
CS5001 / CS5003:
Intensive Foundations
of Computer Science

PDF of this presentation

Lecture 4: Tuples, list slicing, list comprehension, stringsLecture 4: Tuples, list slicing, list comprehension, strings

1

https://course.ccs.neu.edu/cs5001f19-sf/static/lectures/cs5001-04-tuples-list-comprehension-strings.pdf

We are a bit behind on grading! Very sorry about that -- we are trying
to work on getting things graded quickly. We will catch up soon!
Let's chat about how the class is going.

Take a few minutes now and write down three things that are going
well, and three things that could be better. Don't worry about
being frank about it -- I'd like some real feedback (we want to make
the course better!)
After you write them down, talk with a neighbor about them. If you
agree on one or more items, flag them and bring them up.
Let's talk about them as a class
I will also have an anonymous feedback site set up so you can put
comments there that you don't want to discuss in class

Lecture 4: AnnouncementsLecture 4: Announcements

2

In Python, a tuple is an immutable (unchangeable) collection of elements,
much like a list. Once you create a tuple, you cannot change any of the
elements.

To create a tuple, you surround your elements with parentheses:
>>> animals = ('cat', 'dog', 'aardvark', 'hamster', 'ermine')
>>> print(animals)
('cat', 'dog', 'aardvark', 'hamster', 'ermine')
>>> type(animals)
<class 'tuple'>
>>>

Lecture 4: TuplesLecture 4: Tuples

Tuples act very much like lists -- you can iterate over them, and you can
access the elements with bracket notation:
>>> print(animals[3])
hamster
>>> for animal in animals:
... print(f"Old Macdonald had a/an {animal}!")
...
Old Macdonald had a/an cat!
Old Macdonald had a/an dog!
Old Macdonald had a/an aardvark!
Old Macdonald had a/an hamster!
Old Macdonald had a/an ermine!
>>>

3

Because a tuple is a collection of elements separated by parentheses, you
can't simply get a single-value tuple with parentheses, because this acts
like a regular value in parentheses:

>>> singleton = (5)
>>> print(singleton)
5
>>> type(singleton)
<class 'int'>
>>> singleton = (5,)
>>> print(singleton)
(5,)
>>> type(singleton)
<class 'tuple'>
>>>

1
2
3
4
5
6
7
8
9

10
11

Lecture 4: TuplesLecture 4: Tuples

Instead, you have to put a comma after a single
value if you want it to be a single-value tuple, as on
line 6. Yes, this looks odd, but that's the way you
have to do it.

Notice that when you print out a single-value
tuple, it also puts the comma after the single value,
to denote that it is a tuple.

If you don't put the parentheses, but have a comma-separated collection
of values, they become a tuple, by default:

>>> 4, 5, 6, 7
(4, 5, 6, 7)
>>>

1
2
3

4

Remember when I said that functions can have only a single return value?
Well, they can, but that value could be a tuple:

>>> def quadratic_equation(a, b, c):
... posX = (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)
... negX = (-b - math.sqrt(b * b - 4 * a * c)) / (2 * a)
... return posX, negX
...
>>> import math
>>> quadratic_equation(6, 11, -35)
(1.6666666666666667, -3.5)
>>> x1, x2 = quadratic_equation(5, -2, -9)
>>> print(f"The two solutions to the quadratic equation for 5x^2 - 2x -9 are: "
 f"{x1} and {x2}.")
The two solutions to the quadratic equation for 5x^2 - 2x -9 are:
 1.5564659966250536 and -1.1564659966250537.
>>>

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Lecture 4: TuplesLecture 4: Tuples

Notice that you can return a tuple by simply returning two (or more)
values separated by commas, as in line 4 above.

You can capture tuple return values separately into variables, as in line 9
above.

5

As shown on the last slide, you can capture the values of a tuple with a
comma separated list of variables:

>>> inner_planets = ['Mercury', 'Venus', 'Earth', 'Mars']
>>> mercury, venus, earth, mars = inner_planets
>>> print(mercury)
Mercury

1
2
3
4

Lecture 4: TuplesLecture 4: Tuples

This ability allows you to do some interesting things with tuples. What
does the following do?

>>> x = 5
>>> y = 12
>>> x, y = y, x

1
2
3

6

As shown on the last slide, you can capture the values of a tuple with a
comma separated list of variables:

>>> inner_planets = ['Mercury', 'Venus', 'Earth', 'Mars']
>>> mercury, venus, earth, mars = inner_planets
>>> print(mercury)
Mercury

1
2
3
4

Lecture 4: TuplesLecture 4: Tuples

This ability allows you to do some interesting things with tuples. What
does the following do?

