure. We frequently
search for strings in things like web pages, PDFs, documents, etc., but
we can also search through other data structures, like lists,
dictionaries, etc.

e Depending on how our data is organized, we can search in different
ways. For unorganized data, we usually have to do a linear search,
which is the first type of search we will discuss.

e |f our dataisorganized in some way, we can do more efficient
searches. If our datais in a strict order, we can perform a binary search,
which is the second type of search we will look at.

Lecture 10: Linear Searching

e The most straightforward type of search is the linear search.

o We traverse the data structure (e.g., a string's characters, or a list)
until we find the result. How would we do a linear search on a list, like
this? Let's say we are searching for 15.

[12, 4, 9, 18, 53, 82, 15, 99, 98, 14,

Lecture 10: Linear Searching

e The most straightforward type of search is the linear search.

o We traverse the data structure (e.g., a string's characters, or a list)
until we find the result. How would we do a linear search on a list, like
this? Let's say we are searching for 15.

[12, 4, 9, 18, 53, 82, 15, 99, 98, 14,

linear search(lst, value_to find):

Perform a linear search to find a value in the list

:param lst: a list

:param value_to_find: the value we want to find

c:return: the index of the found element, or -1 if the element does not
exist in the list

>>> linear_search([12, 4, 9, 18, 53, 82, 15, 99, 98, 14, 11], 15)

()

>>> linear_search([12, 4, 9, 18, 53, 82, 15, 99, 98, 14, 11], 42)

-1

i, value enumerate(lst):
value == value_to find:
i
-1

Lecture 10: Linear Searching

e What if we want to find a substring inside a string? Python, of course,
has a string search algorithm built-in (s . £ind ()), but let's think about

how we might do this.

s = "The cat in the hat"”

find str(s, "cat")

Lecture 10: Linear Searching

e What if we want to find a substring inside a string? Python, of course,
has a string search algorithm built-in (s . £ind ()), but let's think about

how we might do this.

s = "The cat in the hat"
find_str(s, "cat")

find_str(s, str_to _find):

Returns the index of the first occurrence of str_to_find in s, and -1 if
the string is not contained in s
:param s: a string
tparam str_to_find: the string to search for
treturn: the index of the first occurrence of str_to_find in s,
-1 if not found
>>> find_str("the cat in the hat", "cat")
4
>>> find_str("aaaaab", "aab")
3

1
2
3
4
5
6
7
8

i range(len(s) - len(str_to _find) + 1):
found =
c, c_to find zip(s[i:], str_to _find):
c != c_to_find:
found =

found:

Lecture 10: Binary Searching

e Linear searchingis slow! Why?

¢ |nstead of performing a linear search, we can drastically speed up our
searches if we first order what we are searching (this is sorting, which
we will cover next!)

* We have discussed binary searches in class before -- the best example
of when to use a binary search is the classic "find my number" game
where someone thinks of a number between 1 and 100, and the player
tries to guess. If the player guesses incorrectly, the number-chooser
tells the player if their guess was too low or too high, and then the
player guesses again.

e What is the best strategy for the guess-my-number game?

Lecture 10: Binary Searching

e Linear searchingis slow! Why?

¢ |nstead of performing a linear search, we can drastically speed up our
searches if we first order what we are searching (this is sorting, which
we will cover next!)

* We have discussed binary searches in class before -- the best example
of when to use a binary search is the classic "find my number" game
where someone thinks of a number between 1 and 100, and the player
tries to guess. If the player guesses incorrectly, the number-chooser
tells the player if their guess was too low or too high, and then the
player guesses again.

e What is the best strategy for the guess-my-number game?

= First, guess the number in the middle.

= |f the guess is too low, guess the number between the middle and
the top, or the middle and the bottom.

= Keep narrowing by finding the "next middle" until you win

Lecture 10: Binary Searching

e What is the best strategy for the guess-my-number game?

= First, guess the number in the middle.

= |f the guess is too low, guess the number between the middle and
the top, or the middle and the bottom.

= Keep narrowing by finding the "next middle" until you win

e Why is this fast?

= |t divides the amount of numbers left to search by 2 each time. If
you start with 100 numbers, you have to guess at most 7 times.
E.g.:
= Number picked: 1
o Guess: 50, then 25, then 12, then 6, then 3, then 1
= Number picked: 100

o Guess: 50, then 75, then 88, then 93, then 26, then 98, then
100.

