Warm-up Assignment 3
CS 4500 Software Development

Due: Tuesday, February 2nd at 9pm

Submission:
1. At the top-level of Khoury Github, create a directory A3 with the following:

a) adirectory src/ containing the source code for the program a3 from Task 1
b) a directory traveller-server/ containing the source code for Task 2
c) adirectory traveller-client/ containing the source code for Task 3

)

2. Create a new release on GitHub, tagged a3 and add a ZIP file a3-exec.zip as the “binary’
containing the a3 executable and any auxiliary files required by the executable. Details on
how to do that are here.

3. Download the Source code (zip) from the release and submit it via Handins. Note that this zip
file will contain all files from your repository. This is fine.

Note: Even though we use lower-case letter for source files and directories, your implementation
language might require you to capitalize, or use CamelCase. In that case, follow the rules of your
implementation language.

In programming languages we speak of two kinds of servers and two kinds of clients. A
server module is a component that implements an interface for the purpose of serving
functionality to other modules; conversely, a client module consumes the services of a
server module. In distributed (web) systems people speak of server and client when they
refer to software components like server and client modules, except that the services are
used across a network protocol (possibly on the same machine) and the components can
be implemented in distinct programming languages.

https://docs.github.com/en/enterprise-server@2.21/github/administering-a-repository/managing-releases-in-a-repository

Task 1

Since your eventual product will consist of a server and remote clients, your manager wishes to
understand how well your chosen language deals with TCP connections.

Develop a TCP-based server variant of program a2 from Warm-up Assignment 2. A client connects
to port 8000 and then sends a series of NumJSON values. Once the server reads the non-JSON
sequence END, it computes the sum of the numeric values (i.e., the behavior of ./a2 --sum), and
sends the resulting JSON array back to the client over the TCP socket. Then it closes the socket and
exits.

Ideally, you should be able to reuse code from Warm-up 2 without modification.

Pedagogy

The goals of Task 1 are

i. to get an idea of TCP-based processing (including ports) and

ii. to practice practical code re-use. Clearly this server is just a wrapper around the solution of
Task 2 of Warm-up 2. Improve only as absolutely needed.

Task 2

You find yourself in charge of implementing another team’s specification for the Traveller module.
You will find the specification deposited to your Github repository later today. Implement the
specification in the language given in the specifcation.

If the given specification does not articulate what is to be computed in certain situations, you may
implement whatever is convenient.

If the specification requests capabilities that are unnecessary to implement traveller-client (see
below), you do not have to implement them.

The specification you receive may be requesting an implementation in a language different than
your chosen language. If you cannot implement it in the requested language, implement it in your
chosen language. As an experienced programmer, even if the details of the specification language
are foreign to you, you should be able to adapt it to your setting. If you take this route, supply
an additional memo in traveller-server/implementation.md (in addition to your source file),
explaining how you interpreted the specification for your language and each choice you had to
make.

Name the main module traveller-server.<ext> where <ext> is the extension appropriate for the
implementation language.

https://course.ccs.neu.edu/cs4500sp21/a02.html
https://course.ccs.neu.edu/cs4500sp21/a02.html

Exception: What if | receive a specification that | cannot implement??

If you cannot understand the specification, you write a memo that diagnoses the problems of the
specification (ambiguity, under-specificiation, over-specification, etc). The memo must list examples
of each problem. For each problem also propose a solution on how the specifier could have done
better. You may write up to 5 pages in the format of the memo from Warm-up 1.

If you raise an exception, deliver implementation.md in the traveller-server/ directory.

Task 3

Implement a client module (= module that uses the services of another module) that relies on
your own specification (traveller.md) to build and query town networks. Once the outsourced
implementation of Traveller is complete, you should be able to link the two pieces together and
obtain a complete program.

The client specification is as follows:

traveller-client reads JSON values from STDIN and prints answers to STDOUT. Below are the
well-formed JSON values traveller-client must deal with. We use String to indicate the type of
the actual JSON value in that position.

1. Creating a road network of towns

{ "command" : "roads",
"params" : [{"from" : String, "to" : String }, ...] }

The command must be used once and as the first one; if it is invalid, the client shuts down.

2. Placing a character in a town

{ "command" : "place",
"params" : { "character" : String, "town" : String } }
The command is valid if town is a node of the given town network graph.

3. Query if a character can move to another town

{ "command" : "passage-safe?",
"params" : { "character" : String, "town" : String } }

The command is valid if a character specified by character has been placed and the town
called name is a node of the specified town network.

https://course.ccs.neu.edu/cs4500sp21/a01.html

All invalid "place" and "passage-safe?" JSON values are discarded. If the program encounters a
non-JSON text, it may shut down without further warning.

You must make a decision whether (or how much) this client module can check the validity of
well-formed JSON expressions without re-implementing the town-network functionality. You must
rely on our own specification to make this decision.

Pedagogy

The goals of tasks 1 and 2 are

i. to code against “foreign” specifications of code and

ii. to show you the difficulties of writing good specifications for a software component.

	Task 1
	Pedagogy

	Task 2
	Exception: What if I receive a specification that I cannot implement??

	Task 3
	Pedagogy

