
File Systems

Week 12 and 13

CS 3650 Computer Systems – Spring 2023 

* Acknowledgements: created based on Christo Wilson’s lecture slides for the same course.



Storage media
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Storage media types

• Hard Drives
• SSD
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Hard Drive Hardware
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A Multi-Platter Disk
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Addressing and Geometry
• Externally, hard drives expose a large number of sectors (blocks)

• Typically 512 or 4096 bytes
• Individual sector writes are atomic
• Multiple sectors writes may be interrupted (torn write)

• Drive geometry
• Sectors arranged into tracks
• Tracks arranged in concentric circles on platters
• A disk may have multiple, double-sided platters
• A cylinder is tracks on multiple platters

• Drive motor spins the platters at a constant rate
• Measured in rotations per minute (RPM)
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Geometry Example
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Common Disk Interfaces

• ST-506  ATA  IDE  SATA
• Ancient standard
• Commands (read/write) and addresses in cylinder/head/sector 

format placed in device registers
• Recent versions support Logical Block Addresses (LBA) 

• SCSI (Small Computer Systems Interface)
• Packet based, like TCP/IP
• Device translates LBA to internal format
• Transport independent

• USB drives, CD/DVD/Bluray, Firewire
• iSCSI is SCSI over TCP/IP and Ethernet
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Types of Delay With Disks
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Three types of delay
1. Rotational Delay

• Time to rotate the desired sector 
to the read head

• Related to RPM

2. Seek delay
• Time to move the read head to a 

different track

3. Transfer time
• Time to read or write bytes
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How To Calculate Transfer Time

Cheetah 15K.5 Barracuda

Capacity 300 GB 1 TB

RPM 15000 7200

Avg. Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
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Transfer time
TI/O = Tseek + Trotation + Ttransfer

Assume we are transferring 
4096 bytes

TI/O = 4 ms + 1 / (15000 RPM / 60 s/M / 1000 ms/s) / 2 
+ (4096 B / 125 MB/s * 1000 ms/s / 220 MB/B)

TI/O = 4 ms + 2ms + 0.03125 ms ≈ 6 msCh
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a TI/O = 9 ms + 1 / (7200 RPM / 60 s/M / 1000 ms/s) / 2 
+ (4096 B / 105 MB/s * 1000 ms/s / 220 MB/B)

TI/O = 9 ms + 4.17 ms + 0.0372 ms ≈ 13.2 ms



Sequential vs. Random Access
Rate of I/O

RI/O = transfer_size / TI/O
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Access Type Transfer Size Cheetah 15K.5 Barracuda

Random 4096 B
TI/O 6 ms 13.2 ms

RI/O 0.66 MB/s 0.31 MB/s

Sequential 100 MB
TI/O 800 ms 950 ms

RI/O 125 MB/s 105 MB/s

Max Transfer Rate 125 MB/s 105MB/s

Random I/O results in very 
poor disk performance!

1 disk seek + 1 rotation + 
continuous data transfer



Storage media types

• Hard Drives
• SSD
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Beyond Spinning Disks

• Hard drives have been around since 1956
• The cheapest way to store large amounts of data
• Sizes are still increasing rapidly

• However, hard drives are typically the slowest component in 
most computers

• CPU and RAM operate at GHz
• PCI-X and Ethernet are GB/s

• Hard drives are not suitable for mobile devices
• Fragile mechanical components can break
• The disk motor is extremely power hungry
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Solid State Drives

• NAND flash memory-based drives
• High voltage is able to change the configuration of a floating-gate 

transistor
• State of the transistor interpreted as binary data
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Flash memory 
chip

Data is striped 
across all chips

(design varies by 
vendors)



Advantages of SSDs
• More resilient against physical damage

• No sensitive read head or moving parts
• Immune to changes in temperature

• Greatly reduced power consumption
• No mechanical, moving parts

• Much faster than hard drives
• >500 MB/s vs ~200 MB/s for hard drives
• Little or no penalty for random access

• Each flash cell can be addressed directly
• No need to rotate or seek

• Extremely high throughput
• Although each flash chip is slow, they are RAIDed
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HDD vs SSD price trends (by western digital)

16Source: https://www.anandtech.com/show/11925/western-digital-stuns-storage-industry-with-mamr-breakthrough-for-nextgen-hdds



Challenges with Flash

• Flash memory is written in pages, but erased in blocks
• Pages: 4 – 16 KB, Blocks: 128 – 256 KB
• Thus, flash memory can become fragmented
• Leads to the write amplification problem

• Flash memory can only be written a fixed number of times
• Typically 3000 – 5000 cycles for MLC
• SSDs use wear leveling to evenly distribute writes across all flash cells
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Write Amplification