10

Lecture 10: Binary Searching

e |In Python, we would write the algorithm like this:

binary search(sorted_list, value_to_find):

Performs a binary search on sorted list for value to_find
:param sorted_list: a sorted list, smallest to largest
:param value_to_find: the value we are looking for
:return: the index of value_to_find, or -1 if not found

o~ WDNRE

low = 0
high = len(sorted_list) - 1
low <= high:

mid = (low + high) // 2
sorted_list[mid] < value_to_find:
low = mid + 1
sorted_list[mid] > value_to_find:
high = mid - 1

-1

e Be sure you understand how this algorithm works!

Lecture 10: Binary Searching

e Can we calculate the maximum number of guesses a binary search will
take? Sure!

e Each guess splits the amount of the list we have to search by a factor
of 2. Let's see what this means for 16 elements, if we guess incorrectly
until we reach one element. The number of elements left will drop by
half each time:

m 16->8->4->2->1
e This was four total divisions (16/2 = 8,8/2=4,4/2=2,2/2 = 1), so we

have: 1N\ 4
I6x (<] =1

k

1 where n is the number of elements, and k is the

nx |- =] : ..
number of times we have to divide.

2

e |n general, this becomes:

12

Lecture 10: Binary Searching

e We can simplify:

1\"” 1
nx | — —1 X —=1-—=n=2Fk
2 2k

e We cantake the Iog2 of both sides to get:

logy(n) = log,(2)

e And we get (after swapping sides):

k = log,y(n)

e Therefore, the maximum number of steps, k, for a binary search is
Iogz(n).
e Forn=100, Iog2(1OO) = 6.64, or a maximum of 7 steps.

13

Lecture 10: Sorting

e In general, sorting consists of
putting elements into a
particular order, most often the
order i1s numerical or
lexicographical (i.e.,
alphabetic).

e In order for a list to be sorted, it
must:

e be in nondecreasing order
(each element must be no
smaller than the previous
clement)

e be a permutation of the
input

14

Lecture 10: Sorting

e Sorting 1s a well-researched
subject, although new
algorithms do arise (see Timsort,
from 2002)

Fundamentally, comparison can

only be so good -- we will see %
some fast sorts and some not-so- 5%
fast sorts.

e Although we haven't studied it yet (it is coming up!), the best comparison
sorts can only sort in the average case as fast as "n log n" -- that is, take the
number of elements, n, and multiply by log n, and that is the best number of
comparisons we have to do to sort the elements.

15

Lecture 10: Sorting LA LA L AR R < I < I

e There are some phenomenal » E E E E E E B

online sorting P— — —— — — — p—
demonstrations: see the
g) .

Sorting Algorithm y = B = = = = = =
Animations’” website: e E— E6= B &= &= &= &= ==

e http://www.sorting-algorithms.com, or the animation site at:
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html or the
cool “15 sorts in 6 minutes” video on YouTube:
https://www.youtube.com/watch?v=kPRAOW1kECg

16

http://www.sorting-algorithms.com/
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.youtube.com/watch?v=kPRA0W1kECg

Lecture 10: Sorting

e There are many, many different ways to sort elements in a list. We will look
at the following

Insertion Sort
Selection Sort
Merge Sort
Quicksort

17

Lecture 10: Insertion Sort

e Insertion sort: orders a list of values by repetitively inserting a particular
value into a sorted subset of the list
e More specifically:
— consider the first item to be a sorted sublist of length 1
— insert second item into sorted sublist, shifting first item if needed
— insert third item into sorted sublist, shifting items 1-2 as needed

— repeat until all values have been inserted into their proper positions

18

Lecture 10: Insertion Sort

9 5 (10| 8 |12 |11 14 2 | 22 43

Algorithm:

e iterate through the list (starting with the second element)
e at each element, shuffle the neighbors below that element up until the
proper place 1s found for the element, and place it there.

19

Lecture 10: Insertion Sort

9., 10| 8 (12 11|14 | 2 |22 |43

Algorithm:

e iterate through the list (starting with the second element)
e at each element, shuffle the neighbors below that element up until the
proper place 1s found for the element, and place it there.

20

Lecture 10: Insertion Sort

in place already (i.e., already bigger than 9)

}

5 9 10| 8 |12 | 11 14 | 2 | 22 | 43

Algorithm:

e iterate through the list (starting with the second element)
e at each element, shuffle the neighbors below that element up until the
proper place 1s found for the element, and place it there.

