
Northeastern University

CS4500 � Software Development
Spring 2018, {Annunziato, Derbinsky, Weintraub}

Setup Development Environment

Introduction

For this course we will be using the Java programming language to implement Spring Boot based Web
applications hosted on Amazon Web Services (AWS). This assignment will walk you through setting up
the local development environment and deploying a simple Hello World Web application on AWS. We will
be expanding this application as the semester progresses building a Web project.

Do all your work in a new directory called project your personal class homework repository.
These instructions are also captured here (https://goo.gl/8A8EVL).

Learning Objectives

By the end of this assignment you should be able to

� Con�gure a local Java development environment.

� Create a simple Spring Boot Web application.

� Con�gure a remote Tomcat server running on AWS.

� Deploy a Spring Boot Web application to AWS.

Setup Java JDK 8

We will be using Java 8 throughout the semester.1

If you need to install Java, navigate to Oracle's Java Development Kit (JDK) 8 download website

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Download and install the JDK for your particular operating system. Once the JDK has installed, verify
you have the right version of Java installed. From your terminal or console, type the following

> java -version

java version "1.8.0_77"

Java(TM) SE Runtime Environment (build 1.8.0_77-b03)

1If you have Java 9 installed, these instructions will still work. You may have to do some extra work when you set up
STS later on.

CS4500, Spring 2018, {Annunziato, Derbinsky, Weintraub} � Setup Development Environment 2

macOS/Linux

You can �nd out where Java is installed by typing the following on the terminal:

> which java

/Library/Java/JavaVirtualMachines/jdk1.8.0_77.jdk/Contents/Home/bin/java

Verify environment variable JAVA_HOME points to the Java installation folder:

> echo $JAVA_HOME

/Library/Java/JavaVirtualMachines/jdk1.8.0_77.jdk/Contents/Home/

If JAVA_HOME is not set, set it. Add JAVA_HOME as an environment variable in your ~/.bash_profile.
The .bash_profile is a hidden con�guration �le in your home directory (~). If you have a new machine
it might not yet exist, so you might need to create the �le (touch). From your terminal:

> cd ~

> touch .bash_profile

> edit .bash_profile

This will open .bash_profile in your system text editor. Add the following line at the end your �le:

export JAVA_HOME=/my/path/to/jdk/jdk1.8.0_77.jdk/Contents/Home/

export PATH=$JAVA_HOME/bin:$PATH

Where the path /my/path/to/jdk/ will be di�erent for your particular machine.

Windows

On Windows, Java should install in Program Files\Java. Verify environment variable JAVA_HOME points
to the Java installation folder:

> echo %JAVA_HOME%

C:\Program Files\Java\jdk1.8.0_60

You set up environment variables in the Environment Variables Control Panel:

1. Select Start, select Control Panel. Double click System, and select the Advanced tab (or ask Cortana
for the Environment Variables Control Panel).

2. Click Environment Variables

3. In the Edit System Variable (or New System Variable) window, specify the value of the JAVA_HOME
environment variable

4. Edit the PATH environment variable and add %JAVA_HOME%\bin

CS4500, Spring 2018, {Annunziato, Derbinsky, Weintraub} � Setup Development Environment 3

Setup Maven

Maven is a Java dependency package manager. It simpli�es managing the lifecycle of projects such as
downloading libraries, compiling, running automated tests, and packaging projects for deployment. Down-
load maven from

http://maven.apache.org/download.cgi

1. Download the latest ZIP �le version (e.g., apache-maven-3.5.2-bin.zip)

2. Unzip and move the �les
macOS/Linux: /usr/local/apache/maven/
Windows: \Program Files\apache\maven

3. Create environment variables M2_HOME and MAVEN_HOME using the same methods described earlier for
setting PATH. Set the value to the directory where you put Maven. The latest Maven documentation
only mentions M2_HOME, but older tools might to still use the older environment variable MAVEN_HOME.

4. Add M2_HOME/bin and MAVEN_HOME/bin to your PATH (environment variable) so you can execute
maven from the terminal or console.

