
CS5001 / CS5003:
Intensive Foundations
of Computer Science

PDF of this presentation

Lecture 8: Introduction to Classes and OOPLecture 8: Introduction to Classes and OOP

1

https://course.ccs.neu.edu/cs5001f19-sf/static/lectures/cs5001-08-intro-to-classes.pdf

Lecture 8: Midterm ReviewLecture 8: Midterm Review
Let's first talk about the midterm exam: great job overall!
The questions were meant to be challenging but not tricky.
If you still have questions about the midterm, please email me to chat.
I want to look at a couple of problems that seemed to be most difficult.

2

Lecture 8: Midterm ReviewLecture 8: Midterm Review
Question 1c

 def mystery_c(s1, s2):
 """
 TODO: Explain what the function does
 :param s1: a string
 :param s2: a string
 :return: None
 Note: For the doctest, assume file.txt contains the following three lines:
 the cat in the hat
 green eggs and ham
 fox in socks
 >>> mystery_c('file.txt', 'ae')
 >>> with open('file.txt') as f:
 ... for line in f:
 ... print(line[:-1])
 TODO: Doctest output (note, the doctest output is just going to be the
 contents of the file after you run the test)
 """
 with open(s1, "r") as f:
 lines = f.readlines()

 with open(s1, "w") as f:
 for line in lines:
 f.write(''.join([c.upper() for c in line if c not in s2]))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Lots of people asked about the doctest: a doctest is just a REPL listing. Lines
11-13 plus your answer make up the doctest in this case.
Some people missed the fact that all characters that made it through the filter
were changed to uppercase.

3

Lecture 8: Midterm ReviewLecture 8: Midterm Review
Question 2: Checksum -- great job!

def checksum(s):
 """
 Returns the sum of all the ASCII values of the characters in the string.
 :param s: A string
 :return: The sum of the ASCII values of the string
 >>> checksum("hello")
 532
 """
 sum = 0
 for c in s:
 sum += ord(c)
 return sum

1
2
3
4
5
6
7
8
9
10
11
12

Most students figured this one out, including figuring out a string that would
produce the same checksum as 'hello'.

4

Lecture 8: Midterm ReviewLecture 8: Midterm Review
Question 3: Hamming distance -- some solutions were too verbose!

def hamming_distance(s1, s2):
 """
 Returns the Hamming distance for two strings, or None if the two strings
 have different lengths.
 :param s1: the first string
 :param s2: the second string
 :return: An integer representing the Hamming distance between s1 and s2,
 or None if the strings have different lengths
 >>> hamming_distance('GGACG', 'GGTCA')
 2
 """
 if len(s1) != len(s2):
 return None
 hd = 0
 for c1, c2 in zip(s1, s2):
 if c1 != c2:
 hd += 1
 return hd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

This was a great time to use the zip function.

 There were other perfectly fine ways to do this problem.

5

Lecture 8: Midterm ReviewLecture 8: Midterm Review
Question 4: Count and Wrap: I saw some tortured solutions

def count_and_wrap(total, wrap_after):
 """
 Prints total number of lines, starting from 0 and wrapping after
 wrap_after.
 :param total: an integer
 :param wrap_at: an integer
 :return: None
 >>> count_and_wrap(9, 4)
 0
 1
 2
 3
 4
 0
 1
 2
 3
 """
 for i in range(total):
 print(i % (wrap_after + 1))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

This took a bit of thinking to get right, but the solution is straightforward.
I saw some correct solutions that I had to code up and try before I was
convinced they were correct.

6

Lecture 8: Midterm ReviewLecture 8: Midterm Review
Question 5b: multiply recursively

def multiply(a, b):
 """
 Multiplies a and b using recursion and only + and - operators
 :param a: a positive integer
 :param b: a positive integer
 :return: a * b
 """
 if b == 0:
 return 0
 return a + multiply(a, b - 1)

1
2
3
4
5
6
7
8
9
10

Remember:

Base case
Work towards a solution by making the problem a bit smaller
Recurse

Some students counted down a, and others counted down b. Either was fine.

How could we ensure we are doing the least amount of work?

