
Chapter 1: Linux/UNIX Process and File Management

Gene Cooperman

Copyright © 2026 Gene Cooperman, gene@ccs.neu.edu
This text may be copied as long as the copyright notice remains and no text is modified.

1 Chapter: Linux/UNIX Process and File Management

In this chapter, we will demystify how the kernel manages execution and files using simple, familiar data
structures: arrays of structs. By looking at the proc.h header from early UNIX-like systems (such as
UNIX V6), we can see exactly how the operating system tracks every task.

The subsections in this chapter are:

1. Preliminaries
2. The Process Table: The Kernel’s Master List
3. The Global Open File Table and Descriptors
4. The Power of Indirection
5. Architecture Diagram for the Operating System Kernel Tables
6. Review Questions

1.1 Preliminaries

1.1.1 Program vs. Process

Before diving into the kernel’s tables, it is important to distinguish between a program and a process:

• The Program: This is a passive entity—a file stored on your disk containing a set of instructions.
• The Process: This is an active entity—a “program in execution.” Every process is currently running

a program.
• Multiple Processes, One Program: It is entirely possible for two different processes to run the

same program simultaneously. For example, if two different users both run the grep command, the
kernel creates two separate process entries, even though they are executing the same set of instructions
from the same file.

1.1.2 Understanding System Calls and Documentation

To understand how programs interact with a computer, it is helpful to think of the operating system as a
service provider.

1

1.1.3 What is a System Call?

At its simplest level, a system call (or syscall) is just a function call to the operating system.

When your program needs to do something “privileged”—like reading a file from the disk, starting a new
process, or sending data over a network—it cannot do it directly due to security restrictions. Instead, it calls
a specific function that asks the Operating System Kernel to perform the task on its behalf.

1.1.4 Navigating the Documentation (man pages)

In Linux and Unix-like systems, you can look up the documentation for any of these functions using the man
(manual) command. These manuals are divided into numbered sections to distinguish between different types
of tools.

1.1.4.1 Section 2: System Calls

Section 2 is dedicated to system calls that go directly to the operating system kernel. * Command: man 2
<name> * Example: man 2 fork * When to use: Use this when you are looking for low-level operations
that interface directly with the hardware or core OS management.

1.1.4.2 Section 3: Library Functions

Section 3 is used for higher-level utilities and library functions. These are often easier for programmers
to use, but they frequently call Section 2 syscalls “under the hood” to do their work. * Command: man
3 <name> * Example: man 3 printf * Comparison: While printf() is a Section 3 library function, it
eventually triggers the write() system call (Section 2) to actually put text on your screen.

1.1.4.3 Quick Reference Table

If you aren’t sure which section a function belongs to, use this guide:

Section Category Purpose Example
1 User Commands Standard shell commands. man 1 ls
2 System Calls Functions that call the OS Kernel directly. man 2 open
3 Library Functions Higher-level C library functions. man 3 malloc

Pro Tip: If you don’t know which section a command is in, try typing whatis <name> (e.g.,
whatis printf) in your terminal to see all available manual sections for that keyword.

Pro Tip: If you want to also search in the one-line descriptions of all commands, try man -k
print or apropos print. You can also scan the results more carefully by doing things like
apropos print | less, or apropos print | grep printf.

Pro Tip: Some syscalls will use pointer arguments or return pointers. The ‘&myvariable’
(ampersand for “address of”) will produce a pointer to the address in memory of myvariable. If
myvariable is already of pointer type, then you can use *myvariable to dereference it (i.e., to
return the value of the address in memory that the ‘myvariable’ pointer points to. There is a
nice description of pointers for C in the book, The C Book, by Mike Banahan, Declan Brady and

2

https://publications.gbdirect.co.uk//c_book/

Mark Doran.

1.2 The Process Table: The Kernel’s Master List

The kernel maintains a global Process Table to manage every program currently in execution. In the UNIX
V6/xv6 model, this table is an array of structs, where each element is a struct proc.