5. In a new terminal or console verify maven is installed by typing the following

> mvn -version

Apache Maven 3.5.2 (r01de14724cdef16f02da; 2013-02-19 08:51:28-0500)

Maven home: /usr/local/apache-maven-3.0.5

Java version: 1.8.0_77, vendor: Oracle Corporation

Java home: /my/path/to/jdk/jdk1.8.0_77.jdk/Contents/Home/jre

Default locale: en_US, platform encoding: UTF-8

OS name: "mac os x", version: "10.12.6", family: "mac"

Your output will tell you the version of Maven, where it sits, a repeat of the Java information, and then
information about your machine.

Create a Spring Boot Web Maven Project

Spring Boot2 is a pre-con�gured Spring3 framework that allows creating Spring-based Java applications
with minimal e�ort. Spring Boot bootstraps a Spring application based on a heavily pre-con�gured set of
default assumptions, hence the name Spring Boot. The assumptions Spring Boot makes address 80% of
the needs of typical applications. Additional con�guration would be needed when exploring the other 20%.

You will de�ne applications using the Spring Tool Suite (STS)4, which is plugs into Eclipse5 and is
optimized for working with Spring Boot projects.

2https://projects.spring.io/spring-boot/
3https://spring.io
4https://spring.io/tools
5https://www.eclipse.org

CS4500, Spring 2018, {Annunziato, Derbinsky, Weintraub} � Setup Development Environment 4

Install Spring Tool Suite (STS)

1. Download STS from https://spring.io/tools/sts/all. Pick the version right for your machine.

2. Unzip it6 and then . . .

macOS: drag the STS application icon to the Applications folder.

Windows: copy the sts.xxx.release folder to Program Files\spring.

3. Run STS and accept the default con�guration.

Create a Spring Starter Project

Assuming STS has started, which kicks o� Eclipse, create a Spring Boot project.

From the File menu, select New and then Spring Starter Project. Con�gure the project based on the
name of the course, the semester term, and your last name. For instance, consider the following course,
semester and last name:

� Course: cs4500

� Semester: Spring 2018

� Last name: Annunziato

use the following con�guration values:

� Name and Artifact: cs4500-spring2018-annunziato

� Group and Package: edu.northeastern.cs4500

� Packaging: War

You may need to click Next to get to the project dependencies choices in the next step.

Now add Web (under Web), JPA (under SQL), and Apache Derby (under SQL) as a project dependencies
and click �nish. Find the path of the project folder by right clicking on the project, selecting Properties
and then Resource on the left, and then Location on the right. Make a note of the path since we'll need
it in a later step. Click Apply and Close.

Create an HTML Index File

Once the project is created we'll add a simple index.html in the webapp folder by right-clicking the webapp
folder, selecting New >Other >Web >HTML File, then click Next, and name the �le: index.html. Use
the following content for the new index.html �le:

6In Windows, if you get a �le path too long error (error code 0x80004005) when you extract the �les, try unzipping the
�les using a tool such as 7-Zip (see 7-zip.org).

CS4500, Spring 2018, {Annunziato, Derbinsky, Weintraub} � Setup Development Environment 5

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Insert title here</title>

</head>

<body>

<h1>Hello World!</h1>

</body>

</html>

Test Web Application Locally

The next step is to start up your simple web app using Spring Boot.

In STS (eclipse), navigate to your application's entry point (e.g.
src/main/java/Cs4550Spring2018/AnnunziatoApplication.java) right click, select Run As and then
choose Java Application. This will start a Tomcat server on your machine that listens on port 8080.

You should see in the STS (eclipse) console something that looks like:

. ____ _ __ _ _

/\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

\\/ ___)| |_)| | | | | || (_| |))))

' |____| .__|_| |_|_| |___, | / / / /

=========|_|==============|___/=/_/_/_/

:: Spring Boot :: (v1.5.9.RELEASE)

2018-01-12 15:14:16.298 INFO 8576 --- [main]

[LOTS OF MESSAGES]...

2018-01-12 15:22:36.824 INFO 8576 --- [nio-8080-exec-1]

o.s.web.servlet.DispatcherServlet : FrameworkServlet

'dispatcherServlet': initialization completed in 42 ms

To test it, open a browser and go to localhost:8080. You should see Hello World!

