
5 Inverse Kinematics 

In the last chapter we saw how to derive the kinematics of a serial robot. The position and 
orientation of any point rigidly attached to the gripper can be found if the joint angles are 
known. In this section we want to do the reverse. Given the position and orientation of the 
gripper required, to what angles must the joints be set? This is one of the central problems 
in robotics, since whenever we specify the motion of the robot's gripper we need to know 
the corresponding joint motions. Essentially we must solve the following matrix equation:- 

where K is the constant matrix which specifies the position and orientation of the gripper. 
This constitutes a set of highly non-linear equations for the joint angles e l ,  82 , .  . . , 96. 

In general, very little is known about solving such equations; even the number of solutions 
is problematic. For n non-linear equations in n unknowns there may be no solutions at 
all, one or more discrete solutions or even continuous families of solutions. This contrasts 
sharply with the case of linear equations, where only a single solution or a linear space of 
solutions is possible. In the linear case we can look to the determinant of the system to 
distinguish these cases; for non-linear equations no such test exists. 

Things are not quite so bad if there are no helical joints, since the joint angles only appear 
in the equations as cos 9i or sin B i .  Now if we use these as our variables the equations are 
algebraic. That is, they are only polynomials in the variables cos 9i and sin Oi. So if we 
solve for these variables it is a simple matter to find the joint angles; Bi. However, we have 
actually doubled the number of variables in the equations but we must also consider the 
relations between the new variables. This means we must include the equations:- 

in our non-linear system. 
There is another technique used to make the equations algebraic: to write the equations 

in terms of 'tan half angles'; that is, to make the substitutions:- 

1 - tT 2ti 
cos 8; = - sin Bi = - 

1 + t ;  1 + t ;  
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where ti = tan(ei/2). The only disadvantage of this approach is that it fails when Oi = T. 
Algebraic equations have nice properties. For example a polynomial equation in one 

variable has as many solutions (roots) as the degree of the polynomial. This is familiar 
from elementary algebra, and also we recall that the roots must be counted properly; 
repeated roots and complex roots must be accounted for. There is a generalization of 
this to systems of polynomial equations in several variables. If we have n equations of 
degree dl ,  d2, . . . , d, in n unknowns then, in general, we get dl x d2 x . . . x d, solutions. 
However, there are exceptional circumstances when there is an infinite family of solutions. 

So, for example, consider two quadratics in two variables. Quadratics in two variables 
are just conic curves; ellipses, parabolas and hyperbolas. Their degree is two, so two of 
them should intersect in 2 x 2 = 4 points. Some of these intersections may be complex; 
they will occur in complex conjugate pairs if the coefficients of the equations are real. 
Hence there may be no real intersections at all. Singular solutions are also possible. They 
correspond to repeated roots in the one variable case, and occur when the curves intersect 
and have the same tangent at the intersection. See fig. 5.1. 

5.1 The Planar Manipulator 

To get back to the problem of inverse kinematics let us look at a simple example. The 
planar manipulator exhibits all the possibilities that can arise. Consider the position after 
just two links, see fig. 5.2. The kinematic equations for the end point are:- 

x = ll cos 01 + 12 cos(01 + 82) 

y = 1, sin Ol + 12 sin(& + 82) 

Given x and y we must find cos 01, sin 01, cos O2 and sin 02. The above equations are in 
fact quadratic, since we can use the trigonometric formulas to write:- 

cos(O1 +82) = cos O1 cos O2 - sin O1 sin $2 sin(Ol+ 02) = sin 01 cos O2 +COS Ol sin O2 

Then together with the identities satisfied by the sine and cosine functions, these give us 
four quadratic equations in four unknowns:- 

x = 11 cos dl + 12 cos Ol cos O2 - l2 sin Ol sin O2 (A ) 
y = 11 sin 01 + 12 sin O1 cos O2 + l2 cos O1 sin O2 ( B )  

2 1 = cos O1 + sin2 O1 (0 
1 = cos2 O2 + sin2 O2 (D) 

So we might expect 2 x 2 x 2 x 2 = 16 solutions: in fact only 2 arise. The discrepancy 
is accounted for by four singular complex solutions at 'infinity'. 