• Once all pages have been written, valid pages must be 
consolidated to free up space

• Write amplification: a write triggers garbage 
collection/compaction

• One or more blocks must be read, erased, and rewritten before 
the write can proceed
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Garbage Collection

• Garbage collection (GC) is vital for the performance of SSDs
• Older SSDs had fast writes up until all pages were written once

• Even if the drive has lots of “free space,” each write is amplified, 
thus reducing performance

• Many SSDs over-provision to help the GC
• 240 GB SSDs actually have 256 GB of memory

• Modern SSDs implement background GC
• However, this doesn’t always work correctly
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The Ambiguity of Delete

• Goal: the SSD wants to perform background GC
• But this assumes the SSD knows which pages are invalid

• Problem: most file systems don’t actually delete data
• On Linux, the “delete” function is unlink()
• Removes the file meta-data, but not the file itself
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Delete Example

1. File is written to SSD
2. File is deleted
3. The GC executes

• 9 pages look valid to the SSD
• The OS knows only 2 pages are valid
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TRIM
• New SATA command TRIM (SCSI – UNMAP)

• Allows the OS to tell the SSD that specific LBAs are invalid, may 
be GCed
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• OS support for TRIM
– Win 7, OSX Snow Leopard, Linux 2.6.33, Android 4.3

• Must be supported by the SSD firmware
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Wear Leveling

• Recall: each flash cell wears out after several thousand writes

• SSDs use wear leveling to spread writes across all cells
• Typical consumer SSDs should last ~5 years

• Wear-leveling strategies 
• GC blocks with fewer valid data (= reduces write amplification)
• GC blocks with fewer erase count (= even wearing of blocks)
• Periodically Move long-lived data around
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Wear Leveling Examples
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SSD Controllers

• SSDs are extremely complicated internally

• All operations handled by the SSD controller
• Maps LBAs to physical pages
• Keeps track of free pages, controls the GC
• May implement background GC
• Performs wear leveling via data rotation

• Controller performance is crucial for overall SSD performance

• Modern SSDs are embedded systems
• Has multiple embedded processors and embedded OS runs on top
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Flavors of NAND Flash Memory

Multi-Level Cell (MLC)
• One bit per flash cell

• 0 or 1

• Lower capacity and more 
expensive than MLC flash

• Higher throughput than MLC
• 10,000 – 100,000 write cycles

Expensive, enterprise drives

Single-Level Cell (SLC)
• Multiple bits per flash cell

• For two-level: 00, 01, 10, 11
• 2, 3, and 4-bit MLC is 

available
• Higher capacity and cheaper 

than SLC flash
• Lower throughput due to the 

need for error correction
• 3,000 – 5,000 write cycles
• Consumes more power

Consumer-grade drives
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File Systems
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Learning objectives

• We talked about hard drives and SSDs
• How they work
• Performance characteristics

• We will look into managing storage
• Disks/SSDs offer a blank slate of empty blocks
• How do we store files on these devices, and keep track of them?
• How do we maintain high performance?
• How do we maintain consistency in the face of random crashes?
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Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems
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Building the Root File System

• One of the first tasks of an OS during bootup is to build the root 
file system

1. Locate all bootable media
• Internal and external hard disks
• SSDs
• Floppy disks, CDs, DVDs, USB sticks

2. Locate all the partitions on each media
• Read MBR(s), extended partition tables, etc.

3. Mount one or more partitions
• Makes the file system(s) available for access
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MBR Partition 1
(ext3)

Partition 2
(swap)

Partition 3
(NTFS)

Partition 4
(FAT32)

The Master Boot Record
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Address
Description Size 

(Bytes)Hex Dec.

0x000 0 Bootstrap code area 446

0x1BE 446 Partition Entry #1 16

0x1CE 462 Partition Entry #2 16

0x1DE 478 Partition Entry #3 16

0x1EE 494 Partition Entry #4 16

0x1FE 510 Magic Number 2

Total: 512

Includes the starting 
LBA and length of 

the partition

Di
sk

 1

MBR Partition 1
(NTFS)Di

sk
 2



Extended Partitions

• In some cases, you may want >4 partitions
• Modern OSes support extended partitions
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Partition 1
(ext3)

Partition 2
(swap)

Partition 3
(Extended Partition)

Partition 4
(FAT32)Di

sk
 1 Logical 

Partition 1
(NTFS)

Logical 
Partition 2

(NTFS)

• Extended partitions may use OS-specific partition table formats 
(meta-data)
– Thus, other OSes may not be able to read the logical partitions

MBR Ext. 
Part.