Create a Spring Boot REST Controller

In later assignments, we will need to access data and functions from the server. Since we will be doing
web apps, you will work with the server by making REST requests over HTTP. A common way to do
this is to map URL patterns and HTTP methods to server side resources, usually called REST Web
service end-points. Said more directly, the server receives an HTTP request and a framework handles
how dispatch that request to some object that actually does the work. Here, we will use Spring as the
framework, which uses a Model-View-Controller design pattern.

Now you will walk through an example of doing this.

CS4500, Spring 2018, {Annunziato, Derbinsky, Weintraub} � Setup Development Environment 6

Create a Simple REST Controller

What we are going to do is treat a simple Java String literal as a resource available and expose it as a
REST-ful web service. In other words, clients will be using HTTP to get to our server and access this
resource.

The �rst step is to go into STS, and under src/main/java, create a new class called HelloController

in package edu.neu.cs4500.controllers.hello. Use the code below as an example.

package edu . neu . cs4500 . c o n t r o l l e r s . h e l l o ;

import org . spr ingframework . web . bind . annotat ion . RequestMapping ;
import org . spr ingframework . web . bind . annotat ion . Res tCont ro l l e r ;

@RestContro l ler
public class He l l oCon t r o l l e r {

@RequestMapping ("/ api / h e l l o / s t r i n g ")
public St r ing sayHe l lo () {

return "He l lo World ! " ;
}

}

This code con�gures the server to listen for an incoming HTTP request with the URL pattern /api/hello/string

and maps the request to execute the sayHello() method. The method returns the string "Hello World!"

as an HTTP response.

Create a Simple REST JSON Controller

We can make this more interesting and expose much more complicated data structures using JSON. For
now, we'll start small and create a HelloObject that contains just a String message property and expose
a modest data model.

Add a simple POJO (Plain Old Java Object) called HelloObject in package edu.neu.cs4500.controllers.hello
(the one you just created in the previous step). Use the following code as a guide. Note the property is
private and is only accessible through public setters and getters. Also note the required default constructor
HelloObject().

package edu . nor theas t e rn . cs4500 . c o n t r o l l e r s . h e l l o ;

/**
* Simple example o f CRU s e r v i c e s on an o b j e c t .
*/
public class Hel loObject {

/*
* Read func t i on
*/
public St r ing getMessage () {
return message ;

}

CS4500, Spring 2018, {Annunziato, Derbinsky, Weintraub} � Setup Development Environment 7

/*
* Update func t i on
*/
public void setMessage (S t r ing message) {
this . message = message ;

}

/*
* Create f unc t i on wi th in an i n i t i a l i z e d va lue
*/
public Hel loObject (S t r ing message) {
this . message = message ;

}

/*
* Create f unc t i on
*/
public Hel loObject () {
}

private St r ing message ;
}

To expose the our objectâ��s services to the web, you need to add an additional @RequestMapping
directive that exposes the HelloObject to an HTTP request mapped to /api/hello/object. Change
HelloController.java to the following.

package edu . nor theas t e rn . cs4500 . c o n t r o l l e r s . h e l l o ;

import org . spr ingframework . web . bind . annotat ion . RequestMapping ;
import org . spr ingframework . web . bind . annotat ion . Res tCont ro l l e r ;

@RestContro l ler
public class He l l oCon t r o l l e r {

@RequestMapping ("/ api / h e l l o / s t r i n g ")
public St r ing sayHe l lo () {

return "He l lo World ! " ;
}

@RequestMapping ("/ api / h e l l o / ob j e c t ")
public Hel loObject sayHe l loObject () {

Hel loObject obj = new Hel loObject ("He l lo World ! ") ;
return obj ;

}

}

This code con�gures the server to listen for an incoming HTTP request for a URL (of pattern) /api/hello/object,
and when such a message arrives, execute the sayHelloObject() method. Here, the method returns an
instance of HelloObject with the message property set to "Hello World!". Since the method returns an

CS4500, Spring 2018, {Annunziato, Derbinsky, Weintraub} � Setup Development Environment 8

instance, instead of a literal, the object is formatted as XML or JSON. By default, Spring boot request
controllers uses JSON.

Recompile, repackage, and restart the application.

Open your browser to http://localhost:8080/api/hello/string and you should see the string: Hello
World!

Now, point your browser to http://localhost:8080/api/hello/object and you should see the following
JSON data:

{

"message":"Hello World!"

