INTERMEZZO A: C Code Example: Context Switching for
Exception Emulation

Gene Cooperman

Copyright © 2026 Gene Cooperman, gene@ccs.neu.edu
This text may be copied as long as the copyright notice remains and no text is modified.

C Code Example: Context Switching for Exception Emulation

This example demonstrates how to combine Signal Handling (Example 1) with setcontext (Example 2)
to achieve a non-local jump that simulates a high-level exception (try/catch block) by “rewinding” the
program flow.

File: context_exception.c

#include <stdio.h>
#include <stdlib.h>
#include <ucontext.h>
#include <signal.h>
#include <unistd.h>

// The "checkpoint" variable to store the CPU state (registers, PC, stack pointer)
static ucontext_t checkpoint_context;

// A flag to simulate the logic flow of a try/catch block
// 'volatile' ensures the compiler doesn't optimize away checks on this wvariable.
volatile int exception_caught = O;

// This 4s our Signal Handler (the low-level "catch" mechanism)

void exception_handler(int sig) {
printf("\n[Signal Handler] Caught signal %d (SIGFPE).\n", sig);
printf (" [Signal Handler] Resolving error and restoring context...\n");

// 1. Update the state to indicate we handled the error
exception_caught = 1;

// 2. Non-Local Return: JUMP

// We overwrite the current CPU state with the state saved earlier.

// Execution will immediately resume at the point where getcontext was called.
setcontext (&checkpoint_context);

// The program will NEVER reach code timmediately after setcontext().

int main() {
// Register the signal handler for SIGFPE (Floating Point Ezception / div by zero)
signal (SIGFPE, exception_handler);

printf (" [Main] Starting program.\n");

// SAVE THE CONTEXT (The "Try" block entry point)

// getcontext saves the current registers and stack ptr into 'checkpoint_context'’
// Ezecution proceeds immediately after this line (getcontext returns 0).
getcontext (&checkpoint_context) ;

if (exception_caught == 0) {
// ——- FIRST PASS (Linear Flow) ---
printf (" [Main] Context saved. About to attempt dangerous operation...\n");

// —-- DANGER ZONE ---

// This causes an immediate interrupt/signal (SIGFPE)
int a = 10;

int b = 0;

int result = a / b;

// This line is unreachable in the first pass
printf (" [Main] Result: %d\n", result);

}
else {
// ——- SECOND PASS (Non-Linear Flow) —---—
// Ezecution jumps directly here because setcontext restored the IP
// to the getcontext line, but the variable 'exzception_caught' is now 1.
printf (" [Main] Recovered! Execution resumed at the checkpoint.\n");
}

printf (" [Main] Program finishing normally.\n");
return O;

Lecture Talking Points

1. The Checkpoint (getcontext):

o This function saves the entire CPU state (including the instruction pointer pointing to the line after
getcontext) into checkpoint_context. This is the linear flow.

2. The Interruption (Signal):

o The division by zero (a / b) causes the OS to stop the program, push a frame for exception_handler
onto the stack, and execute the handler. This is the asynchronous, stack-building phase.

3. The Teleport (setcontext):

e Inside the handler, setcontext (&checkpoint_context) is the critical non-linear operation.

e It overwrites the CPU’s registers with the saved state.

o This causes execution to immediately jump back to the getcontext call site, but this time, the
exception_caught flag is set to handle the jump correctly. The stack is effectively unwound without
the standard ret instruction.

	C Code Example: Context Switching for Exception Emulation
	File: context_exception.c
	Lecture Talking Points

#include <stdio.h>
#include <stdlib.h>
#include <ucontext.h>
#include <signal.h>
#include <unistd.h>

// The "checkpoint" variable to store the CPU state (registers, PC, stack pointer)
static ucontext_t checkpoint_context;

// A flag to simulate the logic flow of a try/catch block
// 'volatile' ensures the compiler doesn't optimize away checks on this variable.
volatile int exception_caught = 0;

// This is our Signal Handler (the low-level "catch" mechanism)
void exception_handler(int sig) {
 printf("\n[Signal Handler] Caught signal %d (SIGFPE).\n", sig);
 printf("[Signal Handler] Resolving error and restoring context...\n");

 // 1. Update the state to indicate we handled the error
 exception_caught = 1;

 // 2. Non-Local Return: JUMP
 // We overwrite the current CPU state with the state saved earlier.
 // Execution will immediately resume at the point where getcontext was called.
 setcontext(&checkpoint_context);

 // The program will NEVER reach code immediately after setcontext().
}

int main() {
 // Register the signal handler for SIGFPE (Floating Point Exception / div by zero)
 signal(SIGFPE, exception_handler);

 printf("[Main] Starting program.\n");

 // SAVE THE CONTEXT (The "Try" block entry point)
 // getcontext saves the current registers and stack ptr into 'checkpoint_context'
 // Execution proceeds immediately after this line (getcontext returns 0).
 getcontext(&checkpoint_context);

 if (exception_caught == 0) {
 // --- FIRST PASS (Linear Flow) ---
 printf("[Main] Context saved. About to attempt dangerous operation...\n");

 // --- DANGER ZONE ---
 // This causes an immediate interrupt/signal (SIGFPE)
 int a = 10;
 int b = 0;
 int result = a / b;

 // This line is unreachable in the first pass
 printf("[Main] Result: %d\n", result);
 }
 else {
 // --- SECOND PASS (Non-Linear Flow) ---
 // Execution jumps directly here because setcontext restored the IP
 // to the getcontext line, but the variable 'exception_caught' is now 1.
 printf("[Main] Recovered! Execution resumed at the checkpoint.\n");
 }

 printf("[Main] Program finishing normally.\n");
 return 0;
}

