Snarl Protocol

This document collects the message sequence diagrams and JSON data definitions for the messages of
the SNARL remote protocol.

Message sequences

Phases Figure 1: Protocol phases

The protocol specifies 5 phases:

Start-up, registration of players

Start of a level) _
Registration

Start level

Perform rounds

End of a level

A

End of the game

no

Registration of players

server client_1 client_n |l

| | |

Connection and registration phase 'ﬁ

tcp connect

Do SEhCEEEEEECOLEEEEEEELCLEREEREEEE by the server, the server may prompt again.

If the supplied name is considered invalid B|

if . < max_clients, wait reg: timeout seconds
i i i
Start the first level Iﬁ

......... }1

After a client connects, the server sends a “welcome message” and requests the player’s name, which
is supplied as a JSON string (in double quotes). max_clients and reg_timeout are implementation-
specific parameters, which may be part of the server configuration.

Starting a level

server client_1 client_n Ii

L
Load the level,
setup adversaries,
init game state, ...
level-start
() >
level-start
() >
Send initial updates Iﬁ
(player-update-message)
(player-update-message) >

To start a level, the server sends a message notifying the clients that the level is about to start. This is
followed by initial updates about the players’ whereabouts.

Playing a round

server client_1 client_n Il

1st player moves H

"move"

(player-move)

(...
if the result is "Invalid", the server
(result) - || should prompt the client to move again
“1| (up to an implementation-specific limit)
(player-update-message)

A 4

(player-update-message)

>
remaining players move
" movell -
layer-move
. (player-move S R
(result) -
(player-update-message) _
”~
(player-update-message) -
for each adversary /
adversary moves
(player-update-message) _
”~
(player-update-message) -

A round consists of the server asking a player for their move, then updating each player about the state,
then repeating the same for the remaining players. A player’s move might be invalid and the server
may ask the player to supply another move. After all players supply their moves, adversaries move and
players get updated after each adversary’s move.

Ending a level

Once all players have left the level (by exiting or being expelled), the server updates the players about
this fact.

server client_1 client_n n

(end-level)

(end-level)

Ending a Snarl game

When the last level is completed, the server updates the players about the end of the game and closes
all connections.

server client_1 client_n Il

(end-game)

(end-game)

disconnect

disconnect

JSON Message Definitions

server-welcome

A (server-welcome) is the following object

{ "type": "welcome",
"info": (server-info)
}
* (server-info) is an implementation specific JSON string containing the server version informa-
tion.
name

A (name) is a JSON string containing alpha-numeric characters, representing the player’s registration
name.

start-level

A (start-level) is a JSON object signalling the start of a level. It includes the number of the level as
a (natural) and a list of active players.

{ "type": "start-level",
"level": (natural),
"players": (name-list)

}

player-update-message

A (player-update-message) is a JSON object containing a player update and an optional message
from the server.

{ "type": "player-update",
"layout": (tile-layout),
"position": (point),

"objects": (object-list),
"actors": (actor-position-list),
"message": (maybe-string)

A message can be a relevant piece of information the server wants to relay to the player. A good
example would be messages of the form "Player <name> <event>.", where <event> is one of

* "moved"

e "found the key"
* "was expelled"
e "exited"

* "disconnected"

The client might want to display these messages to the human player.

Alternatively, a message can be null. Other fields are as defined in Milestone 7. In particular:

* (tile-layout) is a 5x5 2D JSON array of tiles within the player’s view (see Milestone 3),

* (object-list) is an unordered list of (object), which is the JSON object
{ "type": (object-type), "position": (point) }

with (object-type) one of "key" or "exit" (originally defined implicitly in Milestone 4, but not
named), and

e (actor-position-list) was defined in Milestone 5.

player-move
A (player-move) is (actor-move) from Milestone 7, that is, the following JSON object:

{ Iltypell: IImoVeII’
"to": (maybe-point)
}

A (maybe-point) is one of the following:

* null representing a skipped move
* (point) as defined in Milestone 3, representing an absolute position within the level.

result

A (result) is one of:

* "0K", meaning “the move was valid, nothing happened”

* "Key", meaning “the move was valid, player collected the key”
* "Exit", meaning “the move was valid, player exited”

* "Eject", meaning “the move was valid, player was ejected”

* "Invalid", meaning “the move was invalid”

end-level

An (end-level) is the following JSON object:

https://course.ccs.neu.edu/cs4500sp21/p07.html
https://course.ccs.neu.edu/cs4500sp21/p03.html
https://course.ccs.neu.edu/cs4500sp21/p04.html
https://course.ccs.neu.edu/cs4500sp21/p05.html
https://course.ccs.neu.edu/cs4500sp21/p07.html
https://course.ccs.neu.edu/cs4500sp21/p03.html

{ "type": "end-level",
"key": (name),
"exits": (name-list),
"ejects": (name-list)

The fields "key", "exits" and "ejects" summarize who found the key, who exited and who was
ejected by an adversary.

end-game
An (end-game) is the following JSON object:

{ "type": "end-game",
"scores": (player-score-list)

A (player-score-list) is a JSON array of (player-score), which is the following JSON object.

{ "type": "player-score",
"name": (name),
"exits": (natural),
"ejects": (natural),
"keys": (natural)

Each player registered in the game should have a (player-score) entry, listing the number of times
they exited, were ejected and the number of times they found a key.

	Message sequences
	Phases
	Registration of players
	Starting a level
	Playing a round
	Ending a level
	Ending a Snarl game

	JSON Message Definitions
	server-welcome
	name
	start-level
	player-update-message
	player-move
	result
	end-level
	end-game

