
CS5001 / CS5003:
Intensive Foundations
of Computer Science

PDF of this presentation

Lecture 1: IntroductionLecture 1: Introduction

1

https://course.ccs.neu.edu/cs5001f19-sf/static/lectures/cs5001-01-introduction.pdf

Today:

About CS5001
Course Staff
What is computer science?
What is programming?
Why Python?
Our first programs!
Setting up the tools on your computer

The PyCharm IDE
The

Introduction to Programming in Python

Variables
Assignment
Arithmetic Operations

Some simple (but interesting!) programs

REPL

Lecture 1: IntroductionLecture 1: Introduction

2

https://repl.it/@enaard/Python-3

This is a programming course where we will learn the Python programming language but
more importantly, we will learn how to solve problems with Python
We will learn Python and problem solving through a mix of lectures (me talking and
demonstrating, and you doing, as well, and labs (you doing while Mark facillitates). We
will also have weekly assignments, which will be a mix of short and longer programming
assignments.

You will learn the basics and some nuances from me and Mark, but you will learn by
doing, and this means thata you must put in the time to do the programming
assignments.

We will have two exams (a midterm and a final), where you will need to demonstrate that
you understand Python programs (by reading them, and explaining the output, or fixing
bugs, etc.), and you will need to demonstrate that you can write Python code.
When you finish this course, you will know how to program (in Python -- but, learning
other languages will not be too hard), and you will know how to solve problems using
Python.

Lecture 1: About CS5001Lecture 1: About CS5001

3

Course website:

Piazza: (question / answer website):

Assignments:

One per week, generally due Tuesday before class

Lecture:

Tuesdays, 7pm-10pm

Lab:

Thursdays, 6pm-9pm

Office hours:

There will be both online and in person office hours, depending on the person. See the
course website for a calendar.

Exams:

One in-class midterm (Tue. October 22nd)
A final exam (Tue. December

https://course.ccs.neu.edu/cs5001f19-sf/

http://piazza.com/northeastern/fall2019/cs5001sf

Lecture 1: About CS5001: LogisticsLecture 1: About CS5001: Logistics

4

https://course.ccs.neu.edu/cs5001f19-sf/
http://piazza.com/northeastern/fall2019/cs5001sf

Chris Gregg, email: cgregg@northeastern.edu

BS Electrical Engineering, Johns Hopkins
University
MS Education, Harvard University
Ph.D Computer Engineering, University of Virginia
U.S. Navy Cryptologist (7 years active duty, 16
years reserves)
High school physics teacher (7 years), Boston /
Santa Cruz
Tufts University Lecturer, computer science
department (2 years)
Stanford University Lecturere, computer science
department (current)
Facebook software engineer (mostly summer)

Lecture 1: Course StaffLecture 1: Course Staff

5

Mark Miller

Ph.D., MIT EECS 1979 specializing in AI & Edu
Contributed to Logo, 1st programming
language designed specifically for children
Worked with Papert, Minsky, Goldstein,
Winston, Sussman, Abelson, Hewitt
Also worked at BBN (think tank in Cambridge
where Logo was invented), with John Seely
Brown, Jaime Carbonell, Allan Collins

Worked at Texas Instruments and Apple

Launched TI’s AI corporate research
Lab Director, Learning and Tools at Apple

Founded Computer*Thought, VC-backed AI
startup for programming language instruction
Founded , a 501(c)(3)

Helps schools with EdTech & CS Edu

Learningtech.org

Lecture 1: Course Staff: CS5003 Lab InstructorLecture 1: Course Staff: CS5003 Lab Instructor

6

https://nam05.safelinks.protection.outlook.com/?url=http%3A%2F%2FLearningtech.org&data=02%7C01%7Cc.gregg%40northeastern.edu%7C044272c02c7b4166a4f008d7323ef3c0%7Ca8eec281aaa34daeac9b9a398b9215e7%7C0%7C0%7C637033118306156244&sdata=Mc4o%2FlhXMGl0ZhH80WvbKF4vtq%2Bbz8rPQGG9Vwv5pr8%3D&reserved=0

Yiya He

Lecture 1: Course Staff: TAsLecture 1: Course Staff: TAs

Joyce Liu

7

Computer science is about solving problems, primarily with the use of computers.
Computer science is not programming, although programming is one of the tools
computer scientists use to solve problems
Examples of problems that computer science can solve:

What is the best route to take when traveling from San Francisco to Boston? (or,
navigate humans to Mars)
Given a list of names, sort them alphabetically, as fast as possible
Determine which advertisement to insert into a user's Internet browsing experience
Solve a Sudoku puzzle
Analyze radio telescope data returned by a space telescope
Pilot a self-driving car (or rocket)
Provide secure encryption for online purchases
Break encryption from the enemy
Manage an online storefront, including the database that knows which items are
available

Computer science uses computers to solve problems, but computers themselves are not
the focus of computer science.