To solve this system we square equation (A) and add it to the square of (B):-  

(z2 + y2) = l:(cos2 O1 + sin2 01) + 1;(cos2 O1 + sin" 01) cos2 O2 

+ 1; (cos2 O1 + sin2 dl ) sin2 O2 + 211 12 (cos2 dl + sin2 Ol ) cos O2 
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Figure 5.1 Some Possible Intersections of Two Conics 

Figure 5.2 The Planar Manipulator; Postures and Work Space 
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Then using (C) and (D) to simplify we obtain:- 

In fact this is just the cosine rule from trigonometry. So the solution for cos 82 is just:- 

We abbreviate this to A since it will occur frequently. Hence, by (D) sin82 is:- 

that is, there are two possible solutions. We will look at this in more detail in a moment. 
First let us find cos 01 and sin 63. The simplest way to do this is to form the two equations:- 

(A) cos 81 + (B)  sin el x cos el + y sin el = l1 + l2 cos e2 
= ll + 12X 

-(A) sin + (B) cos el r -x sin el + y cos 81 = 12 sin 02 
= &12(1 - X2)+ 

Again, the relation (C) has been used to simplify the above. Now we have two simultaneous 
linear equations which are easily solved. So we have found explicit equations for the 
sines and cosines of the angles in terms of the design parameters and the position of the 
manipulator's end-effector. In fact there are two solutions, corresponding to the upper and 
lower sign choices. These equations are the inverse kinematic relations for the manipulator:- 

5.2 Postures 

For the planar manipulator of the previous section there are generally two solutions for the 
inverse kinematics. They arise from the sign of the term sin 82: physically this corresponds 
to the fact that there are two ways of reaching any point in the plane, see fig. 5.2. These two 
configurations of the manipulator are called postures; one is referred to as 'elbow up', the 
other as 'elbow down'. However, not every point (x, y) has two postures. There is only 
one solution for sin e2 if sin 132 = 0; that is when X = f 1, which corresponds to 02 = 0 or 
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T. The points in the plane determined by these values are given by:- 

cos 6'2 = 1; gives (x2 + y2) = (11 + 12)2 
cos02 = -1; gives (x2 + y2)  = (11 - 12) 2 

These are the equations of two concentric circles, on one the arm is at full stretch, while to 
reach the other the arm must double back on itself, see fig. 5.2. 

Beyond the outer circle and inside the smaller one, the solutions for sine2 become 
complex and it is clear that we cannot reach such points with a real arm. The annular 
region is the projection of the robot's work space onto the plane, see section 3.3. It is 
the space that the robot can reach and work in. The work space of any robot is always 
bounded by curves or surfaces on which the number of postures is different from the body 
of the work space. Such points are called singular points; however, singular points may 
also occur in the interior of the work space. A better characterization of singular points 
is points where the robot loses one or more degrees-of-freedom. In the case of the planar 
manipulator it is easy to see that on the boundary of the work space the arm has no freedom 
to move in a radial direction. 

So far we have said nothing about the design parameters 11 and 12. In fact the relative 
sizes of the links do not affect the number of postures, except in the very special case that 
l1 = 12. In this case there are still generally two postures for every point in the work space, 
but the inner boundary has now shrunk to a point; the origin. If we try to place the tip of the 
manipulator at x = 0, y = 0, then certainly we must have cos 82 = - 1 and sin 82 = 0, but 
our method for finding 81 breaks down. It is quite clear though that there is no restriction 
on 81, so instead of one or two postures, this point in the work space has a whole circle 
of postures. This kind of singularity, with a continuous family of postures, is particularly 
difficult to deal with when it comes to controlling the robot. Unfortunately, all six axis 
robots that have been designed or built have such singularities in their work space. It is not 
known if this can be avoided. 