Types of Root File Systems

• Windows exposes a multi-rooted system
• Each device and partition is assigned a letter
• Internally, a single root is maintained

• Linux has a single root
• One partition is mounted as /
• All other partitions are mounted somewhere under /

• Typically, the partition containing the kernel is mounted as / or C:
33

[khoury@cs3650 ~] df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda7 39G 14G 23G 38% /
/dev/sda2 296M 48M 249M 16% /boot/efi
/dev/sda5 127G 86G 42G 68% /media/khoury/Data1
/dev/sda4 61G 34G 27G 57% /media/khoury/Data2
/dev/sdb1 1.9G 352K 1.9G 1% /media/khoury/MiscData

1 drive, 4 
partitions

1drive, 1 
partition



Mounting a File System

1. Read the super block for the target file system
• Contains meta-data about the file system
• Version, size, locations of key structures on disk, etc.

2. Determine the mount point 
• On Windows: pick a drive letter
• On Linux: mount the new file system under a specific directory
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Filesystem Size Used Avail Use% Mounted on
/dev/sda5 127G 86G 42G 68% /media/khoury/Data1
/dev/sda4 61G 34G 27G 57% /media/khoury/Data2
/dev/sdb1 1.9G 352K 1.9G 1% /media/khoury/MiscData



Virtual File System Interface

• Problem: 
OS may mount several partitions containing different file systems

Do processes have to use different APIs for different file systems?

• Linux uses a Virtual File System interface (VFS)
• Exposes POSIX APIs to processes
• Forwards requests to lower-level file system specific drivers

• Windows uses a similar system
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VFS Flowchart
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Mount isn’t Just for Bootup

• When you plug storage devices into your running 
system, mount is executed in the background

• Example: plugging in a USB stick

• What does it mean to “safely eject” a device?
• Flush cached writes to that device
• Cleanly unmount the file system on that device

37



Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems
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Status Check

• At this point, the OS can locate and mount partitions

• Next step: what is the on-disk layout of the file system?
• We expect certain features from a file system

• Named files
• Nested hierarchy of directories
• Meta-data like creation time, file permissions, etc.

• How do we design on-disk structures that support these features?
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The Directory Tree

• Navigated using a path
• E.g. /home/bob/music.mp3
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Absolute and Relative Paths
• Two types of file system paths

• Absolute
• Full path from the root to the object
• Example: /home/alice/cs3650/hw4.pdf
• Example: C:\Users\alice\Documents\

• Relative
• OS keeps track of the working directory for each process
• Path relative to the current working directory
• Examples [working directory = /home/alice]:

• syllabus.docx [  /home/alice/syllabus.docx]
• cs3650/hw4.pdf [  /home/alice/cs3650/hw4.pdf]
• ./cs3650/hw4.pdf [  /home/alice/cs3650/hw4.pdf]
• ../bob/music.mp3 [  /home/bob/music.mp3]
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Files
• A file is just a representation of data 

• Consists of bytes in blocks of storage drives

• A file is a composed of two components
• The file data itself

• One or more blocks (sectors) of binary data
• A file can contain anything

• Meta-data about the file
• Name, total size
• What directory is it in?
• Created time, modified time, access time
• Hidden or system file? 
• Owner and owner’s group
• Permissions: read/write/execute
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File Extensions

• File name are often written in dotted notation
• E.g. program.exe, image.jpg, music.mp3

• A file’s extension does not mean anything
• Any file (regardless of its contents) can be given any name or 

extension
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Rename

• Graphical shells (like Windows explorer) use extensions to try and 
match files  programs
– This mapping may fail for a variety of reasons

Has the data in the 
file changed from 

music to an image?



More File Meta-Data
• Files have additional meta-data that is not typically shown to users

• Unique identifier (file names may not be unique)
• Structure that maps the file to blocks on the disk

• Managing the mapping from files to blocks is one of the key jobs of 
the file system 

44

Disk



Mapping Files to Blocks

• Every file is composed of >=1 blocks
• Key question: how do we map a file to its blocks?
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0 2 3 4 5 7 91 86

[1] [4, 5, 7, 8] [6]

List of blocks

0 2 3 4 5 6 81 7 9

(1, 1) (4, 4) (9, 1)

As (start, length) pairs

• Problem?
– Really large files

• Problem?
– Fragmentation
– E.g. try to add a new file with 3 blocks



Directories

• Traditionally, file systems have used a hierarchical, tree-structured 
namespace

• Directories are objects that contain other objects
• i.e. a directory may (or may not) have children

• Files are leaves in the tree

• By default, directories contain at least two entries

46

/ (root) bin
python

.

..