>>> x = 5
>>> y = 12
>>> x, y = y, x

1
2
3

It swaps the values!
>>> x = 5
>>> y = 12
>>> x, y = y, x
>>> print(x)
12
>>> print(y)
5
>>>

1
2
3
4
5
6
7
8

7

Another use for a tuple is to gather arguments for a function that takes a
variable number of arguments:

>>> def product(*args):
... prod = 1
... for n in args:
... prod *= n
... return prod
...
>>> product(5,4,3)
60
>>> product(5,4,3,2)
120

1
2
3
4
5
6
7
8
9

10

Lecture 4: TuplesLecture 4: Tuples

The opposite of gather is scatter. If you have a sequence of values you
want to pass to a function that takes multiple arguments, you can do so.
We have seen the divmod function before, which takes two arguments. If

you have a tuple you want to use in the divmod function, you can do so

like this:
>>> t = (7, 3)
>>> divmod(t)
TypeError: divmod expected 2 arguments, got 1

>>> divmod(*t)
(2, 1)

1
2
3
4
5
6

8

One very powerful Python feature is the slice, which works for tuples,
lists, and strings. A slice is a segment of the collection.

The operator [n:m] returns the part of the string from the “n-eth”

character to the “m-eth” character, including the first but excluding the
last. This behavior is counterintuitive, but it might help to imagine the
indices pointing between the characters.

>>> lst = [1,4,5,9,12]
>>> tup = [15,8,3,27,18,50,43]
>>> str = "abcdefghijklmnopqrstuvwxyz"
>>>
>>> lst[:3]
[1, 4, 5]
>>> lst[0:3]
[1, 4, 5]
>>> lst[3:]
[9, 12]
>>> tup[6:8]
[43]
>>> tup[4:7]
[18, 50, 43]
>>> str[10:15]
'klmno'
>>> str[11:16]
'lmnop'
>>>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Lecture 4: Tuple and List SlicingLecture 4: Tuple and List Slicing

Notice that you can omit either
the first or the second number,
although you do need to keep the
colon.
You can also have an end value
that is after the end of the
collection, and Python just stops
at the end.

9

You can also use the optional third argument to a slice: the increment.

This behaves just like the increment in the range() function:

>>> fib = [0,1,1,2,3,5,8,13,21]
>>> fib[3:6]
[2, 3, 5]
>>> fib[3:6:2]
[2, 5]
>>> fib[3:7]
[2, 3, 5, 8]
>>> fib[3:7:2]
[2, 5]
>>>

1
2
3
4
5
6
7
8
9

10

Lecture 4: Tuple and List SlicingLecture 4: Tuple and List Slicing

You can also increment backwards, as you can do in the range()
function:

>>> fib[-1:-5:-1]
[21, 13, 8, 5]

1
2

This means: slice from index -1 (the 21) to one before
index -5 (the 5), and go backwards by 1.

The easiest way to reverse an entire list is as follows:
>>> fib[::-1]
[21, 13, 8, 5, 3, 2, 1, 1, 0]

1
2

10

Slicing allows you to chop a collection into sections, and then you can put
those sections back together in any way you want. For example, the last
part of the lab last week discussed "sliding" a string (we will discuss
strings in more detail soon). To slide (also called rotate), we rotate the
values around in the list. For example, [0,1,1,2,3,5,8,13,21]
rotated by 3 would be [8,13,21,0,1,1,2,3,5].

Lecture 4: Tuple and List SlicingLecture 4: Tuple and List Slicing

We can manually rotate by 3 as follows (you can add two lists together
and they concatenate)

>>> fib = [0,1,1,2,3,5,8,13,21]
>>> fib[6:] + fib[:6]
[8, 13, 21, 0, 1, 1, 2, 3, 5]

1
2
3

We can make this a bit more general, as follows:
>>> fib[len(fib)-3:] + fib[:len(fib)-3]
[8, 13, 21, 0, 1, 1, 2, 3, 5]

1
2

11

Let's write a generic function to rotate by any amount, up to the length of
the collection. Here is a first attempt:

Lecture 4: Tuple and List SlicingLecture 4: Tuple and List Slicing

>>> def rotate(lst, rot_amt):
... return lst[len(lst)-rot_amt:] + lst[:len(lst)-rot_amt]
...
>>> rotate(fib,3)
[8, 13, 21, 0, 1, 1, 2, 3, 5]
>>> rotate(fib,4)
[5, 8, 13, 21, 0, 1, 1, 2, 3]
>>>

1
2
3
4
5
6
7
8

If we want to make this work for all values of rot_amt (instead of just the
values less than the length of the collection):

>>> def rotate(lst, rot_amt):
... return lst[-rot_amt:] + lst[:-rot_amt]

1
2

We can actually make things a bit cleaner:

>>> def rotate(lst, rot_amt):
... return lst[-rot_amt % len(lst):] + lst[:-rot_amt % len(lst)]

1
2

12

One of the slightly more advanced features of Python is the list
comprehension. List comprehensions act a bit like a for loop, and are used
to produce a list in a concise way.