5.3 The 3-R Wrist 

As we saw in section 4.2 the kinematic equations of the 3-R wrist can be written in terms 
of the Euler angles as:- 

' $ = d l ,  d = d 2 ,  4 = d 3  

so there does not seem to be any problem about the inverse kinematics. However, we must 
remember that the Euler angles have a limited range whilst the joint angles can range over 
a full circle, 0 to 27r; at least in theory. The kinematic matrix, as we saw in section 4.2, is 
given by:- 

K = 
01 cos O2 cos O3 - sin Ol sin O3 - cos O1 cos 82 sin O3 - sin dl cos d3 cos dl sin 
01 cos O2 cos O3 + cos dl sin O3 - sin dl cos 02 sin O3 + cos dl cos O3 sin 01 sin 02 

- sin O2 cos O3 sin O2 sin O3 cos On 
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Figure 5.3 Flip and No Flip Postures of the 3-R Wrist 

Notice that we get the same matrix if we make the substitutions:- 

This is because we can use the usual trigonometric relations to give:- 

So we have two postures, that is two possible solutions for the joint angles given a 3 x 3 
rotation matrix. In terms of the Euler angles these solutions can be written as:- 

These two postures have been given the names 'flip' and 'no flip'. Fig. 5.3 shows how to 
change from one posture to the other. 

The above results have not been derived in a very systematic way: it is difficult to see 
whether or not there are other solutions. We can repeat the analysis more efficiently by 
looking at the effect of the kinematic matrix on two points. Suppose a = ( O , O ,  1IT and 
b = ( 1 , O ,  o ) ~  are the home positions of two points rigidly attached to the gripper. Then 
rotating about the three wrist joints will take the points to:- 

a' = K (&, 02, &)a and b' = K (&, 62, e3)b 
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The co-ordinates of these new points are easily calculated:- 

cos O1 sin O2 

= ( ) = (sin:;;;; e2 ) 
cos O1 cos O2 cos 133 - sin 6'1 sin 03 

b1 = ( )  = ( sin el cos e2 cos e3 + cos el sin 03 

- sin O2 cos O3 

The points have been chosen to simplify the calculations as far as possible. For example, 
the new position vectors of the points are just the first and third rows of the matrix K .  

From the first point we see that cose2 = z, and hence we can find the sine of the 
angle sine:! = f d m .  The sine and cosine of the first joint angle can now be 
found from the x and y co-ordinates of this point; cos el = f za /  and sin 8, = 

fya/J=. To find the third joint angle we must look at the second point, then; 
cos 63 = T Z ~ /  d m .  The sine of 193 can be found from z b  and yb:- 

sin O3 = yb cos O1 - xb sin el 

To summarize, the inverse kinematics of the 3-R wrist, in terms of the positions of the 
two points, is given by:- 

sin 03 

The two postures are distinguished by the sign of sin 82. Notice that this analysis also tells 
us where the number of postures is different from two, since, if sine2 = 0, we cannot 
divide by this factor and the above analysis fails. In fact these two points with 02 = 0 or 
T, are singular points each with an infinite number of postures. At these points the first 
and last axes coincide, thus the final link can be held fixed while the second joint rotates 
perpendicular to the first and last joints; see also section 2.5. 

Exercises 

5.1 A planar manipulator has link lengths 11 = 2 and 12 = 1 in some units. Use the 
inverse kinematic equations to find the joint angles which will place the end point 
at the following positions:- 

) = ( + )  y= l+q  
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(ii) x = 2, y = 1 + fi 
(iii) x = , y = 1 + \/2 

5.2 The two points (O,0, 1) and ( 1 , 0 , 0 )  are rigidly attached to the gripper of a 3-R 
wrist. Use the inverse kinematic equations derived in the text to find the joint angles 
when these points have the co-ordinates:- 

i ( o )  and (:,-$,-9) 
(ii) ( a ,  q, i )  and (q, :,-$I 
i i  ( )  and (;,-$, -$) 

5.3 Work out the inverse kinematic relations for the three joint planar manipulator 
studied in section 4.1. If the links' lengths are lI  = 2, 12 = 1 and l3 = 1 in some 
system of units, find the possible joint angles which result in the end point having 
co-ordinates x = 0.5, y = 3.0 and output angle CP = 2x13 radians. 