21

Lecture 10: Insertion Sort

_8 | 8<10, s0 10 moves right. Then 8 <9, so move 9 right

—
5 | 9 |10 12 |11 |14 2 | 22 43

Algorithm:

e iterate through the list (starting with the second element)
e at each element, shuffle the neighbors below that element up until the
proper place 1s found for the element, and place it there.

Lecture 10: Insertion Sort

in place already (i.e., already bigger than 10)

!

5 8 9 |10 | 12 |11 14 | 2 | 22 43

Algorithm:

e iterate through the list (starting with the second element)
e at each element, shuffle the neighbors below that element up until the
proper place 1s found for the element, and place it there.

23

Lecture 10: Insertion Sort

11

L

5 8 9 |10 12 14 | 2 | 22 | 43

Algorithm:

e iterate through the list (starting with the second element)
e at each element, shuffle the neighbors below that element up until the
proper place 1s found for the element, and place it there.

Lecture 10: Insertion Sort

in place already (i.e., already bigger than 12)

}

5 8 9 |10 11 12 14 2 | 22 | 43

Algorithm:

e iterate through the list (starting with the second element)
e at each element, shuffle the neighbors below that element up until the
proper place 1s found for the element, and place it there.

25

Lecture 10: Insertion Sort

—| 2 Lots of shifting!

>
5 8 9 10 11 12 14 22 43

Algorithm:

e iterate through the list (starting with the second element)
e at each element, shuffle the neighbors below that element up until the
proper place 1s found for the element, and place it there.

Lecture 10: Insertion Sort
Okay

}

2 5 8 9 10 11 (12 | 14 | 22 | 43

Algorithm:

e iterate through the list (starting with the second element)
e at each element, shuffle the neighbors below that element up until the
proper place 1s found for the element, and place it there.

27

Lecture 10: Insertion Sort
Okay

|

2 5 8 9 |10 | 11 | 12 | 14 | 22 43

Best case? The list is already sorted -- nothing to do!

Worst case? The list is completely reversed -- we have to shift the entire list
cach time!

The best case is said to be "linear" in that we only have to go through the list
once (we have to look at n elements).

2
The worst case 1s called n , because we have to look through (and move) all the
remaining elements each time.

28

Lecture 10: Insertion Sort

Insertion sort code:

insertion_sort(lst):
i range(l,len(lst)):
temp = lst[i]
j =1
j >=1 1st[j - 1] > temp:
1st[j] = 1st[j - 1]
j -=1
1st[j] = temp

1
2
3
4
5
6
7
8

Insertion sort 1s an easy sort to code, and it is decently fast for small lists.

29

Lecture 10: Selection Sort

9 5 10| 8 12 11 14 2 | 22 43

e Selection Sort 1s another in-place sort that has a simple algorithm:

e Find the smallest item in the list, and exchange it with the left-most
unsorted element.
e Repeat the process from the first unsorted element.

e See animation at:
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

30

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Lecture 10: Selection Sort

Algorithm

e Find the smallest item in the list, and exchange it with the left-most
unsorted element.
e Repeat the process from the first unsorted element.

Selection sort is particularly slow, because it needs to go through the
entire list cach time to find the smallest item.

31

Lecture 10: Selection Sort

e Algorithm

e Find the smallest item in the list, and exchange it with the left-most
unsorted element.
e Repeat the process from the first unsorted element.

e Selection sort is particularly slow, because it needs to go through the
entire list cach time to find the smallest item.

32

Lecture 10: Selection Sort

(no swap necessary)

e Algorithm

e Find the smallest item in the list, and exchange it with the left-most
unsorted element.
e Repeat the process from the first unsorted element.

e Selection sort is particularly slow, because it needs to go through the
entire list cach time to find the smallest item.

33

Lecture 10: Selection Sort

A etc.

HHIHEEMET:

2
e Selection sort 1s always an n algorithm, because you don't get the benefit if
the list 1s already sorted -- you always have to find the next smallest

element.
e What might selection sort be good for?

= [f you want to find the "top X" elements, you can do so relatively fast
(at least as fast as any other algorithm, anyway)

34

Lecture 10: Selection Sort

e Selection sort code:

selection_sort(lst):
i range(len(lst)):
min_index = i
j range(i + 1, len(lst)):

Ist[j] < lst[min_index]:
min_index = j
1st[i], lst[min_index] = lst[min_index], list[i]

e Selection sort 1s also easy to write, but unless you want to find the top X, it
1s worth 1t to simply write insertion sort, instead.

35

Lecture 10: Merge Sort

So far, we have seen sorts that have bad worst-case performance (and in the
case of selection sort, always have bad performance).