A list comprehension consists of brackets containing an expression
followed by a for clause, then zero or more for or if clauses.

The result is a new list resulting from evaluating the expression in the
context of the for and if clauses which follow it.

The list comprehension always returns a list as its result. Example:

Lecture 4: List ComprehensionsLecture 4: List Comprehensions

>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> new_list = [2 * x for x in my_list]
>>> print(new_list)
[30, 100, 20, 34, 10, 58, 44, 74, 76, 30]

1
2
3
4
5

In this example, the list comprehension produces a new list where each
element is twice the original element in the original list. The way this
reads is, "multiply 2 by x for every element, x, in my_list"

13

Example 2:
Lecture 4: List ComprehensionsLecture 4: List Comprehensions

>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> new_list = [x for x in my_list if x < 30]
>>> print(new_list)
[15, 10, 17, 5, 29, 22, 15]

1
2
3
4
5

In this example, the list comprehension produces a new list that takes the
original element in the original list only if the element is less than 30. The
way this reads is, "select x for every element, x, in my_list if x < 30"

Example 3:

>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> new_list = [-x for x in my_list]
>>> print(new_list)
[-15, -50, -10, -17, -5, -29, -22, -37, -38, -15]

1
2
3
4
5

In this example, the list comprehension negates all values in the original
list. The way this reads is, "return -x for every element, x, in my_list"

14

Lecture 4: List ComprehensionsLecture 4: List Comprehensions
Let's do the same conversion for Example 2 from before:

>>> def less_than_30(lst):
... new_list = []
... for x in lst:
... if x < 30:
... new_list.append(x)
... return new_list
...
>>> less_than_30(my_list)
[15, 10, 17, 5, 29, 22, 15]

1
2
3
4
5
6
7
8
9

>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> new_list = [x for x in my_list if x < 30]
>>> print(new_list)
[15, 10, 17, 5, 29, 22, 15]

1
2
3
4
5

You can see that the list comprehension is more concise than the function,
while producing the same result.

The function:

15

Lecture 4: List ComprehensionsLecture 4: List Comprehensions
>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> new_list = [-x for x in my_list]
>>> print(new_list)
[-15, -50, -10, -17, -5, -29, -22, -37, -38, -15]

1
2
3
4
5

We can re-write list comprehensions as functions, to see how they behave
in more detail:

>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> def negate(lst):
... new_list = []
... for x in lst:
... new_list.append(-x)
... return new_list
...
>>> negate(my_list)
[-15, -50, -10, -17, -5, -29, -22, -37, -38, -15]

1
2
3
4
5
6
7
8
9

10

16

Lecture 4: List Comprehensions: your turn!Lecture 4: List Comprehensions: your turn!
Open up PyCharm and create a new project called ListComprehensions.
Create a new python file called "comprehensions.py".

Create the following program, and fill in the details for each
comprehension. We have done the first one for you:

if __name__ == "__main__":
 my_list = [37, 39, 0, 43, 8, -15, 23, 0, -5, 30, -10, -34, 30, -5, 28, 9,
 18, -1, 31, -12]
 print(my_list)

 # create a list called "positives" that contains all the positive values
 # in my_list
 positives = [x for x in my_list if x > 0]
 print(positives)

 # create a list called "negatives" that contains all the positive values
 # in my_list
 negatives =
 print(negatives)

 # create a list called "triples" that triples all the values of my_list
 triples =
 print(triples)

 # create a list called "odd_negatives" that contains the negative
 # value of all the odd values of my_list
 odd_negatives =
 print(odd_negatives)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

17

Lecture 4: StringsLecture 4: Strings
Although we have already discussed strings to some extent in class, let's
go into more detail about what a string is, and some of the things you can
do with strings in Python.

A string is a sequence of characters. Each character has its own code
(as we discussed in lab), which is just a number. We can define strings in
Python with either single quotes (') or double-quotes ("), and we can
nest the quotes. Examples:

ASCII

>>> str = 'This is also a string'
>>> str2 = 'This is also a string'
>>> str3 = 'We can "nest" strings, as well'
>>> print(str3)
We can "nest" strings, as well

1
2
3
4
5

We can access individual characters in a string with bracket notation, just
like with a list. But, we cannot change strings -- they are immutable:

>>> str = "We cannot modify strings"
>>> print(str[3])
c
>>> str[3] = 'x'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

1
2
3
4
5
6
7

18

http://www.asciitable.com/

Lecture 4: StringsLecture 4: Strings
If you do want to change a letter in a string, you must build a new string.
But, because strings allow slicing (like lists), we can do something like this:

>>> state = "Calefornia"
>>> state = state[:3] + 'i' + state[4:]
>>> print(state)
California

1
2
3
4

There are other ways to do the same thing, too. For example, we could
convert the string into a list, and then modify the character. Then, we can
use a method called join to convert the list back into a string:

>>> state = "Calefornia"
>>> temp = list(state)
>>> temp[3] = 'i'
>>> state = ''.join(temp)
>>> print(state)
California
>>>

1
2
3
4
5
6
7

What is this join function? Let's look:
help(''.join)
Help on built-in function join:

join(iterable, /) method of builtins.str instance
 Concatenate any number of strings.