Lecture 1: What is Computer Science?Lecture 1: What is Computer Science?

8

Programming is telling a dumb computer, in simple terms, how to accomplish a
computational task.

Let's play a game...the peanut butter and jelly sandwich game

Programming involves describing what you want a computer to do in an exact way, with
no ambiguity.
We will spend much of this class learning how to write unambiguous programs, and it can
be tricky!
Programming can be frustrating, but it can also be extremely rewarding, when you finally
make your programs work the way you want them to work.

Lecture 1: What is Programming?Lecture 1: What is Programming?

9

Much of the time you spend programming will be fixing bugs, which are mistakes that
you've created in your programs. There are three primary types of bugs:

Syntax errors

Syntax is the structure of your program, or the rules that you must follow to write
a correct program. A syntax error happens when you don't follow those rules. Your
program won't run if there are syntax errors anywhere in the program.

Runtime errors

The runtime is when your program is running. Syntactically correct programs can
have runtime errors if they try to do something that is unexpected, like dividing by
0, or trying to print something to the keyboard.

Semantic errors

Possibly the most difficult bug to find is a semantic error, where your program will
run, but it won't do what you wanted it to do. After you get used to Python syntax,
you will spend most of your time debugging semantic errors

We will learn a lot about programming in this class, and we will practice doing a lot of
programming. You will likely find it both frustrating and exhilarating!

Lecture 1: What is Programming?Lecture 1: What is Programming?

10

Python is a high-level programming language, designed to be easy to learn, and useful for both
small and large programs.

low-level languages, also known as machine languages are more difficult to write in, and are
closer to what the underlying computer actually understands. A high-level language, like
Python, is easier to write in, and the same program works on different types of computers.
This is not true for low-level languages

Python programs need to be formatted carefully -- the PyCharm environment you will most
often use will help format your programs for you, but you need to understand the rules (which
we will learn, of course)
Here is an example of a python program (you do not need to understand it yet!):

'''This program asks for a person's name and age, and then prints their age for every year until 2030'''

CURRENT_YEAR = 2019
END_YEAR = 2030

name = input("What is your name? ")
age = int(input("What is your age? "))

print("\nHello, {}!\n".format(name))
print("Year Age")

for year in range(CURRENT_YEAR, END_YEAR + 1):
 print("{} {}".format(year, age + year - CURRENT_YEAR))

print("Goodbye!")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Let's test it! https://repl.it/languages/python3

Lecture 1: What is Python (and why are we using Python)?Lecture 1: What is Python (and why are we using Python)?

11

https://repl.it/languages/python3

This is a list of the top programming languages over time. The light green line is the Python language.
Notice that it has been becoming more popular over the years. It was actually invented in 1991, and
started gaining popularity in the early 2000s
It isn't quite at the top, but it is a great language to learn first, and it is a language that will likely
continue to become more important.
Some other languages near the top of the list:

Java: This is an important language because it is another high-level language that is geared towards
running on many different types of computers easily
C and C++: These two languages are relatively old (1972 and 1985), but most code written for
embedded systems is written in C, and so are the backbone of most operating systems (Linux,
Windows, MacOS). You will learn these languages in follow-on courses.

Lecture 1: Why Python?Lecture 1: Why Python?

Javascript (1995): This
is the language of the
web (and has nothing
to do with Java). All
websites have some
Javascript running
them.
Does anyone know the
most widely used
language in
programming?

12

This is a list of the top programming languages over time. The light green line is the Python language.
Notice that it has been becoming more popular over the years. It was actually invented in 1991, and
started gaining popularity in the early 2000s
It isn't quite at the top, but it is a great language to learn first, and it is a language that will likely
continue to become more important.
Some other languages near the top of the list:

Java: This is an important language because it is another high-level language that is geared towards
running on many different types of computers easily
C and C++: These two languages are relatively old (1972 and 1985), but most code written for
embedded systems is written in C, and so are the backbone of most operating systems (Linux,
Windows, MacOS). You will learn these languages in follow-on courses.