1.2.1 The PID as an Index

In a standard C array, you access data using an index (e.g., array[5]). In an operating system, the index
into the process table is what we call the PID (Process ID). When you use a command like kill 1234,
you are telling the kernel to look at index 1234 in its global array and update that specific struct.

1.2.2 Inside the Process Struct

Using the struct proc from early UNIX as a reference, we see several key fields that define a process:

• pid: The unique integer (the array index) identifying the process.
• state: An enum indicating if the process is UNUSED, SLEEPING, RUNNING, or ZOMBIE.
• parent: A pointer to the struct proc of the process that created this one.
• name: A simple 16-character string used to identify the program being run.
• cwd: A pointer to an inode representing the process’s Current Working Directory.
• context: A sub-structure storing the CPU registers (such as %edi, %esi, %ebx, %ebp, and %eip) so

the kernel can save and resume the process later.
• ofile: An inline array of pointers to open files. This is the process’s local File Descriptor Table.

Understanding the ofile Array: In struct proc, the field struct file *ofile[NOFILE] is an inline
array of pointers. In this context, a “pointer to an open file” refers to an abstract data structure that points
to a specific entry in the Global Open File Table (detailed in Section 1.3). Essentially, this local array
acts as a bridge between a specific process and the system-wide list of all open files.

1.2.3 Process Lifecycle: Fork and Exec

The relationship between the Process Table and system calls is best seen during process creation and
transformation.

1.2.3.1 Creating Processes with fork()

When a program calls fork(), the kernel finds an empty slot in the Process Table array:

• Duplication: It creates a new child entry by copying the data from the parent’s struct proc.
• Inheritance: The child’s ofile array (file descriptors) is copied from the parent, so both now point

to the same entries in the Global Open File Table.
• Differentiation: The kernel assigns the child its own unique pid (index) and sets its parent pointer

to the original process.

3

1.2.3.2 Transforming Processes with execvp()

The execvp() call runs a new program without creating a new table entry:

• Modification: It modifies the existing process entry in the table.
• The “Name” Field: The kernel updates the name field to the new program’s name.
• Persistence: Almost all other fields, including the pid, parent, and the ofile array, remain the same.

1.3 The Global Open File Table and Descriptors

While each process has its own ofile list, the kernel tracks every open file system-wide in the Global Open
File Table.

• The Global Table: This is a global array of structs where each entry tracks information about an
open resource.

• The File Descriptor (FD): An FD is simply an index into the local ofile array inside a process’s
struct proc.

1.3.1 The Purpose of a Global Open File Table Entry

The entry in this table serves as a universal interface for I/O. The underlying data structure of an entry may
point to:

• A physical file on a disk.
• A hardware device, such as a terminal or a network socket.
• A pipe used for communication between processes.

Furthermore, the entry stores access modes (defining if it can be used for reading, writing, or both) and
the file offset.

1.3.2 Managing Files with System Calls

How the kernel manipulates these tables depends on the system call used:

• open: The kernel creates a new entry in the Global Open File Table pointing to the file or device.
It returns an integer (fd) and modifies ofile[fd] in the process table to point to that new global entry.

• close(fd): The kernel resets the ofile[fd] entry in the current process’s table to NULL.
• dup2(oldfd, newfd): The pointer in ofile[oldfd] is copied into ofile[newfd].
• dup(oldfd): The kernel finds the first available index and copies the pointer from ofile[oldfd] into

it.

Crucially, the open syscall is the only one that can create a new entry in the Global Open File Table.
Other syscalls like close, dup, or dup2 simply modify the file descriptors (the ofile array) within the Process
Table.

1.3.3 Reference Counting

An entry in the Global Open File Table is a struct containing a field called ref, used for a reference count.

1. When a syscall causes another file descriptor to point to an entry (such as dup or dup2), the ref field
is incremented.

