
CS 4800: Algorithms and Data
Due Thursday, October 18, 2012 at 9:00am

Homework 3

Submission Instructions: This homework will be submitted online via git. For an introduction
to git by Northeastern’s own Eli Barzilay, see git.racket-lang.org/intro.html. This includes an
introduction to git, links to other resources, and recommendations for “best practices”.

In order to submit, you will need to make a user account on github.com, join the course or-
ganization at github.com/neu-cs4800f12, and contact me via cce@ccs.neu.edu with your team
members. I will then create a team and repository for you for the homework. Work within the team
under the following guidelines:

1. You may use the master branch to collaborate on work within your team, and create any other
branches you need.

2. You must push your solution to the submission branch before the deadline. You may update
this branch as many times as you like up to the deadline.

3. Each program must be an executable file with the appropriate name in the repository’s top
directory. These programs must run successfully on login.ccs.neu.edu.

4. All prose solutions (proofs, math, and other explanations) must be presented in a PDF file
named solution.pdf.

5. The solution.pdf file must also describe where to find the source code for each submitted
program, even if the executable itself constitutes the entire source code.

6. Any other files or directories in the submission branch will be ignored.

Note about efficiency and choice of programming language: You must document the data
structures and built-in functions you use from the language in which you write your solution. You
must document the running time of every operation you use that is more than O(1). The documented
running times must be both correct and fast enough to ensure that your solution is efficient.

Exercise 1 (8 points)

Problem: For this problem we introduce the revised master method: Theorem 4.1 from
CLRS, page 94, modified by Exercises 4.6-2 and 4.6-3 on page 106 (which you do not need
to prove).

Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let T(n) be defined
on the nonnegative integers by the recurrence

T(n)= aT(n/b)+ f (n),

where we interpret n/b to mean either bn/bc or dn/be. Then T(n) has the following
asymptotic bounds:

1

http://git.racket-lang.org/intro.html
http://github.com
https://github.com/neu-cs4800f12
mailto:cce@ccs.neu.edu

1. If f (n)=O(nlogb a−ε) for some constant ε> 0, then T(n)=Θ(nlogb a).
2. If f (n) = Θ(nlogb a lgk n), where k ≥ 0, then T(n) = Θ(nlogb a lgk+1 n). Note:

When k = 0, this is the same as the unrevised clause.
3. If af (n/b) ≤ c f (n) for some constant c < 1 and all sufficiently large n, then

T(n)=Θ(f (n)). Note: The unrevised clause requires that f (n)=Ω(nlogb a+ε)
for some constant ε> 0; this is always true when the above condition holds.

Solve the following recurrences using the revised master method, or demonstrate that
they cannot be solved using the revised master method.

1. T(n)= 2T(n/2)+n lgn

2. T(n)= 3T(2n/3)+1

3. T(n)= T(n/4)+1

4. T(n)= 5/4T(3n/4)+n

5. T(n)= 2T(n/4)+ 3
√

n lgn

6. T(n)= T(n/10)+
√

n
lg2 n

7. T(n)= 9/4T(2n/3)+n2

8. T(n)= 2T(n/2
p

2)+ 3
√

n2

lgn

Exercise 2 (15 points)

Problem: Solve the following problems using the graph algorithms presented in class:
breadth-first search, depth-first search, topological sort, strongly-connected components,
and single-source shorted paths.

1. Create a program that plays Six Degrees of Kevin Bacon. Given a set of movie cred-
its, report each actor’s degree of separation from Kevin Bacon. Mr. Bacon himself
has a degree of 0. Anyone working with him on a movie gets a degree of 1. Anyone
working with them gets a degree of 2 (if they do not already have a lower degree),
and so on.
Name your program six-degrees. Its input will be a list of movie credits, where
each movie credit is a list of names as strings. Its output must be an object with
a key for every name credited on any movie, mapped to that person’s degree of
separation from Kevin Bacon or null if no connection to Kevin Bacon can be found.
Name the algorithm on which you base your solution and state its running time in
terms of the movie credits in its input.
Here is a sample input.

[["Kevin Bacon","Kevin Costner"],
["Kevin Costner","Kevin Spacey"],
["Kevin Spacey,"Kevin Pollak"],
["Kevin Smith","Kevin Sorbo"]]

The following text is one possible correct output for the preceding input.

2

{"Kevin Bacon":0,
"Kevin Costner":1,
"Kevin Spacey":2,
"Kevin Pollak":3,
"Kevin Smith":null,
"Kevin Sorbo":null}

2. Let’s say we wanted to play the game Six Degrees of Profitability, in which each
person’s connection to Kevin Bacon is measured by the total amount of money made
by the movies involved. Assuming we want to find the connection involving the least
amount of money, what algorithm would we need to use to find each connection, of
those presented in class? State its running time in terms of the movie budgets and
credits in its input.

Extra Credit: (1 point) Either prove that the chosen algorithm solves Six Degrees
of Profitability for all possible movies, or describe the movies for which it does not
work and identify an algorithm from the text that covers all cases.

3. Create a program to form ideal homework groups in a computer science class. In
an ideal homework group, each member can trust the competence and academic
honesty of each other member. A student A can trust any student B that they know,
as well as any other student C that student B trusts. Note that just because student
A knows student B does not necessarily mean that student B knows student A.
Name your program ideal-groups. Given an input that maps each student to the
list of students that they know, your program must output a list of groups, in which
each group is a list of names and each name is represented exactly once. Your
program must output as few groups as possible.
Name the algorithm on which you base your solution and state the running time
of your solution in terms of the number of people and “A knows B” acquaintance
relationships in the input.
Here is a sample input.