Now, we are going to look at a sort called merge sort that has good
performance, always.

Merge sort uses the same basic idea as binary search: split the problem into
halves as much as you can, leading to logarithmic behavior. Merge sort 1s
called a divide-and-conquer algorithm because of this splitting.

Merge sort can be coded recursively, so we will look at that.

The basic idea of merge sort is to sort already sorted lists. For example:
Istl =[3, 5, 11]

Ist2 =1, 8, 10]

merge(Istl, 1st2) produces [1, 3, 5, 8, 10, 11]

36

Lecture 10: Merge Sort

e Merging two sorted lists is easy:

1. Choose the first element in each list.

2. Compare the two elements, and append the smallest one to the new list.

3. Choose the next smallest element from the list that just lost an element, and keep
the element that was not appended. Repeat from step 2 until there 1s only one list
left with elements, at which point you go to step 4.

4. Append the remaining elements onto the new list.

L1: | 3 5 11 L2: 1 8 10
Result:

Lecture 10: Merge Sort

e Merging two sorted lists is easy:

1. Choose the first element in each list.

2. Compare the two elements, and append the smallest one to the new list.

3. Choose the next smallest element from the list that just lost an element, and keep
the element that was not appended. Repeat from step 2 until there 1s only one list
left with elements, at which point you go to step 4.

4. Append the remaining elements onto the new list.

L1: 3 | 5 11 L2: 8 10
Result: | 1

Lecture 10: Merge Sort

e Merging two sorted lists is easy:

1. Choose the first element in each list.

2. Compare the two elements, and append the smallest one to the new list.

3. Choose the next smallest element from the list that just lost an element, and keep
the element that was not appended. Repeat from step 2 until there 1s only one list
left with elements, at which point you go to step 4.

4. Append the remaining elements onto the new list.

L1: 5 11 L2: 8 10

Result: | 1 3

39

Lecture 10: Merge Sort

e Merging two sorted lists is easy:

1. Choose the first element in each list.

2. Compare the two elements, and append the smallest one to the new list.

3. Choose the next smallest element from the list that just lost an element, and keep
the element that was not appended. Repeat from step 2 until there 1s only one list
left with elements, at which point you go to step 4.

4. Append the remaining elements onto the new list.

L1: 11 L2: 8 10

Result: 1 3 | 5

40

Lecture 10: Merge Sort

e Merging two sorted lists is easy:

1. Choose the first element in each list.

2. Compare the two elements, and append the smallest one to the new list.

3. Choose the next smallest element from the list that just lost an element, and keep
the element that was not appended. Repeat from step 2 until there 1s only one list
left with elements, at which point you go to step 4.

4. Append the remaining elements onto the new list.

L1: 11 L2: 10

Result:| 1 3 5 | 8

41

Lecture 10: Merge Sort

e Merging two sorted lists is easy:

1. Choose the first element in each list.

2. Compare the two elements, and append the smallest one to the new list.

3. Choose the next smallest element from the list that just lost an element, and keep
the element that was not appended. Repeat from step 2 until there 1s only one list
left with elements, at which point you go to step 4.

4. Append the remaining elements onto the new list.

L1: 11 L2:

Result: 1 3 5 8 10

42

Lecture 10: Merge Sort

e Merging two sorted lists is easy:

1. Choose the first element in each list.

2. Compare the two elements, and append the smallest one to the new list.

3. Choose the next smallest element from the list that just lost an element, and keep
the element that was not appended. Repeat from step 2 until there 1s only one list
left with elements, at which point you go to step 4.

4. Append the remaining elements onto the new list.

L1: L2:

Result:| 1 3 5 | 8 10 11

43

Lecture 10: Merge Sort
e How do you get initially sorted lists?

1. Divide the list into half.

2. Keep dividing each half until you are left with one element lists

3. Because each list is only one element, it is, by definition, sorted

4. Repeatedly merge the sublists together, two at a time, until there is only one sublist
remaining. This will be a fully-sorted list.

merge (lstl, 1lst2):
" Merge two already sorted lists and return the new, sorted list"""
new_list = []
lenl = len(1lstl)
len2 = len(1lst2)
pl (0}
p2 (0}

O~ WDN =

pl < lenl p2 < len2:
1stl[pl] <= 1lst2[p2]:
new list.append(lstl[pl])
pl +=1

new_list.append(lst2[p2])
p2 += 1

new_list = new_list + 1lstl[pl:] + 1lst2[p2:]
new_list

44

Lecture 10: Merge Sort
e How do you get initially sorted lists?

