
Project Milestone 7
CS 4500 Software Development

Due: Friday, March 26, 11:59pm

Submission: Create a release on GitHub tagged p7. Add a p7-exec.zip to the release, containing:

1. The testManager executable for the testing task
2. Any packages/modules necessary for the above executable to function
3. At least 4 tests in tests/

Here is a sketch of the p7-exec.zip layout:

|-- testManager
|-- tests
| |-- 1-in.json
| |-- 1-out.json
| ...
...

Submit a ZIP with the following on Handins:

1. For the design task, the file adversary.md in Snarl/Planning/

2. For the programming task, any new or updated relevant source files under Snarl/src. Place the
observer and player interfaces under Common and the implementations in separate directories.

3. For the testing task, a folder Snarl/tests/Manager with the test harness source code and your
test suite for

Here is an example sketch of the Handins ZIP layout:

Snarl
|-- planning
| `-- adversary.md
|-- tests
| `-- Manager
| |-- testManager.<ext>
| |-- 1-in.json <-- these files can be under an additional "tests"
| ... directory, just like in the exec zip
`-- src

|-- Common
| |-- Player.<ext>
| `-- Observer.<ext>
|-- Game
| |-- GameManager.<ext> <-- let's say I modified the game manager for this
| ... task
|-- Observer
| |-- LocalObserver.<ext>
| ...
`-- Player

|-- LocalPlayer.<ext>
...

1

https://github.ccs.neu.edu/
https://handins.ccs.neu.edu/courses/130

Design Task: Adversaries

Design an interface for SNARL adversaries. An adversary is similar to a Player, in that it interacts
with the Game Manager on every turn. However there are a some differences:

• An adversary gets the full level information (comprised of rooms, hallways and objects) at the
beginning of a level

• An adversary gets an update on all player locations, but only when it’s about to make a turn

Note: the extent of what adversaries see might change if we determine they are too powerful.

Scope: We are looking for data definitions, signatures and purpose statements à la Fundies,
or definitions and interface specifications approximating your chosen language (if it has such
constructs). You are encouraged to use examples and/or diagrams to illustrate interaction between
adversaries and the Game Manager

Programming Task: Player and Observer

Implement a local Player and a local Observer component

Player

Provide an interface for players (e.g., interface in Java, abstract class in Python) and an implemen-
tation of a local Player component adhering to that interface.

The Player component (some of you called it the User) should implement the following functional-
ity:

1. Receive an update containing the player avatar’s position in the level and the current state of
their immediate surroundings. When an update is received, the update should be rendered to
the user. This can be as simple as rendering the update to the console or using your GUI code
to render a graphical representation. You can improve the interface later.

2. Provide a move to the Game Manager. A move can be empty, meaning the player stays put.
The user should be interactively prompted to choose a destination. This can be as simple as
meaningfully asking for the destination coordinates, using arrow keys, cardinal directions, etc.
You can improve this later.

Observer

Provide an interface for observers (e.g., abstract class in Python, interface in Java) and implement
a local Observer component. The functionality of this component is to receive updates from the
Game Manager on every state change (after each actor moves) and to render them. The interface
of this observer can be as simple as rendering the information to the console, or it can render a
graphical representation in a GUI window.

2

https://docs.python.org/3.6/library/abc.html

Scope: We will look for good code design, readability, unit tests, and whether we can find the
functionality we asked for above in the code.

Testing Task: Tracing the Game Manager

Implement a test harness, testManager, which exercises the game manager and rule checker over
several turns of 1 to 4 players. The test harness we are implementing here is a tracing harness,
meaning it collects a trace of interactions based on a simulated stream of inputs.

Reminder: Unless otherwise stated, JSON arrays are ordered.

Test Input

The test input for testManager has the following shape:

[(name-list), (level), (natural), (point-list), (actor-move-list-list)]

The following data definitions apply:

• A (name-list) is a list of 1 to 4 (string) and represents a list of player names to register.

• A (level) is as defined in Milestone 4. Assume that the input for the current testing task will
always contain exactly one key and exactly one exit in the list of objects.

• A (natural) is a natural number represented as a JSON number (0, 1, 2, . . .), determining
the maximum number of turns to perform.

• A (point-list) is a list of initial player and adversary positions. Assume the positions are
valid initial positions: they are pair-wise distinct, each in a room on a traversable tile. The list
will be at least n elements long, where n is the length of the name list. The first n elements are
player positions (in the same order as the name list), any subsequent elements are adversaries.
You can populate the level with adversaries of your choosing. Adversaries will be stationary.

