```
CS 3800, Fall 2017 (Clinger's section)
Homework 4 (70 points)
Assigned: Wednesday, 27 September 2017
Due: Wednesday, 4 October 2017
```

Unless stated otherwise, all languages are over the alphabet $\{\mathrm{a}, \mathrm{b}\}$.

1. [5 points] Describe two context-free languages A_{1} and A_{2} whose intersection $A_{1} \cap A_{2}$ is not context-free.
2. [5 points] Write context-free grammars for both of the languages A_{1} and A_{2} you described in the previous question.
3. [24 points] Give state diagrams for pushdown automata that generate the following languages over the alphabet $\{a, b\}$.
(a) $\left\{\mathrm{a}^{i} \mathrm{ba}^{j} \mathrm{ba}^{k} \mid i=j+k\right\}$
(b) $\{w \mid$ a occurs in w twice as often as $\mathbf{b}\}$
(c) $\left\{\mathrm{a}^{i} \mathrm{a}^{j} \mathrm{a}^{k} \mathrm{~b}^{k} \mid i=j+k\right\}$
(d) $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{a}^{k} \mid i<j\right.$ and $\left.k=j-i\right\}$
4. [15 points] For each of the following languages, decide whether the language is regular. If it is, then construct a regular expression that describes the language. If it isn't, construct a CFG that generates the language.
(a) $\{w \mid w$ contains babab $\}$
(b) $\{w \mid$ a occurs an even number of times in $w\}$
(c) $\{w \mid \mathrm{b}$ occurs at least three times in $w\}$
(d) $\{w \mid \mathrm{a}$ and b appear the same number of times in $w\}$
(e) $\{w \mid w$ contains more occurrences of a than $\mathbf{b}\}$
5. [12 points] For each of the following languages, state whether the language is regular, context-free but not regular, or not context-free.
(a) $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n\right.$ is a positive integer $\}$
(b) $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n\right.$ is a positive integer $\}$
(c) $\left\{\mathrm{a}^{n} \mathrm{a}^{n} \mathrm{a}^{n} \mid n\right.$ is a positive integer $\}$
(d) $\{w \mid$ the length of w is a prime number $\}$
(e) $\left\{w^{\mathcal{R}} w \mid w\right.$ is non-empty $\}$
(f) $\left\{\mathrm{a}^{m} \mathrm{~b}^{n} \mid m\right.$ is prime but n is not prime $\}$
6. [4 points] Which of the following grammars generates a language that is not regular?
(a) $S \rightarrow \mathrm{~b} \mid \mathrm{bb} S$
(b) $S \rightarrow \mathrm{a} \mid \mathrm{b} S \mathrm{~b}$
(c) $S \rightarrow \mathrm{a}|\mathrm{b}| S S$
(d) $S \rightarrow \mathrm{a}|\mathrm{b} S| \mathrm{a} S$
(e) $S \rightarrow \mathrm{~b} \mid \mathrm{b} S \mathrm{~b}$
7. [5 points] Construct a PDA that recognizes the language generated by

$$
\begin{aligned}
& S \rightarrow A \\
& A \rightarrow \epsilon|0 B| 1 C \\
& B \rightarrow A 2 A \\
& C \rightarrow A 3 A
\end{aligned}
$$