“.” self pointer“..” points the the
parents directory



More on Directories

• Directories have associated meta-data
• Name, number of entries
• Created time, modified time, access time
• Permissions (read/write), owner, and group

• The file system must encode directories and store them on the disk
• Typically, directories are stored as a special type of file
• File contains a list of entries inside the directory, plus some meta-data 

for each entry
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Example Directory File
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2 3 4 5 6 7 8 9

Disk

C:\

Windows

Users

C:\

Name Index Dir? Perms

. 2 Y rwx

Windows 3 Y rwx

Users 4 Y rwx

pagefile.sys 5 N r

10

pagefile.sys



Directory File Implementation
• Each directory file stores many entries
• Key Question: how do you encode the entries?

Name Index Dir? Perms

. 2 Y rwx

Windows 3 Y rwx

Users 4 Y rwx

pagefile.sys 5 N r

Unordered List of Entries

• Good: O(1) to add new entries
– Just append to the file

• Bad: O(n) to search for an entry

Name Index Dir? Perms

. 2 Y rwx

pagefile.sys 5 N r

Users 4 Y rwx

Windows 3 Y rwx

Sorted List of Entries

• Good: O(log n) to search an entry
• Bad: O(n) to add new entries

– Entire file has the be rewritten 

• Other alternatives: hash tables, B-trees (will learn later)
• Implementing directory files is complicated



File Allocation Tables (FAT)

• Simple file system popularized by MS-DOS
• First introduced in 1977
• Most devices today use the FAT32 spec from 1996
• FAT12, FAT16, FAT32, etc.

• Still quite popular today
• Default format for USB sticks and memory cards
• Used for EFI boot partitions

• Name comes from the index table used to track directories and files
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Super 
BlockDisk

• Stores basic info about the file system
• FAT version, location of boot files
• Total number of blocks
• Index of the root directory in the FAT

• Store file and directory data
• Each block is a fixed size (4KB – 64KB)
• Files may span multiple blocks

• File allocation table (FAT)
• Marks which blocks are free or in-use
• Linked-list structure to manage large files



2 3 4 5 6 7 8 9
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Super 
BlockDisk

C:\

Windows

Users

2 3 4 5 6 7 8 9

Root directory 
index = 2

C:\

Name Index Dir? Perms

. 2 Y rwx

Windows 3 Y rwx

Users 4 Y rwx

pagefile.sys 5 N r

• Directories are special files
• File contains a list of entries inside the 

directory

• Possible values for FAT entries:
• 0 – entry is empty
• 1 – reserved by the OS
• 1 < N < 0xFFFF – next block in a chain
• 0xFFFF – end of a chain



Fat Table Entries

• len(FAT) == Number of clusters on the disk
• Max number of files/directories is bounded
• Decided when you format the partition

• The FAT version roughly corresponds to the size in bits of each FAT 
entry

• E.g. FAT16  each FAT entry is 16 bits
• More bits  larger disks are supported
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Fragmentation

• Blocks for a file need not be contiguous
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686765646362616059585756

0616705800xFF
FF

006500

686765646362616059585756

FAT

Blocks

Possible values for FAT entries:
• 0 – entry is empty
• 1 < N < 0xFFFF – next block in a chain
• 0xFFFF – end of a chain



FAT: The Good and the Bad

• The Good – FAT supports:
• Hierarchical tree of directories and files
• Variable length files
• Basic file and directory meta-data 

• The Bad
• FAT32 supports 2TB disks (with 512B cluster size)
• Locating free chunks requires scanning the entire FAT
• Prone to internal and external fragmentation

• Large blocks  internal fragmentation
• Reads require a lot of random seeking
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Lots of Seeking
• Consider the following code:

int fd = open(“my_file.txt”, “r”);
int r = read(fd, buffer, 1024 * 4 * 4); // 4 4KB blocks
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686765646362616059585756

60590057560630xFF
FF

00xFF
FF

67

686765646362616059585756

FAT

Blocks

FAT may have very low 
spatial locality, thus a 
lot of random seeking



Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3) 
• Extents and B-Trees (ext4)
• Log-based File Systems
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Status Check

• At this point, we have on-disk structures for:
• Building a directory tree
• Storing variable length files

• But, the efficiency of FAT is very low
• Lots of seeking over file chains in FAT
• Only way to identify free space is to scan over the entire FAT

• Linux file system uses more efficient structures
• Extended File System (ext) uses index nodes (inodes) to track files 

and directories
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Size Distribution of Files
• FAT uses a linked list for all files

• Simple and uniform mechanism
• … but, it is not optimized for short or long files