7

Lecture 8: Midterm ReviewLecture 8: Midterm Review
Least amount of work (a more efficient solution):

def multiply_efficient(a, b):
 if a < b:
 return multiply(b, a)
 if b == 0:
 return 0
 return a + multiply_efficient(a, b - 1)

1
2
3
4
5
6

 import timeit
 print("Timing multiply(10, 900):")
 print(timeit.timeit(lambda: multiply(10, 900), number=10000))
 print()

 print("Timing multiply(900, 10):")
 print(timeit.timeit(lambda: multiply(900, 10), number=10000))
 print()

 print("Timing multiply_efficient(900, 10):")
 print(timeit.timeit(lambda: multiply_efficient(900, 10), number = 10000))
 print()

 print("Timing multiply_efficient(10, 900):")
 print(timeit.timeit(lambda: multiply_efficient(10, 900), number = 10000))
 print()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

We now count down the value that is smallest -- why does this save time?
We can use Python to test a function (we will learn about lambdas soon):

This tests the
functions by
running them
10,000 times
in a row

8

Lecture 8: Midterm ReviewLecture 8: Midterm Review
 import timeit
 print("Timing multiply(10, 900):")
 print(timeit.timeit(lambda: multiply(10, 900), number=10000))
 print()

 print("Timing multiply(900, 10):")
 print(timeit.timeit(lambda: multiply(900, 10), number=10000))
 print()

 print("Timing multiply_efficient(900, 10):")
 print(timeit.timeit(lambda: multiply_efficient(900, 10), number = 10000))
 print()

 print("Timing multiply_efficient(10, 900):")
 print(timeit.timeit(lambda: multiply_efficient(10, 900), number = 10000))
 print()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Timing multiply(10, 900):
2.596630092

Timing multiply(900, 10):
0.017811094999999888

Timing multiply_efficient(900, 10):
0.020884906000000036

Timing multiply_efficient(10, 900):
0.019478217000000075

1
2
3
4
5
6
7
8
9
10
11

The original function was super-slow,
because it had to count down from 900,
which takes time.
Also: we couldn't go to 1000, because we
would have a stack overflow
The efficient solution is fast no matter what

9

Lecture 8: Introduction to Classes and OOPLecture 8: Introduction to Classes and OOP
This week, we are going to start talking about classes and object oriented
programming.
Object Oriented Programming uses classes to create objects that have the
following properties:

An object holds its own code and variables
You can instantiate as many objects of a class as you'd like, and each one can
run independently.
You can have objects communicate with each other, but this is actually
somewhat rare.

You saw an example of a class in last week's lab
The Ball class is an object

You can create as many balls as you want
Each can have its own attributes

 color
direction
size
etc.

10

Lecture 8: Creating a class creates a Lecture 8: Creating a class creates a typetype
When we create a new class, we actually create a new type. We have only used
types that are built in to python so far: strings, ints, floats, dicts, lists, tuples,
etc.
Now, we are going to create our own type, which we can use in a way that is
similar to the built-in types.
Let's start with the Ball example, but let's make it a bit simpler than we saw it in
the lab. In fact, let's make it really simple (in that it doesn't do anything):

class Ball:
 """
 The Ball class defines a "ball" that can bounce around the screen
 """

1
2
3
4

>>> class Ball:
... """
... The Ball class defines a "ball" that can bounce around the screen
... """
...
>>> print(Ball)
<class '__main__.Ball'>
>>>

1
2
3
4
5
6
7
8

In the REPL:

Notice that the full name of the type is '__main__.Ball'

11

Lecture 8: Creating a class creates a Lecture 8: Creating a class creates a typetype
Once we have a class, we can create an instantiation of the class to create an
object of the type of the class we created:

>>> class Ball:
... """
... The Ball class defines a "ball" that can bounce around the screen
... """
...
>>> print(Ball)
<class '__main__.Ball'>
>>>
>>> my_ball = Ball()
>>> print(my_ball)
<__main__.Ball object at 0x109b799e8>
>>>

1
2
3
4
5
6
7
8
9

10
11
12

Now we have a Ball instance called my_ball that we can use. We can create as
many more instances as we'd like:

>>> lots_of_balls = [Ball() for x in range(1000)]
>>> len(lots_of_balls)
1000
>>> print(lots_of_balls[100])
<__main__.Ball object at 0x109dc6e10>
>>>

1
2
3
4
5
6

We now have 1000
instances of the Ball type in
a list.