This list simulates a random stream of valid initial positions.

• An (actor-move-list-list) is a list of (actor-move-list). This list contains a list of moves
for each registered player, in the same order as their names are listed in the (name-list). As
such, assume that the length of this list is always equal to the length of the list of names.

Each list simulates an input stream of moves coming from the respective player.

• An (actor-move-list) is a list of (actor-move)

• An (actor-move) is the following JSON object:

{

"type": "move",

"to": (maybe-point)

}

3

https://course.ccs.neu.edu/cs4500sp21/p04.html

• A (maybe-point) is one of the following:

– null representing a skipped move
– (point) as defined in Milestone 3, representing an absolute position within the level.

The expected test harness’ behavior is as follows:

1. Register the n players named in the (name-list) with the Game Manager. The order of the
list determines the order of the players.

2. Populate the given (level) with players and adversaries. The players’ initial locations are
given by the first n locations given in the (point-list). Any elements after that are adversary
positions.

3. Issue an initial update to each player in order.

4. Every time a player is supposed to move, take a move from their respective (actor-move-list)

and have the Game Manager validate and perform the move. If the move is invalid, take the
next move from the respective list. After a successful move, process the interactions.

5. After a player moves, issue an update to each player still in the game.

6. When any of the following occurs, stop and return the result.

• The given number of turns was performed
• One of the move input streams is exhausted
• The level is over

Here is an example (eliding the level for brevity):

[["ferd", "dio"]

, (level)

, 5

, [[3, 2], [5, 8], [14, 12]]

, [[{ "type": "move", "to": [4, 2] }

, { "type": "move", "to": [5, 3] }

]

, [{ "type": "move", "to": [3, 6] }

, { "type": "move", "to": [4, 7] }

, { "type": "move", "to": [6, 7] }

]

]

]

This input means:

1. Register "ferd" and "dio"

2. Place them at (3, 2) and (5, 8) in the given level

3. Place a stationary adversary at (14, 12)

4. Perform at most 5 turns.

4

https://course.ccs.neu.edu/cs4500sp21/p03.html

5. In fact, only 2 turns will be performed:

• Turn 1: "ferd" moves from (3, 2) to (4, 2) (1 down); "dio" tries to move from (5, 8) to
(3, 6) (2 up, 2 left) which is invalid, so the next attempt from (5, 8) to (4, 7) (1 up, 1 left)
will succeed

• Turn 2: "ferd" moves from (4, 2) to (5, 3) (1 down, 1 right); "dio" moves from (4, 7) to
(6, 7) (2 down)

Test Output

[(state), (manager-trace)]

Here, (state) is as defined in Milestone 5 and is the state that existed at the end of the sequence
determined by the input.

A (manager-trace) is a JSON array of (manager-trace-entry).

A (manager-trace-entry) is one of the following JSON arrays:

• [(name), (player-update)], representing a player update (only updates for players still
in the game should be included)

• [(name), (actor-move), (result)], representing a response to a given move request of a
given player

A (result) is one of:

• "OK", meaning “the move was valid, nothing happened”
• "Key", meaning “the move was valid, player collected the key”
• "Exit", meaning “the move was valid, player exited”
• "Eject", meaning “the move was valid, player was ejected”
• "Invalid", meaning “the move was invalid”

A (player-update) is the following JSON object:

{

"type": "player-update",

"layout": (tile-layout),

"position": (point),

"objects": (object-list),

"actors": (actor-position-list)

}

The interpretation of the fields is as follows.

• "layout" is a 5 × 5 array of tiles visible to the player, as outlined in Milestone 3 (layout) and
Milestone 4 (visible area). For simplicity, represent “void” as “wall” (0).

• "position" is the player’s absolute position
• "objects" are the objects in the player’s field of view (order is not significant)

5

https://course.ccs.neu.edu/cs4500sp21/p05.html
https://course.ccs.neu.edu/cs4500sp21/p03.html
https://course.ccs.neu.edu/cs4500sp21/p04.html

• "actors" are the actors in the player’s field of view (order is not significant)

Scope: Your executable must run on the Khoury Linux VMs, accept JSON with the format given
above on standard input and return results to standard output. We will be running our own tests
and your team’s tests through your testing harness. Ideally, your code from previous milestones
shouldn’t need to be modified extensively.

6

	Design Task: Adversaries
	Programming Task: Player and Observer
	Player
	Observer

	Testing Task: Tracing the Game Manager
	Test Input
	Test Output