• Question: are short or long files more common?
• Studies over decades show that short files are much more common
• 2KB is the most common file size
• Average file size is 200KB (biased upward by a few very large files)

• Key idea: optimize the file system for many small files
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• Super block, storing:
• Size and location of bitmaps
• Number and location of inodes
• Number and location of data blocks
• Index of root inodes

Data blocks (4KB each)

Bitmap of free & 
used data blocks

• Table of inodes
• Each inode is a file/directory
• Includes meta-data and lists 

of associated data blocks

Bitmap of free & 
used inodes
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SB

/

bin

home alice

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

Root inode = 0

• Directories are files
• Contains the list of 

entries in the directory
Name inode

. 0

bin 1

home 2

initrd.img 3

• Each inode can directly point to 12 
blocks

• Can also indirectly point to blocks 
at 1, 2, and 3 levels of depth



ext2 inodes
Size (bytes) Name What is this field for?
2 mode Read/write/execute?
2 uid User ID of the file owner
4 size Size of the file in bytes
4 time Last access time
4 ctime Creation time
4 mtime Last modification time
4 dtime Deletion time
2 gid Group ID of the file
2 links_count How many hard links point to this file?
4 blocks How many data blocks are allocated to this file?
4 flags File or directory? Plus, other simple flags
60 block 15 direct and indirect pointers to data blocks
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inode Block Pointers

63

• Each inode is the root of an unbalanced tree of data blocks

15 total pointers

12 blocks * 
4KB = 48KB

230 blocks * 4KB = 4TB1024 blocks * 
4KB = 4MB 1024 * 1024 blocks * 4KB = 4GB

inode

Single 
Indirect

Double 
Indirect

Triple 
Indirect



Advantages of inodes

• Optimized for file systems with many small files
• Each inode can directly point to 48KB of data
• Only one layer of indirection needed for 4MB files

• Faster file access
• Greater meta-data locality  less random seeking
• No need to traverse long, chained FAT entries

• Easier free space management
• Bitmaps can be cached in memory for fast access
• inode and data space handled independently

64



File Reading Example

data inode root tmp file root tmp file[0] file[1] file[3]
op

en
(“

/t
m

p/
fil

e”
) read

read

read

read

read

read()

read

read

write

read()

read

read

write

read()

read

read

write

Bitmaps inodes Data Blocks

Update the last 
accessed time 

of the fileTi
m

e



File 
Create 
and 
Write 
Example

data inode root tmp file root tmp file[0]

op
en

(“
/t

m
p/

fil
e”

)

read

read

read

read

read

write

write

write

write

write()

read

read

write

write

write

Bitmaps inodes Data Blocks

Update the 
modified time 

of the directory

Ti
m

e



ext2 inodes, Again
Size (bytes) Name What is this field for?
2 mode Read/write/execute?
2 uid User ID of the file owner
4 size Size of the file in bytes
4 time Last access time
4 ctime Creation time
4 mtime Last modification time
4 dtime Deletion time
2 gid Group ID of the file
2 links_count How many hard links point to this file?
4 blocks How many data blocks are allocated to this file?
4 flags File or directory? Plus, other simple flags
60 block 15 direct and indirect pointers to data blocks
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Hard Link Example
• Multiple directory entries may point to the same inode

68

home

alice

bob

my_file

alice_file

[bob@cs3650 ~] ln –T ../alice/my_file alice_file

SB

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

1. Add an entry to the “bob” 
directory

2. Increase the link_count of the 
“my_file” inode



Hard Link Details

• Hard links give you the ability to create many aliases of the same 
underlying file

• Can be in different directories

• Target file will not be marked invalid (deleted) until link_count == 0
• This is why POSIX “delete” is called unlink()

• Disadvantage of hard links
• Inodes are only unique within a single file system
• Thus, can only point to files in the same partition
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Soft Links

• Soft links are special files that include the path to another file
• Also known as symbolic links
• On Windows, known as shortcuts
• File may be on another partition or device
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Soft Link Example

71

home

alice

bob

my_file

alice_file

[bob@cs3650 ~] ln –s ../alice/my_file alice_file

SB

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

1. Create a soft link file
2. Add it to the current 

directory



ext: The Good and the Bad
• The Good – ext file system (inodes) support:

• All the typical file/directory features
• Hard and soft links
• More performant (less seeking) than FAT

• The Bad: poor locality
• ext is optimized for a particular file size distribution
• However, it is not optimized for spinning disks
• inodes and associated data are far apart on the disk!
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Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems
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Status Check

• At this point, we’ve moved from FAT to ext
• inodes are imbalanced trees of data blocks
• Optimized for the common case: small files

• Problem: ext has poor locality
• inodes are far from their corresponding data
• This is going to result in long seeks across the disk