12

Lecture 8: The __Lecture 8: The __init__init__ method of a class method of a class
Let's make our Ball a bit more interesting. Let's add a location for the Ball, and
let's also make a method that draws the ball on a canvas, which is a drawing
surface available to Python through the (Graphical User Interface)
We can add functions to a class, too -- they are called methods, and are run with
the dot notation we are used to. There is a special method called "__init__" that
runs when we create a new class object:

Tkinter GUI

class Ball:
 """
 The Ball class defines a "ball" that can
 bounce around the screen
 """
 def __init__(self, canvas, x, y):
 self.canvas = canvas
 self.x = x
 self.y = y
 self.draw()

 def draw(self):
 width = 30
 height = 30
 outline = 'black'
 fill = 'black'
 self.canvas.create_oval(self.x, self.y,
 self.x + width,
 self.y + height,
 outline=outline,
 fill=fill)gg

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

What is this "self" business?

"self" refers to the instance,
and each instance has its
own attributes that can be
shared among the methods.
All methods in a class have a
default "self" parameter.
In __init__, we set the
parameters to be attributes
 for use in all the methods.

13

https://en.wikipedia.org/wiki/Tkinter

Lecture 8: The __Lecture 8: The __init__init__ method of a class method of a class
class Ball:
 """
 The Ball class defines a "ball" that can
 bounce around the screen
 """
 def __init__(self, canvas, x, y):
 self.canvas = canvas
 self.x = x
 self.y = y
 self.draw()

 def draw(self):
 width = 30
 height = 30
 outline = 'blue'
 fill = 'blue'
 self.canvas.create_oval(self.x, self.y,
 self.x + width,
 self.y + height,
 outline=outline,
 fill=fill)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

The __init__ method is called
immediately when we create an
instance of the class. You can
think of it as the setup, or
initialization routine.
Notice in "draw" that we create
regular variables. Those can
only be used in the method
itself.
If we want, we can promote
those variables to become
attributes so different
instances can have different
values.

14

Lecture 8: The __Lecture 8: The __init__init__ method of a class method of a class
class Ball:
 """
 The Ball class defines a "ball" that can
 bounce around the screen
 """
 def __init__(self, canvas, x, y):
 self.canvas = canvas
 self.x = x
 self.y = y
 self.draw()

 def draw(self):
 width = 30
 height = 30
 outline = 'blue'
 fill = 'blue'
 self.canvas.create_oval(self.x, self.y,
 self.x + width,
 self.y + height,
 outline=outline,
 fill=fill)

def animate(playground):
 canvas = playground.get_canvas()
 ball = Ball(canvas, 10, 10)
 canvas.update() // redraw canvas

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Because Tkinter needs some
setup, I haven't included it here.
But, assume you have an
animate function that has a
playground parameter that
gives you a canvas (see Lab 8 if
you want details).
When we instantiate ball, the
__init__ method is called, which
sets up the attributes, and then
draws the ball on the screen.

15

Lecture 8: The __Lecture 8: The __init__init__ method of a class method of a class
class Ball:
 """
 The Ball class defines a "ball" that can
 bounce around the screen
 """
 def __init__(self, canvas, x, y):
 self.canvas = canvas
 self.x = x
 self.y = y
 self.draw()

 def draw(self):
 width = 30
 height = 30
 outline = 'blue'
 fill = 'blue'
 self.canvas.create_oval(self.x, self.y,
 self.x + width,
 self.y + height,
 outline=outline,
 fill=fill)

def animate(playground):
 canvas = playground.get_canvas()
 balls = []
 for i in range(10)
 ball.append(Ball(canvas, 30 * i, 30 * i))
 canvas.update() // redraw canvas

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

We can, of course, create as
many balls as we want.

16

Lecture 8: The __Lecture 8: The __init__init__ method of a class method of a class
class Ball:
 """
 The Ball class defines a "ball" that can
 bounce around the screen
 """

 def __init__(self, canvas, x, y, width, height, fill):
 self.canvas = canvas
 self.x = x
 self.y = y
 self.width = width
 self.height = height
 self.fill = fill
 self.draw()

 def draw(self):
 self.canvas.create_oval(self.x, self.y,
 self.x + self.width,
 self.y + self.height,
 outline=self.fill,
 fill=self.fill)

def animate(playground):
 canvas = playground.get_canvas()

 ball1 = Ball(canvas, 100, 100, 50, 30, "magenta")
 ball2 = Ball(canvas, 40, 240, 10, 100, "aquamarine")
 ball3 = Ball(canvas, 200, 200, 150, 10, "goldenrod1")
 ball4 = Ball(canvas, 300, 300, 1000, 1000, "yellow")

 canvas.update()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Now, we can modify
each of the ball's
position, size, and color
independently.
What could we do if we
wanted to give each
attribute a default
value?