{"Alice":["Carol","Doris"],
"Betty":["Alice"],
"Carol":["Betty","Ellie"],
"Doris":["Ellie"],
"Ellie":["Doris"],
"Faith":[]}

Here is one possible correct output for the sample input.

[["Alice","Betty","Carol"],
["Doris","Ellie"],
["Faith"]]

4. Which of the algorithms that we have seen could be used to rank each student by
“trustworthiness”? Would this be asymptotically faster or slower than constructing
ideal homework groups?

3

Exercise 3 (25 points)

Problem: A 2-3-4 tree is a left-to-right ordered search tree in which each node has 2, 3,
or 4 children and 1, 2, or 3 keys. Leaves have no keys or children; every leaf in a 2-3-4
tree must occur at the same depth. 2-3-4 trees are a special case of B-trees, which in brief
description are search trees with a varying number of children per node.

Implement immutable 2-3-4 trees in which the contents of a tree never change. Per-
form updates by constructing a new tree with different contents, sharing as much of the
structure of the old tree as possible. Immutable data structures have the benefit that
they are persistent: the contents of previous versions of the data structure are always
available, regardless of future updates. Furthermore, because of sharing, multiple copies
of an immutable data structure can often be maintained using very little allocated space.

Name your program 2-3-4. Its input must be a list of 2-3-4 tree operations; its output
must be the list of results of those operations.

1. The first operation to implement is insertion. Your program must start with an
empty 2-3-4 tree; insertion adds individual elements to the tree. Insertion opera-
tions in the input will be given with the form {“insert”:int}, specifying the new
integer element. The result of each insertion operation is a 2-3-4 tree matching the
following grammar, with keys and children in left-to-right order.

tree = null
| {“two”:[tree, int, tree]}
| {“three”:[tree, int, tree, int, tree]}
| {“four”:[tree, int, tree, int, tree, int, tree]}

The insertion operation starts by finding the appropriate point to insert the new
key into the lowest layer of nodes. We then add the new key to the node with empty
leaves on either side of it.
We add a key with surrounding subtrees to a node by the following steps. If the node
has 1 or 2 keys, simply add the new key. If the node has 3 keys, split the 4 total keys
into two nodes with 1 and 2 keys and 1 remaining key between them. Recursively
add the remaining key to the parent node with the two new child nodes on either
side of it. If the root node of the tree needs to spit, create a new root node with the
extra key, using thw two halves of the old root node as the children of the new root.
Prove that when given a valid 2-3-4 tree as input, insertion produces a valid 2-3-4
tree (ordered, appropriate number of keys/children per node, and all leaves at the
same depth). Prove that insertion allocates at most O(n) nodes for an input tree
with n keys.

2. The second operation is deletion. Deletion operations are provided with the form
{“delete”:int}, specifying the element to remove. The result is a 2-3-4 tree with
the same output form as in insertion.
Deletion from a 2-3-4 tree proceeds by traversing down the tree to find the key
to remove. At every step below the root, we ensure we are recurring into a node
with 2 or 3 keys. If the target child node has only 1 key, we first “borrow” keys
and children from a sibling. If either sibling of the target node has more than the
minimum number of keys and children, we rotate an extra key and child into the
target. Otherwise, if both (or the only) sibling of the child has the minimum number

4

of keys, we join the two children together around the key between them. (When the
current node is the root, and the root has only 1 key, this can result in deleting the
root node.) When we reach the key in question, if we are at a bottom-layer node, we
simply remove the key. Otherwise, we swap the key to remove with its immediate
successor or predecessor at a leaf and recursively delete that leaf key.

Extra Credit: (2 points) Ensure that your deletion operation works in a single
pass down the tree. Specifically, when swapping an element with its successor or
predecessor and recursively deleting the swapped leaf key, perform the swap and
delete in a single pass down (and back up) the tree rather than performing separate
swap and delete operations.

3. The third operation is testing for membership of a given key. Membership operations
are provided with the form {“member”:int}, specifying the element to test. The
result of the operation must be true or false as appropriate.
Prove that membership requires O(n) comparisons for a tree with n elements. Prove
that after an insert or delete operation, the result of membership tests does not
change except for the element inserted or deleted.

4. The fourth operation must build a 2-3-4 tree containing a given sequence of ele-
ments. The input specifying this operation takes the form {“build”:[int, . . .]}, and
its output is the newly created tree. This operation ignores and replaces the previ-
ous tree.

Extra Credit: (4 points) Implement your build operation to run in O(n) time when
its input is already sorted.

5. The fifth operation is recovery of a prior tree. Given input of the form {“recover”:int},
the result is the tree that existed prior to the operation n steps ago for the given
number n.

Here is an example input.

[{"build":[10,20]},
{"insert":30},
{"delete":20},
{"recover":1},
{"member":20}]

And here is one possible correct output for the example input.

[{"two":[null,10,null,20,null]},
{"three":[null,10,null,20,null,30,null]},
{"two":[null,10,null,30,null]},
{"three":[null,10,null,20,null,30,null]},
true]

Extra Credit: (10 points) Implement a second version of the program, 2-3-4-mutable,
that implements mutable 2-3-4 trees with insert and delete operations. The insert oper-
ation must only allocate new nodes when inserting the first key into an empty tree and
when splitting a node upon adding a 4th key. The delete operation must execute a single

5

pass down the tree. Specifically, when swapping an internal key with a leaf and then
deleting a leaf, the swap and delete must be performed in a single pass downward. Once
at the leaf, only O(1) time may be spent accessing ancestor nodes to complete the swap.

6