• Problem: ext is prone to fragmentation
• ext chooses the first available blocks for new data
• No attempt is made to keep the blocks of a file contiguous
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Fast File System (FFS)

• FFS developed at Berkeley in 1984
• First attempt at a disk aware file system
• i.e. optimized for performance on spinning disks

• Observation: processes tend to access files that are in the same (or 
close) directories

• Spatial locality

• Key idea: 
Place groups of directories and their files into cylinder groups

• Introduced into ext2, called block groups
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Block 
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Block Groups
• In ext, there is a single set of key data structures

• One data bitmap, one inode bitmap
• One inode table, one array of data blocks

• In ext2, each block group contains its own key data structures



Allocation Policy

• ext2 attempts to keep related files and directories within the same 
block group

home alicebob

SB Block 
Group 1

Block 
Group 2

Block 
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Block 
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Block 
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Block 
Group 6



ext2: The Good and the Bad

• The good – ext2 supports:
• All the features of ext…
• … with even better performance (because of increased spatial 

locality)

• The bad
• Large files must cross block groups
• As the file system becomes more complex, the chance of file system 

corruption grows
• E.g. invalid inodes, incorrect directory entries, etc.
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Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems

79



Status Check

• At this point, we have a full featured file system
• Directories
• Fine-grained data allocation
• Hard/soft links

• File system is optimized for spinning disks
• inodes are optimized for small files
• Block groups improve locality

• What’s next?
• Consistency and reliability
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Maintaining Consistency

• Many operations results in multiple, independent writes to the 
file system

• Example: append a block to an existing file
1. Update the free data bitmap
2. Update the inode
3. Write the user data

• What happens if the computer crashes in the middle of this 
process?
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File Append Example
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v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

owner: christo
permissions: rw
size: 1
pointer: 4
pointer: null
pointer: null 
pointer: null

Update the 
inode

v2 D2

Write the 
data

owner: alice
permissions: rw
size: 2
pointer: 4
pointer: 5
pointer: null 
pointer: null

Update the 
data bitmap

• These three operations can potentially be 
done in any order

• … but the system can crash at any time



v1 D1

Inode
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D2

Write the dataResult: file system is consistent, but the data is lost

v1 D1

Result: inode points to garbage data, and file 
system is inconsistent (data bitmap vs. inode)

v2

v1 D1

Result: space leakage, and file system is 
inconsistent (data bitmap vs. inode)

Update the 
data bitmap

Update the inode



v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

D2

Result: inode points to data, but file system is inconsistent

v1 D1

Result: file system is inconsistent, and the data is 
useless since it’s not associated with an inode

v1 D1

Result: file system is consistent, but the inode
points to garbage data

v2

D2

v2



The Crash Consistency Problem

• The disk guarantees that sector writes are atomic
• No way to make multi-sector writes atomic

• How to ensure consistency after a crash?
1. Don’t bother to ensure consistency

• Accept that the file system may be inconsistent after a crash
• Run a program that fixes the file system during bootup
• File system checker (fsck)

2. Use a transaction log to make multi-writes atomic
• Log stores a history of all writes to the disk
• After a crash the log can be “replayed” to finish updates
• Journaling file system
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Approach 1: File System Checker

• Key idea: fix inconsistent file systems during bootup
• Unix utility called fsck (chkdsk on Windows)
• Scans the entire file system multiple times, identifying and correcting 

inconsistencies

• Why during bootup?
• No other file system activity can be going on
• After fsck runs, bootup/mounting can continue
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fsck Tasks

• Superblock: validate the superblock, replace it with a backup if it is 
corrupted

• Free blocks and inodes: rebuild the bitmaps by scanning all inodes
• Reachability: make sure all inodes are reachable from the root of 

the file system
• inodes: delete all corrupted inodes, and rebuild their link counts 

by walking the directory tree
• directories: verify the integrity of all directories
• … and many other minor consistency checks
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fsck: the Good and the Bad

• Advantages of fsck
• Doesn’t require the file system to do any work to ensure consistency
• Makes the file system implementation simpler

• Disadvantages of fsck
• Very complicated to implement the fsck program

• Many possible inconsistencies that must be identified
• Many difficult corner cases to consider and handle

• fsck is super slow
• Scans the entire file system multiple times
• Imagine how long it would take to fsck a 40 TB RAID array
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Approach 2: Journaling

• Problem: fsck is slow because it checks the entire file system after 
a crash

• What if we knew where the last writes were before the crash, and 
just checked those?