 The string whose method is called is inserted in
 between each given string.
 The result is returned as a new string.

 Example: '.'.join(['ab', 'pq', 'rs']) -> 'ab.pq.rs'
(END)

1
2
3
4
5
6
7
8
9

10
11
12

19

Lecture 4: StringsLecture 4: Strings

It looks like there are methods that strings can use...let's see what other
ones there are:

The join method works on any iterable (e.g., a list, tuple, or string):
>>> '.'.join("abcde")
'a.b.c.d.e'
>>> 'BETWEEN'.join(["kl","mn","op"])
'klBETWEENmnBETWEENop'
>>> ' BETWEEN '.join(("kl","mn","op"))
'kl BETWEEN mn BETWEEN op'
>>>

1
2
3
4
5
6
7

>>> dir(s)
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__',
 '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',
 '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__',
 '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__',
 '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__',
 '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize',
 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find',
 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isascii', 'isdecimal',
 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace',
 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans',
 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit',
 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title',
 'translate', 'upper', 'zfill']

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Wow! There are a lot of functions! (starting at capitalize, above)
20

Lecture 4: StringsLecture 4: Strings
'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find',
 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isascii', 'isdecimal',
 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace',
 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans',
 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit',
 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title',
 'translate', 'upper', 'zfill']

1
2
3
4
5
6
7

We will randomly choose who investigates which functions, and then we
are going to investigate them for about ten minutes. Then, we are all going
to take turns explaining them to the class.

>>> s = "this is a string"
>>> help(s.capitalize)

Help on built-in function capitalize:

capitalize() method of builtins.str instance
 Return a capitalized version of the string.

 More specifically, make the first character have upper case and the rest lower
 case.

>>> print(s.capitalize())
This is a string
>>>

1
2
3
4
5
6
7
8
9

10
11
12
13
14

21

Lecture 4: StringsLecture 4: Strings
import random

if __name__ == "__main__":
 string_functions = ['capitalize', 'casefold', 'center', 'count', 'encode',
 'endswith', 'expandtabs', 'find', 'format',
 'format_map', 'index', 'isalnum', 'isalpha', 'isascii',
 'isdecimal', 'isdigit', 'isidentifier', 'islower',
 'isnumeric', 'isprintable', 'isspace', 'istitle',
 'isupper', 'join', 'ljust', 'lower', 'lstrip',
 'maketrans', 'partition', 'replace', 'rfind', 'rindex',
 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',
 'splitlines', 'startswith', 'strip', 'swapcase',
 'title', 'translate', 'upper', 'zfill']
 participants = ["Adam", "Christina", "Isaac", "Tiezhou", "Bernard", "James",
 "Vera", "Lei", "Ely", "Tianhui", "Edmond", "Amelia",
 "Charlene", "Becky", "Jessica", "Yonnie", "Mac", "Zihao",
 "Kamilah", "Alex", "Kristina", "Chris"]
 random.shuffle(string_functions)
 random.shuffle(participants)

 investigations = []
 for i, func in enumerate(string_functions):
 investigations.append(
 f"{participants[i % len(participants)]} investigates {func}")

 investigations.sort()
 for investigation in investigations:
 print(investigation)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

22

Lecture 4: StringsLecture 4: Strings
Because strings are iterable, we can use them in a for loop, which accesses
one character at a time:

>>> str = "INCEPTION"
>>> for c in str:
... print(f"{c} ",end='')
...
I N C E P T I O N >>>

1
2
3
4
5

You can compare two strings with the standard comparison operators.
Examples:

>>> "zebra" < "Zebra"
False
>>> "Zebra" < "Giraffe"
False
>>> "Giraffe" < "Elephant"
False
>>> "elephant" < "zebra"
True
>>> "elephant" < "elephants"
True

1
2
3
4
5
6
7
8
9

10

Uppercase letters are less than lowercase
letters (why? ASCII! ord('A') == 65 and

ord('a') == 97) .

The comparison checks one character from
each string at a time.
If two strings are the same until one ends,
the shorter string is less than the longer
string.

23