5.4 Work out the inverse kinematics of the 3-R wrist in terms of the positions of two 
points rigidly attached to the gripper and where the home co-ordinates are ( 0 , 0 , 1 )  
and ( 0 , 1 , 0 ) .  

5.4 The First Three Joints of the Puma 

Now we are in a position to calculate the inverse kinematics for the Puma arm. This is 
possible because the first three joints of the Puma are almost a planar manipulator while the 
last three are a 3-R wrist. Hence, the problem can be split into two easier pieces. We will 
express the inverse kinematics in terms of the components of three points rigidly attached 
to the gripper. In the home position these points will have co-ordinates:- 

0 3  D3 + 1 

Pa=( ~52 + Dq + 1 ) ..=( L2 + 0 0 4  ) ,  P C = (  ) L2 + D4 

These p in ts  have been chosen to make things easy, for example p, is the position of the 
wrist centre. Hence, only movements about the first three joints will affect the position of 
p,. Moreover, if we know the position of the wrist centre we can find solutions for the first 
three joints. 

The forward kinematics, or just a consideration of the geometry, gives:- 

x, = D3 cos e l  + L2 sin 01 sin 02 + D4 sin el sin(e2 + 03) 

y, = D3 sin O1 - La cos el sin 02 - D4 cos O1 sin(02 + e 3 )  
2, = L~ cose2 + D~ C O S ( O ~  + e 3 )  

See fig. 5.4. 
Since the second and third joint axes are parallel they behave like a planar manipulator. 

The first joint simply allows rotation of the plane. So we could write these relations in 
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Lefty and elbow up Lefty and elbow down 

Righty and elbow up Righty and elbow down 

Figure 5.4 The First Three Joints of the Puma and the Possible Postures 

terms of the kinematics of a planar manipulator:- 

2, = D3cosOl-sinOlr,  

yc = D3 sin 01 + cos Ol r ,  

where r ,  = -L2 sin 62 - Dq sin(& + 03) and r Z  = L2 cos 82 + D4 cos(02 + 03)  can be 
thought of as the forward kinematics of a planar manipulator. The first two equations can 
be rearranged to give:- 

D3 = x ,  cos O1 + yc sin Ol 

r y  = y, cos O1 - xc sin O1 

The effect is the same as multiplying by the inverse of A l ( O 1 ) .  The first of these new 
equations is linear in the sine and cosine of 01,  so we can use it to eliminate sin O1 from the 
quadratic equation cos2 O1 + sin2 O1 = 1:- 

(z: + y:) c0s2 61 - 2xcD3 cosO1 + (032 - y:) = 0 

Solving this for cos 01 we get:- 

using the standard solution for a quadratic. The sine is given by substituting this back in 
the linear equation:- 



Inverse Kinematics 53 

These expressions are going to get very complicated, so to simplify things as much as 
possible we will write the solutions in terms of the ones we have already found. So it is 
clear from the above that we could write everything explicitly in terms of the co-ordinates 
of the points, but we will content ourselves with implicit relations. 

Evidently we have two possible solutions for el, depending on the sign of the square 
root. Each will result in a different posture as we shall see later. Next we use the inverse 
kinematics of the planar manipulator to solve for 82 and 83:- 

1 
C O S O ~  = - 

2L2D4 
{(T: + rz) - (Li  + 0:)) 

sin 83 = f d- 
This introduces a second ambiguity in sign:- 

1 
C O S ~ ~  = {T, (L2 + D4 cos 83) - T ~ D ~  sin d3) 

(r$ + T:) 

sin 82 
1 

(TZ, + T:) 
{-ry(Lz + D4 cos 83) + T, D4 sin 03) 

These results were simply obtained by substituting x = T,, y = -T, in the results of 
section 5.1. 