• Key idea: make writes transactional by using a write-ahead log
• Commonly referred to as a journal

• Ext3 and NTFS use journaling

89

Superblock Block 
Group 0

Block 
Group 1 … Block 

Group N
Journal



Write-Ahead Log

• Key idea: writes to disk are first written into a log
• After the log is written, the writes execute normally
• In essence, the log records transactions

• What happens after a crash…
• If the writes to the log are interrupted?

• The transaction is incomplete
• The user’s data is lost, but the file system is consistent

• If the writes to the log succeed, but the normal writes are 
interrupted?

• The file system may be inconsistent, but…
• The log has exactly the right information to fix the problem
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Data Journaling Example

• Assume we are appending to a file
• Three writes: inode v2, data bitmap v2, data D2

• Before executing these writes, first log them
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D2B v2I v2TxB
ID=1

TxE
ID=1

1. Begin a new transaction with a unique ID=k
2. Write the updated meta-data block(s)
3. Write the file data block(s)
4. Write an end-of-transaction with ID=k



Commits and Checkpoints

• Transaction is committed after all writes to the log are complete
• After a transaction is committed, the OS checkpoints the update
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• Final step: free the checkpointed transaction

Committed!

Checkpointed!



Journal Implementation

• Journals are typically implemented as a circular buffer
• Journal is append-only

• OS maintains pointers to the front and back of the transactions in 
the buffer

• As transactions are freed, the back is moved up

• Thus, the contents of the journal are never deleted, they are just 
overwritten over time
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Crash Recovery (1)

• What if the system crashes during logging?
• If the transaction is not committed, data is lost
• But, the file system remains consistent
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Crash Recovery (2)

• What if the system crashes during the checkpoint?
• File system may be inconsistent
• During reboot, transactions that are committed but are not freed are 

replayed in order
• Thus, no data is lost and consistency is restored
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Corrupted Transactions

• Problem: the disk scheduler may not execute writes in-order
• Transactions in the log may appear committed, when in fact they are 

invalid
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Journal D2B v2I v2TxB TxE

• Transaction looks valid, 
but the data is missing!

• During replay, garbage 
data is written to the 
file system

• Solution: add a checksum to TxB
• During recovery, reject transactions 

with invalid checksums
• Implemented on Linux in ext4



Journaling: The Good and the Bad

• Advantages of journaling
• Robust, fast file system recovery

• No need to scan the entire journal or file system
• Relatively straight forward to implement

• Disadvantages of journaling
• Write traffic to the disk is doubled

• Especially the file data, which is probably large
• Deletes are very hard to correctly log

• Example in a few slides…
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Making Journaling Faster

• Journaling adds a lot of write overhead

• OSes typically batch updates to the journal
• Buffer writes in memory, then issue one large write to the log
• Example: ext3 batches updates for 5 seconds

• Tradeoff between performance and persistence
• Long batch interval = fewer, larger writes to the log

• Improved performance due to large sequential writes
• But, if there is a crash, everything in the buffer will be lost
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Meta-Data Journaling

• The most expensive part of journaling is writing the file data twice
• Meta-data is small (~1 sector), file data is large

• ext3 implements meta-data journaling
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Crash Recovery Redux (1)

• What if the system crashes during logging?
• If the transaction is not committed, data is lost
• D2 will eventually be overwritten
• The file system remains consistent
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Crash Recovery Redux (2)

• What if the system crashes during the checkpoint?
• File system may be inconsistent
• During reboot, transactions that are committed but not free are 

replayed in order
• Thus, no data is lost and consistency is restored
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Delete and Block Reuse

1. Create a directory: inode and data are written
2. Delete the directory: inode is removed
3. Create a file: inode and data are written
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The Trouble With Delete
• What happens when the log is replayed?
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TxE dirdirTxB TxE
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file data is overwritten 
by directory meta-data

dir

file data is not in the 
log, thus it is lost! :(



Handling Delete

• Strategy 1: don’t reuse blocks until the delete is checkpointed and 
freed

• Strategy 2: add a revoke record to the log
• ext3 used revoke records
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Journaling Wrap-Up

• Today, most OSes use journaling file systems
• ext3/ext4 on Linux
• NTFS on Windows

• Provides excellent crash recovery with relatively low space and 
performance overhead
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Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems
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Status Check

• At this point:
• We not only have a fast file system
• But it is also resilient against corruption

• What’s next?
• More efficiency improvements!
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Revisiting inodes

• Recall: inodes use indirection to acquire blocks of pointers

• Problem: inodes are not efficient for large files
• Example: for a 100MB file, you need 25600 block pointers 

(assuming 4KB blocks)

• This is unavoidable if the file is 100% fragmented
• However, what if large groups of blocks are contiguous?
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From Pointers to Extents