}

Again, note the JSON attribute "message" is the same as HelloObject.message. The JSON value "Hello
World!" is the value with which we initialized the HelloObject instance. The project will involve much
more interesting and complex data models.

Customize Your Application

Change the index.html and HelloController.java to use your name instead of just "Hello World!". In
other words, if your name isAlice Wonderland, then the URLs should return "Hello Alice Wonderland!".
Test your URLs and verify that they return the following content.

URL Expected Return

http://localhost:8080 Hello Alice Wonderland!

http://localhost:8080/api/hello/string Hello Alice Wonderland!

http://localhost:8080/api/hello/object { "message":"Hello Alice Wonderland!" }

Deploy a Spring Boot Web Application to AWS

Now that we have tested the Web application running locally, we'll deploy it to the cloud. You will now
set a Tomcat server running on Amazon Web Services (AWS).

First, open a browser to https://aws.amazon.com/console/ and log in using your AWS credentials.

Create an Elastic Beanstalk service instance to deploy your Web application. We'll be deploying the Java
Web application we built on Spring Boot in the previous sections. Follow the steps below to deploy your
Java Web application on a remote Tomcat server hosted on an AWS Elastic Beanstalk service.

1. Once you've logged in to your AWS console, expand All services and select Elastic Beanstalk. Click
Create New Application on the top right and name the application the same way you named it for
the project, e.g., cs4500-spring2018-annunziato, and click create.

2. Now you will create an environment (the tomcat server). If you arenâ��t brought directly to a
choice between web server and worker, look to the left, click on Environments and then Create one
now on the right. In the Choose an environment tier dialog choose Web server and then Select.

3. In the Create a new environment screen choose a public domain for your Web application. Try the
same name as the name of the application. Click on Check availability to see if the domain is not

CS4500, Spring 2018, {Annunziato, Derbinsky, Weintraub} � Setup Development Environment 9

already taken. In the unlikely event that the domain is already taken, add a counter to the domain
name to distinguish it, e.g, cs4500 -spring2018-annunziato-1. Scroll down and choose Tomcat for
the Platform.

4. Down further select Upload your code and click on Upload. Browse to the location of the WAR
�le in the target folder in the location of your project. You made a note of the location of your
project in an earlier step. It can be retrieved by right clicking the project, selecting Properties, then
Resources, then Location on the right. Upload the WAR �le, click create environment, and wait for
the application to deploy. After a few minutes your application should have deployed.

5. Copy the url for your application.

Test Your Deployed Application

Navigate to your Website, e.g.,

http://cs4500-spring2018-annunziato.us-west-2.elasticbeanstalk.com

and you should see Hello Alice Wonderland! Then, navigate to the REST controllers that returned a
string and an object. Add /api/hello/string to the URL used in the previous step, e.g.,

http://cs4500-spring2018-annunziato.us-west-2.elasticbeanstalk.com/api/hello/string

and verify the server responds with the string Hello Alice Wonderland! Finally, replace string with
object in the previous URL, e.g, point your browser to

http://cs4500-spring2018-annunziato.us-west-2.elasticbeanstalk.com/api/hello/object

and verify the server responds with the following JSON data

{

"message":"Hello World!"

}

Deliverables

As a deliverable, add a section called AWS Hello World Endpoints to your README.md �le7 that contains
the three links to your AWS web site: one to index.html, and two to the RESTful endpoints. Your
README.md should look like:

AWS Hello World Endpoints

Link to the index page

Link to the string REST endpoint

Link to the object REST endpoint

Use the following markdown as a guide:

7in the directory where you cloned your repository

CS4500, Spring 2018, {Annunziato, Derbinsky, Weintraub} � Setup Development Environment 10

AWS Hello World Endpoints

[Link to the index

page](http://cs4500-spring2018-annunziato.us-west-2.elasticbeanstalk.com/)

[Link to the string REST

endpoint](http://cs4500-spring2018-annunziato.us-west-2.elasticbeanstalk.com/api/hello/string)

[Link to the object REST

endpoint](http://cs4500-spring2018-annunziato.us-west-2.elasticbeanstalk.com/api/hello/object)

Add, commit and push all the work completed under the project directory, to your personal class home-
work repository. Use the following message for your commit: "Setting up the development environment."