Lecture 1: Why Python?Lecture 1: Why Python?

Javascript (1995): This
is the language of the
web (and has nothing
to do with Java). All
websites have some
Javascript running
them.
Does anyone know the
most widely used
language in
programming?

Profanity!
13

Here is our first simple Python program (and the first program you'll write in
most languages):

This is such a simple program that you can probably guess what it is going to
do. This program uses the print function, which means that

whatever we put inside the parentheses gets printed to the screen.

So, let's move on to our second program, which is only a bit more interesting:

Okay, that was a bit more intesting, in that we had input and output.
In this case, we used a variable, which is simply a name that refers to a value. In
this case, the value was a string, which is a series of characters, in this case, the
user's name.

We can test it.

Lecture 1: Our First Programs!Lecture 1: Our First Programs!

print("Hello, World!")

Ask for a user's name, and print it
name = input("What is your name? ")
print(name)

14

https://repl.it/languages/python3

What if we want to print "Hello," and then the name? How would we do that?

But, what if we want to print "Hello, Name!", all on one line?

Now we have to get into formatting with the print function.

Formatting with the print function looks like this:

Wherever we want to embed something into our print string, we put
two curly braces, {}.

On the next slide, we will see a more advanced program, with a more
advanced format string.

Lecture 1: Our First Programs!Lecture 1: Our First Programs!

Ask for a user's name, and print it
name = input("What is your name? ")
???
print(name)

print("Hello, {}!".format(name))

15

The above program has a new variable, called age, which we use to store the

user's age.
The format statement now has two sets of curly braces, and in the format
parentheses, we put both variables, separated by a comma. The first variable
gets substituted into the first set of curly braces, and the second variable gets
substituted into the second set of curly braces.
By the way: everything needs to be syntactically correct. We must have
opening and closing parentheses where needed, and we must have the
quotation marks in the right places. If we leave anything out, we will get a
syntax error -- !
We can create a semantic error, too -- what if we switched the variable order?

let's test that

Lecture 1: A more advanced format stringLecture 1: A more advanced format string
Ask for a user's name and age, and print them
name = input("What is your name? ")
age = input("What is your age? ")
print("Hello, {}, you look great for being {} years old!".format(name, age))

Ask for a user's name and age, and print them
name = input("What is your name? ")
age = input("What is your age? ")
print("Hello, {}, you look great for being {} years old!".format(age, name))

16

https://repl.it/languages/python3

The above program has a new variable, called age, which we use to store the

user's age.
The format statement now has two sets of curly braces, and in the format
parentheses, we put both variables, separated by a comma. The first variable
gets substituted into the first set of curly braces, and the second variable gets
substituted into the second set of curly braces.
By the way: everything needs to be syntactically correct. We must have
opening and closing parentheses where needed, and we must have the
quotation marks in the right places. If we leave anything out, we will get a
syntax error -- !
We can create a semantic error, too -- what if we switched the variable order?

let's test that

Lecture 1: A more advanced format stringLecture 1: A more advanced format string
Ask for a user's name and age, and print them
name = input("What is your name? ")
age = input("What is your age? ")
print("Hello, {}, you look great for being {} years old!".format(name, age))

Ask for a user's name and age, and print them
name = input("What is your name? ")
age = input("What is your age? ")
print("Hello, {}, you look great for being {} years old!".format(age, name))

17

https://repl.it/languages/python3

Now that we have seen a little bit of programming, it is time for you to try some
programs with a partner.
Go to the course website (), click on
the Calendar link, and then click on the link for Lab 1.

We will first set up our tools (Python and then the PyCharm Integrated
Development Environment)
Next, you will work with a partner to write some simple programs
Finally, you will submit your programs to

Your first assignment, which is due next Tuesday before class (7pm, not 6pm),
will be turned in the same way.

https://course.ccs.neu.edu/cs5001f19-sf

https://handins.ccs.neu.edu/courses

Lab 1: Getting your tools set up, practicing some code, andLab 1: Getting your tools set up, practicing some code, and
submitting your codesubmitting your code

18

https://course.ccs.neu.edu/cs5001f19-sf
https://handins.ccs.neu.edu/courses/