4

2. When close(fd) is called, the corresponding entry’s ref field is decremented.
3. When fork is called, the child process copies all file descriptors from the parent; therefore, the ref

count for every corresponding entry in the Global Open File Table is incremented.

When the reference count for an entry in the Global Open File Table is reduced to 0, the operating system
knows that no processes are currently using that resource. At this point, the kernel will remove that entry
from the Global Open File Table to free up the space in the array for future open calls.

1.4 The Power of Indirection

This entire architecture is a perfect illustration of David Wheeler’s famous quote:

“All problems in computer science can be solved by another level of indirection.”

Technically, the kernel could have been designed so that a file descriptor in the process table pointed directly
to a specific block on the disk. However, by adding the Global Open File Table as a level of indirection
between the process and the hardware, the system becomes incredibly flexible. This indirection allows the
kernel to easily manage many important programs, such as the shell (the program that reads your commands
and prints output in a terminal window). Because the shell can manipulate pointers in the Process Table to
point to different entries in the Global Open File Table, it can perform complex tasks like redirecting output
from the screen to a file without the running program ever knowing the difference.

1.5 Architecture Diagram for the Operating System Kernel Tables

(This diagram is a work-in-progress. It was generated by an AI, with some errors.)

PROCESS TABLE (Array of struct proc) GLOBAL OPEN FILE TABLE (Array of struct file)
+---------------------------------------+ +---------------------------------------+
| PID | Name | ... | ofile (FD Table) | | Ref | Offset | Mode | Device/Inode |
+-----+-------+-----+-------------------+ +-----+--------+------+-----------------+
| 0 | init | ... | [0][1][2][][] | | 1 | 1024 | R | [/bin/init] |
+-----+-------+-----+--|--|--|----------+ +-----+--------+------+-----------------+
| 1 | shell | ... | [0][1][2][3][] | +--->| 2 | 45 | RW | [/home/user/a.txt] --+
+-----+-------+-----+--|--|--|--|-------+ | +-----+--------+------+-----------------+ |

| | | +---------+ | 1 | 0 | W | [/dev/tty0] | |
(Indices/FDs)-----+ | | +-----+--------+------+-----------------+ |

| +--+
| |
+---------------------> [DISK / HARDWARE] <-------------------+

1.6 Review Questions

1. Table Structure: If the Process Table is an array of structs, what specifically does the pid represent
in the context of that array?

5

2. State Management: Why must the kernel store a context (CPU registers) inside the struct proc?
What happens to these values when a process is “sleeping”?

3. Process Creation: After a fork(), the parent and child have different PIDs but identical ofile
arrays. If the parent calls read() and moves the file offset forward, will the child see this change? Why
or why not?

4. Program Execution: When you call execvp(), the program changes but the file descriptors usually
stay the same. Which field in the struct proc is explicitly updated to reflect the new program?

5. System-Wide Tracking: Why is the open system call unique compared to dup or dup2 regarding
the Global Open File Table?

6. Resource Cleanup: Explain the lifecycle of a ref count in the Global Open File Table. If a process
has a file open and then calls fork(), what is the minimum value the ref count can be for that file
entry?

7. Identity: If two different processes are running the same .exe file, how many entries exist in the
Process Table? How many different name fields in those entries will be the same?

8. Indirection: Based on Wheeler’s quote, how does having a Global Open File Table make it easier to
implement output redirection (e.g., ls > files.txt)?

6

	Chapter: Linux/UNIX Process and File Management
	Preliminaries
	Program vs. Process
	Understanding System Calls and Documentation
	What is a System Call?
	Navigating the Documentation (man pages)

	The Process Table: The Kernel's Master List
	The PID as an Index
	Inside the Process Struct
	Process Lifecycle: Fork and Exec

	The Global Open File Table and Descriptors
	The Purpose of a Global Open File Table Entry
	Managing Files with System Calls
	Reference Counting

	The Power of Indirection
	Architecture Diagram for the Operating System Kernel Tables
	Review Questions