1. Divide the list into half.

2. Keep dividing each half until you are left with one element lists

3. Because each list is only one element, it is, by definition, sorted

4. Repeatedly merge the sublists together, two at a time, until there is only one sublist
remaining. This will be a fully-sorted list.

merge_sort(lst):

" Use merge sort to sort lst in place"""
n = len(lst)

n <= 1:

1st
sublistl 1st[:n // 2]
sublist2 1st[n // 2:]
sublistl merge_sort (sublistl)
sublist2 merge_sort (sublist2)
merge (sublistl, sublist2)

1
2
3
4
5
6
7
8
9
0

1

45

Lecture 10: Merge Sort

e Merge sort full example

99

86

15

58

35

86

46

Lecture 10: Merge Sort

e Merge sort full example

99

86

15

58

35

86

99

86

15

58

35

86

47

Lecture 10: Merge Sort

e Merge sort full example

99 6 86 15 58 35 /86 4
99 6 86 15 58 35 86
99| 6 86 15 58|35 86

48

Lecture 10: Merge Sort

e Merge sort full example

99 6 86 15 58 3586 4 O
99 6 86 15 58 35 86 4
99 | 6 86 15 58 35 86
99| | 6 86| 15 58 35 86

49

Lecture 10: Merge Sort

e Merge sort full example

99 6 (86 15 58 35 86| 4 O
99 6 86|15 58 35 86 4
99 6 86 15 58 35 86
99 | 6 86 |15 58 |35 86

50

Lecture 10: Merge Sort

e Merge sort full example

99| 6 86 15 58 |35 86

Merge as you go back up

Lecture 10: Merge Sort

e Merge sort full example

6 99 15 86 35 58 0

99 6 86 |15 58 |35 86

Merge as you go back up

Lecture 10: Merge Sort

e Merge sort full example

-~

6

99

15 86 99
N

15

86

99

6

86

15

Merge as you go back up

53

Lecture 10: Merge Sort

e Merge sort full example

35

58

99

58

35

Merge as you go back up

86

54

Lecture 10: Quick Sort

e Quicksort is a sorting algorithm that is often faster than most other types of sorts,
including merge sort

e However, though it is often fast, it i1s not always fast, and can degrade significantly
given the wrong conditions

e Quicksort is another divide and conquer algorithm

e The basic 1dea:

= Divide a list into two smaller sublists: the low elements and the high elements.
= Then, recursively sort the sub-lists

55

Lecture 10: Quick Sort

e The quicksort algorithm:

= Pick an element, called a pivot, from the list

= Reorder the list so that all elements with values less than the pivot come
before the pivot, while all elements with values greater than the pivot
come after it. After this partitioning, the pivot is in its final position. This is
called the partition operation.

= Recursively apply the above steps to the sub-list of elements with
smaller values and separately to the sub-list of elements with greater values.

= The base case of the recursion is for lists of 0 or 1 elements, which do not
need to be sorted.

56

Lecture 10: Quick Sort

e Let's look at how we can run quick sort. The idea is to create new lists as we divide

the original list.
e First, pick a pivot:

pivot (6)

v

6

12

57

Lecture 10: Quick Sort

e Partition into two new lists -- less than the pivot on the left, and greater than the
pivot on the right.
Even if all elements go into one list, that was just a poor partition.

pivot (6)

J

6 5|9 12 3 4

<6 > 6

Lecture 10: Quick Sort

o Keep partitioning the sub-lists

6 5 12 4
* pivot (5) *pivot (9)
5 3 9 |12
<5 > 5 <9
3 5

> 9

12

59

Lecture 10: Quick Sort

o Keep partitioning the sub-lists

6 5 9

12

4

* pivot (3)

<3

>3

12

12

12

60

Lecture 10: Quick Sort

o Keep partitioning the sub-lists

12

12

12

61

Lecture 10: Quick Sort

e The quicksort functions:

partition(lst, pivot):
""" Partition a list into low and high elements, based on the pivot index
pivot_val = lst[pivot]
small list = []
large_list = []
i, value enumerate(lst):
i == pivot:

O ~NOUTLdWN R

value < pivot_val:
small list.append(value)

large_list.append(value)
small list, large_list

quicksort (1lst):
"""Perform quicksort on a list, in place
len(1lst) <= 1:
1st

pivot = random.randint(0, len(lst)-1)
small list, large list = partition(lst, pivot)
quicksort(small list) + [lst[pivot]] + quicksort(large list)

62

