
Project Milestone 2
CS 4500 Software Development

Due: Monday, February 15th, 9pmTuesday, February 16th, 9pm

Submission:

1. In the Snarl directory in your repository, include the following:

• for the Design Task, place state.md in Planning/

• for the Programming Task, place level.<ext> in a new Game/ directory within Snarl

2. Once you are ready to submit, create a release on Github and tag it p2.

3. Manually create a ZIP file, only containing state.md and level.<ext>, together with any
source files referenced by it and authored by you. Submit this ZIP file via Handins.

Keep the Snarl overview and plan in mind when working on these tasks.

Design Task

An implementation of Snarl demands a data representation for game states. A Snarl state should
contain information necessary to check validity of moves and progress the game. The full state
will be private to the Game Manager, while other components (players, AIs) might be provided a
restricted view of the state.

Describe a data representation for Snarl game states. Think back to data definitions in Fundies I and
use a mix of English and the data definition constructs from your chosen language. Add a description
of an interface with operations that other components may need to perform on the game state, or to
interact with it. This might look like a wishlist with function signatures and purpose statements.

The memo must not exceed two pages. Less is more.

Scope: The purpose of this task is to think about what information is relevant for the game manager
to discharge its responsibilities of running a dungeon, managing actors and progressing the game;
and how this information should be represented. We are looking for a careful analysis of the
information available to you (including any clarifications), not a perfect spec set in stone.

1

https://handins.ccs.neu.edu/courses/130
https://course.ccs.neu.edu/cs4500sp21/overview.html
https://course.ccs.neu.edu/cs4500sp21/plan.html


Programming Task

Design and implement a Snarl level representation. A level is comprised of rooms and hallways.

A room has an upper-left Cartesian position, boundary dimensions (or size), a layout of non-wall
tiles, and one or more exitsdoors. Objects, like the key and the level exit, may be inside of a room.

A exitroom door is valid if it is at the boundary dimensions of the room.

A hallway has 2 rooms to connect (via their doors) and a (possibly empty) list of waypoints. The
waypoints allow for corners in the hallway. A hallway is valid if a line comprised of the waypoints
connects the two rooms. A hallway is valid only if:

a) it connects two rooms at its endpoints; and
b) each segment (as delimited by subsequent points1) is either horizontal or vertical (i.e., perpen-

dicular with the x or y axis).

A level is comprised of a series of rooms connected by hallways. A level is valid if no two rooms
overlap, no two hallways overlap, and no hallways overlap with any rooms.

Include examples of level data in the code, again like in Fundies I.

This representation will help us generate interesting levels in a later milestone.

Design a function for rendering levels graphically. This function may generate ASCII art, graphical
images (if your PL/IDE support this), etc. You may use outside libraries to support with GUI creation,
but not for the actual rendering of your data representations.

Scope: The purpose of this task it to analyze an informal description of the level and design a
corresponding representation. We will be looking for good code design, readability, and if we can
find the functionality we asked for in the code.

Changes

02/10/21 • (Design Task) Completed a sentence
• (Programming Task) Levels have an exit, rooms have doors
• (Programming Task) More specific validity conditions for hallways (no

angled hallways)

1Here, a point means either an endpoint or a waypoint.

2


	Design Task
	Programming Task
	Changes

