
1. Complete Lecture: Non-Linear Flow of Control (ASCII)

I. The Foundation: Reviewing the Call Stack

Standard program execution is linear and synchronous. When a function is
called, the system manages memory using the call stack.

• The Call Frame: Every pending function call creates a memory area
called a “call frame” or “stack frame.”

• Contents: A frame holds local variables, arguments, and most critically,
the return address (the instruction pointer where execution should re-
sume).

• Linearity: The stack grows predictably (e.g., main calls A, A calls B).
Execution always returns to the function directly below it on the stack
(LIFO).

II. Example 1: Signal Handlers (Asynchronous Events)

Signal handlers allow the Operating System (OS) to interrupt the program at
any moment to communicate an event (e.g., divide-by-zero, timer expiry, user
interrupt).

• Trigger: An asynchronous event originating from the OS kernel or
hardware.

• Mechanism:

1. The CPU is paused immediately.
2. The OS forces the creation of a new call frame on top of the existing

stack structure.
3. This frame belongs to the registered Signal Handler function.

• Non-Linearity: This is a non-linear flow because execution jumps from
any arbitrary instruction to the handler function, without a corresponding
call instruction in the program’s source code.

III. Example 2: Context Switching (getcontext and setcontext)

This mechanism allows user-level code to freeze the entire state of the CPU
and later restore it, enabling programmatic jumps between arbitrary points in
execution.

1

What is a “Context”?

A “context” (represented by ucontext_t in C) is a data structure containing
the snapshot of the CPU’s state at a single moment. It includes:

• Program Counter (PC) / Instruction Pointer: The address of the
next instruction.

• Stack Pointer (SP): The current top of the stack.
• Registers: The values stored in all General Purpose Registers.

The Flow: Emulating Exceptions

Using setcontext is key to implementing exceptions in low-level runtime envi-
ronments.

Function Action Effect on Flow
getcontext() Save: Saves the

current CPU state
(registers, PC, SP) to a
context variable. (The
“Try” block checkpoint).

Execution continues
linearly.

setcontext() Restore: Loads a
previously saved
context back into the
CPU.

Execution teleports
back to the instruction
immediately following
the original
getcontext() call.

C Code Example: Context-Based Exception

#include <stdio.h>
#include <ucontext.h>
#include <signal.h>

static ucontext_t checkpoint_context;
volatile int exception_caught = 0;

void exception_handler(int sig) {
printf("\n[Signal Handler] Caught SIGFPE.\n");
// Non-Local Return: Instantly jump back to the saved context.
exception_caught = 1; // Set flag to exit the "if" block
setcontext(&checkpoint_context);

}

int main() {
signal(SIGFPE, exception_handler);

2

// Save the "Try" context (the checkpoint)
getcontext(&checkpoint_context);

if (exception_caught == 0) {
printf("[Main] Context saved. Attempting illegal operation...\n");
int a = 10;
int b = 0;
int result = a / b; // Causes SIGFPE signal
printf("[Main] Result: %d\n", result);

}
else {

// Execution jumps here from setcontext
printf("[Main] Recovered! Flow restored to the checkpoint.\n");

}

return 0;
}

IV. Example 3: Constructor Functions (Pre-execution Initialization)

This non-linear flow occurs before the program’s explicit starting point (main).

• The Rule: Any global object or variable initialized by a constructor
function must execute before the main function starts.

• Mechanism: The Dynamic Linker handles this flow by executing the
constructors in all loaded libraries before jumping to the program’s main
entry point.

Forcing Non-Linear Flow with LD_PRELOAD

Using the environment variable LD_PRELOAD, we force the Dynamic Linker to
load a custom shared library (mylib.so) and execute its constructor before
main.

C Code Example: Constructor Injection

hack.c (The Shared Library)

// hack.c
#include <stdio.h>

// The compiler attribute that marks this function for pre-execution.

3

__attribute__((constructor))
void my_init_hook() {

printf("\n[Constructor Hook] --> Code running BEFORE main() starts!\n");
}

main.c (The Target Program)

// main.c
#include <stdio.h>
int main() {

printf("[Main] --> Now executing the main function.\n");
return 0;

}

Execution Guide

1. Compile the library and the program
gcc -shared -fPIC -o libhack.so hack.c
gcc -o normal_program main.c

2. Run with the non-linear flow enforced
LD_PRELOAD=./libhack.so ./normal_program

Output:

[Constructor Hook] --> Code running BEFORE main() starts!
[Main] --> Now executing the main function.

V. Summary Table (ASCII)

Mechanism Trigger Stack Behavior Flow Type
Signal Handler Asynchronous OS

Event
Pushes new
frame on top

Interrupt

setcontext Explicit Function
Call

Overwrites CPU
state (Non-local
jump)

Jump/Restore

Constructors Program Load /
Linker

Execution occurs
before the
defined entry
point (main).

Pre-execution

4

	1. Complete Lecture: Non-Linear Flow of Control (ASCII)
	I. The Foundation: Reviewing the Call Stack
	II. Example 1: Signal Handlers (Asynchronous Events)
	III. Example 2: Context Switching (getcontext and setcontext)
	IV. Example 3: Constructor Functions (Pre-execution Initialization)
	V. Summary Table (ASCII)