Just like with regular
functions, the
__init__ method can
accept defaults (see
next slide)

17

Lecture 8: The __Lecture 8: The __init__init__ method of a class method of a class
class Ball:
 """
 The Ball class defines a "ball" that can
 bounce around the screen
 """

 def __init__(self, canvas, x, y,
 width=30, height=30, fill="blue"):
 self.canvas = canvas
 self.x = x
 self.y = y
 self.width = width
 self.height = height
 self.fill = fill
 self.draw()

 def draw(self):
 self.canvas.create_oval(self.x, self.y,
 self.x + self.width,
 self.y + self.height,
 outline=self.fill,
 fill=self.fill)

def animate(playground):
 canvas = playground.get_canvas()

 ball1 = Ball(canvas, 100, 100) # default size and color
 ball2 = Ball(canvas, 40, 240, fill="aquamarine")
 ball3 = Ball(canvas, 200, 200, 150, 10)
 ball4 = Ball(canvas, 300, 300, 1000, 1000, "yellow")

 canvas.update()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Q: Why do we have to
say fill="aquamarine" ?

A: If we leave out
default arguments,
we have to name any
other default
arguments

18

Lecture 8: The __str__ and __eq__ methods of a classLecture 8: The __str__ and __eq__ methods of a class
Besides __init__, there are a couple of other special methods that classes
know about, and that you can write:

__str__

Returns a string that you can print out that tells you about the
instance

__eq__

If you pass in two instances, __eq__ will return True if they are the
same, and False if they are different

 We can define these functions to do whatever we want, but we generally
want them to make sense for creating a string representation of the object,
and for determining if two objects are equal.

19

Lecture 8: The __str__ and __eq__ methods of a classLecture 8: The __str__ and __eq__ methods of a class
Before we write the functions, let's see what happens when we try to print a
ball, and to determine if two balls are equal:
 ball1 = Ball(canvas, 100, 100) # default size and color
 ball2 = Ball(canvas, 40, 240, fill="aquamarine")
 ball3 = Ball(canvas, 200, 200, 150, 10)
 ball4 = Ball(canvas, 300, 300, 1000, 1000, "yellow")
 ball5 = Ball(canvas, 300, 300, 1000, 1000, "yellow") // same as ball4

 canvas.update()

 print(ball1)
 print(ball2)
 print(ball3)
 print(ball4)

 print(f"ball4 == ball5 ? {ball4 == ball5}")
 print(f"ball1 == ball5 ? {ball1 == ball5}")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

ball4 == ball5 ? False
ball1 == ball5 ? False
<__main__.Ball object at 0x10484f1d0>
<__main__.Ball object at 0x10484f208>
<__main__.Ball object at 0x10484f240>
<__main__.Ball object at 0x10484f278>

1
2
3
4
5
6

This is probably not what we want. ball4
and ball5 should be equal, and when we
print out a ball, it isn't very useful.

20

Lecture 8: The __str__ and __eq__ methods of a classLecture 8: The __str__ and __eq__ methods of a class
Here is an example of the __str__ method for our Ball class:

 def __str__(self):
 """
 Creates a string that defines a Ball
 :return: a string
 """
 ret_str = ""
 ret_str += (f"x=={self.x}, y=={self.y}, "
 f"width=={self.width}, height=={self.height}, "
 f"fill=={self.fill}")
 return ret_str

1
2
3
4
5
6
7
8
9

10

We create a string with the attributes we care to print, and then we return
the string.

21

Lecture 8: The __str__ and __eq__ methods of a classLecture 8: The __str__ and __eq__ methods of a class
Here is an example of the __eq__ method for our Ball class:

 def __eq__(self, other):
 return (
 self.canvas == other.canvas and
 self.x == other.x and
 self.y == other.y and
 self.width == other.width and
 self.height == other.height and
 self.fill == other.fill
)

1
2
3
4
5
6
7
8
9

We create a string with the attributes we care to print, and then we return
the string.

22

Lecture 8: The __str__ and __eq__ methods of a classLecture 8: The __str__ and __eq__ methods of a class
There are other, related methods you can also create:

__ne__ (not equal). In Python 3, we don't usually bother creating this,
because the language just treats != as the opposite of ==.
__lt__ (less than)
__le__ (less than or equal to)
__gt__ (greater than)
__ge__ (greater than or equal to)

There isn't necessarily a good way to determine if a ball is "less than"
another ball, but for some objects it makes more sense.

23