The two possible sign choices are independent of each other, so there are four possible 
solutions, and hence four postures. For the Puma these have the cute names 'elbow up' 
or 'elbow down' depending on the choice of the sign of sine3, and 'righty' or 'lefty' 
depending on which sign of Jxz + yz - 0: is chosen. Notice that a little rearrangement 
gives Jxz + y,2 - D: = (y, cos 81 - x, sin el). Hence given a set of joint angles, we can 
tell which posture the robot is in by looking at the sign of these two functions. Including 
the two possible postures for the wrist, the Puma has eight different postures in all, see 
fig. 5.4. 

5.5 The Last Three Joints of the Puma 

Most of the hard work here has been done in section 5.3. The only difference is the effect 
of the first three joints. Remember we are trying to solve the equations:- 

where p = pa or pb. This equation can be rearranged to give:- 

A 4(04)A 5(05)A 6 ( & 3 ) ~  = A y1(e3)A y1(e2)A ;' (&)P' (**I 

Now, the right-hand side of the above equation is, in principle, known. Also we have 
chosen the points pa and pb to be in the same relation to the wrist centre p,, as the points 
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a and b were to the origin in section 5.3. In fact we can write:- 

Pa = PC + a and pb  = + b 
Equation (**) above can now be written as:- 

Here K is the kinematic matrix of the 3-R wrist, as in section 5.3. Since p, lies on all the 
axes of the wrist it is not affected by the kinematics of the wrist. On the right-hand side of 
the equation we have the inverses of the rotations about the first three joints; the term in 
v results from the translation part of A 3. We also get a similar equation for b. Now it is 
possible to rearrange the above equation into the form we solved in section 5.3:- 

The vector a is given by:- 

a = 
x, cos el + y, sin - D3 

x, sin81 cos(82 + 03) + ya cos 81 cos(02 + 03) + Z, sin(02 + 03) - L2 sin O3 
x, sin 191 sin(& + 03) - y, cos 81 sin(& + 83) + Z, cos(e2 + 03) - L2 cos 83 - D4 

The vector P has a similar expression, with x,, y, and Z, replaced by xb, yb and zb. It 
is now just a matter of substituting these expressions into the solutions we have already 
found for the 3-R wrist. Although tedious, the procedure is straightforward. The result is 
not particularly instructive, but would be necessary for the robot's control system. 

5.6 Inverse Kinematics of the Puma 

We may summarize the results of the last two sections in the following page of equations. 

c o s 4  = {D3xc + y c ~ ~ } / ( x :  + y:) 
sinel = {D3-xccos~l} /y ,  

rY = yc cos el - x, sin 131 

T; = 2, 

cos 83 = {(T; + T:) - (L; + D ~ ) ) / ~ L ~ D ~  

sine3 = &JCGF& 
cos82 = {rz(L2 + D4 cos03) - ryD4 sin03)/(r% + T:) 

sine2 = {-ry(L2 + D4 cos 03) + T, D4 ~inf3~) / ( r ;  + r f )  

2, = x, sin 81 sin(82 + 03) - ya cos O1 sin(82 + e3) + Z, cos(e2 + 83) 

- L2 cos 03 - 0 4  
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*J- 
x, cos 81 + y, sin O1 - D3 

-2, sin 01 cos(82 + 83) + ya cos 81 cos(82 + 03) + Z, sin(O2 + 03) 

- L2 sin 83 

xa/  sin 85 

ya/ sin 65 
xb sin 81 sin(& + 03) - y b  cos el sin(& + e3) + +b cos(e2 + d3) 

- L2 cos 83 - 0 4  

-xa sin 01 cos(02 + 03) + yb cos dl cos(02 + 03) + zb sin(B2 + 03) 

- L2 sin 83 

-zS/ sin e5 
(yo - sin 04 cos cos e6)/ cos B4 

Although this looks horribly complicated, at least a solution is possible. If we had chosen 
the joints arbitrarily then the tricks we used would not have worked. For such general cases 
analytic solutions are not possible, and usually numerical techniques have to be used. This 
can be a problem if the number of postures is not known; most numerical methods will 
only give a single solution. For the general six joint serial robot the number of postures 
is believed to be sixteen. How the number of postures changes as the design parameters 
are altered can only be guessed, at present. This is why there are so few different designs 
of robots: only the ones with analytic solutions for the inverse kinematics tend to be used. 
However, the range of designs for which the last three joint axes intersect in a common 
point do always have an analytic solution. 

5.7 Parallel Manipulators 

The inverse kinematics of parallel manipulators like the Stewart platform are surprisingly 
straightforward. In fact, it is the forward kinematics which are hard here, which is why 
we have not studied them earlier. To keep things simple we will only look at a planar 
parallel manipulator; see fig. 5.5. The mechanism has three sliding joints attached to both 
the ground link and the movable link by hinge joints. This means that the movable link has 
three degrees-of-freedom, the correct amount for a planar manipulator. 

Let us choose our co-ordinates so that the hinges on the ground link are at the points 
PI = (0,O) and p2 = (1,O). Again for convenience, let us choose the two points which 
determine the position and orientation of the movable link to be the centres of the hinges 
attached to that link. We denote them a and b. Now the inverse kinematic problem is to 
find the joint variables given the two points a and b: in this case the joint variables are the 
lengths of the three sliding joints. Elementary geometry gives these lengths as:- 
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Figure 5.5 The Planar Parallel Manipulator and its Conformations 

The inverse kinematics gives a unique solution, so there are no complications with postures 
here. 

As mentioned above, the forward kinematics is more complicated. Given the joint 
variables we seek the position and orientation of the movable link. From a consideration 
of the geometry we get four equations:- 

The middle two of these equations can be expanded to:- 

(bq + b i )  = dil  and (b: + b i )  - 2b, + 1 = d:, 

S o  we can immediately solve for b, :- 

Hence we get two solutions for by  :- 

The first and last equations can now be written as:- 

(a :  + a ; )  = dzl and a x b x  + a,by = d:, + d i l  - 1 
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Since b, and by are now known, the second of these equations can be considered as linear. 
So, assuming that by # 0 we can substitute for a ,  in the quadratic equation to give:- 

The familiar solution for a quadratic equation in one variable can now be applied:- 

-B  f d~~ - 4AC 
a ,  = 

2 A  
where 

A = d i ,  
B = -2(d: ,  + di , )bxby  
C = d4,, + d:l - 3d:l - 2dil + 2d2,1dil - 1 

Finally. we recover a ,  from the linear equation:- 

Notice that we get four possible solutions in general, called conformations. Different 
conformations have the same values for the joint variables but correspond to different 
positions and orientations of the end-effector. This is exactly the opposite way around 
to serial manipulators, but we will get the same kinds of phenomena as with a serial 
manipulator. The number of conformations will in general be four but will be less at 
singular positions. 

The Stewart platform is rather harder than this example, usually the forward kinematics 
is done numerically. For a general manipulator, which is neither serial nor parallel, both 
the forward and inverse kinematics will be hard. Both will involve the solution of sets of 
algebraic equations and we should expect both multiple postures and conformations to be 
present. 

Exercises 

5.5 The wrist centre of a Puma robot is located at the following positions:- 

Use the inverse kinematic relations given in the previous sections to find the possible 
settings for the first three joint angles in each case. Take L2 = 4, D3 = 1 and 
D4 = 4. 

5.6 Find the inverse kinematic relations for the first three joints of the Stanford ma- 
nipulator, see fig 4.7. In particular find the joint variables (el, &, d 3 )  in terms of 
the co-ordinates of the wrist centre (x,, y,, 2,). How many postures does such a 
manipulator have? 
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5.3 Consider the planar parallel manipulator introduced in section 5.7. Let its home 
position be when a = ( 0 , l )  and b = ( 1 , l ) .  Suppose the movable link undergoes 
a rigid transformation given by the matrix:- 

Find the lengths of the sliding joint as functions oft, ,  t ,  and 0. 