• Modern file systems try hard to minimize fragmentation
• Since it results in many seeks, thus low performance

• Extents are better suited for contiguous files
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inode
block 1
length 1
block 2
length 2
block 3
length 3

Each extent 
includes a block 

pointer and a 
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Implementing Extents

• ext4 and NTFS use extents

• ext4 inodes include 4 extents instead of block pointers
• Each extent can address at most 128MB of contiguous space 

(assuming 4KB blocks)
• If more extents are needed, a data block is allocated
• Similar to a block of indirect pointers
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Revisiting Directories

• In ext, ext2, and ext3, each directory is a file with a list of entries
• Entries are not stored in sorted order
• Some entries may be blank, if they have been deleted

• Problem: searching for files in large directories takes O(n) time
• Practically, you can’t store >10K files in a directory
• It takes way too long to locate and open files 
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From Lists to B-Trees

• ext4 and NTFS encode directories as B-Trees
• Improves lookup time to O(log N)

• A B-Tree is a type of balanced tree that is optimized for disks
• Items are stored in sorted order in blocks
• Each block stores between m and 2m items

(where m is the branching factor of the tree)

• Suppose items i and j are in the root of the tree
• The root must have 3 children, since it has 2 items
• The three child groups contain items a < i, i < a < j, and a > j
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Example B-Tree
• ext4 uses a B-Tree variant known as a H-Tree

• The H stands for hash (sometime called B+Tree)

• Suppose you try to open(“my_file”, “r”)
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hash(“my_file”) = 0x0000C194

H-Tree Node H-Tree Node

H-Tree Leaf

H-Tree Root

0x00AD1102 0xCFF1A412

H-Tree Leaf

H-Tree Node

0x0000C195 0x00018201

my_file inode

H-Tree Leaf

0x0000A0D1 0x0000C194



ext4: The Good and the Bad

• The good – ext4 (and NTFS) supports:
• All of the basic file system functionality we require
• Improved performance from ext3’s block groups
• Additional performance gains from extents and B-Tree directory files

• The bad:
• ext4 is an incremental improvement over ext3
• Next-gen file systems have even nicer features

• Copy-on-write semantics (btrfs and ZFS)
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Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems
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Status Check

• At this point:
• We have arrived at a modern file system like ext4

• What’s next?
• Go back to the drawing board and reevaluate from first-principals
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Reevaluating Disk Performance

• How has computer hardware been evolving?
• RAM has become cheaper and grown larger :)
• Random access seek times have remained very slow :(

• This changing dynamic alters how disks are used
• More data can be cached in RAM = less disk reads
• Thus, writes will dominate disk I/O

• Can we create a file system that is optimized for sequential writes?
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Log-structured File System

• Key idea: buffer all writes (including meta-data) in memory
• Write these long segments to disk sequentially
• Treat the disk as a circular buffer, i.e. don’t overwrite

• Advantages:
• All writes are large and sequential

• Big question:
• How do you manage meta-data and data in this kind of design?

118



Treating the Disk as a Log
• Same concept as data journaling

• Data and meta-data get appended to a log
• Stale data isn’t overwritten, its replaced
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Giant Log

Buffering Writes

• LFS buffers writes in-memory into chunks 
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How to Find inodes

• In a typical file system, the inodes are stored at fixed locations 
(relatively easy to find)

• How do you find inodes in the log?
• Remember, there may be multiple copies of a given inode

• Solution: add a level of indirection
• The traditional inode map can be broken into pieces
• When a portion of the inode map is updated, write it to the log!
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Giant Log

inode
map

N

inode Maps
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• New problem: the inode map is scattered throughout the log
• How do we find the most up-to-date pieces?



The Checkpoint Region

• The superblock in LFS contains pointers to all of the up-to-date 
inode maps

• The checkpoint region is always cached in memory
• Written periodically to disk, say ~30 seconds
• Only part of LFS that isn’t maintained in the log
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How to Read a File in LFS
• Suppose you want to read inode 1

1. Look up inode 1 in the checkpoint region
• inode map containing inode 1 is in sector X

2. Read the inode map at sector X
• inode 1 is in sector Y

3. Read inode 1
• File data is in sectors A, B, C, etc.
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Directories in LFS

• Directories are stored just like in typical file systems
• Directory data stored in a file
• inode points to the directory file
• Directory file contains name  inode mappings

125

inode
map

NDi
sk

Data 
Block 

1

Data 
Block 

2

Data 
Block 

3

Data 
Block 

4

inode
1

Dir
Data 

1

inode
2CR



Garbage

• Over time, the log is going to fill up with stale data
• Highly fragmented: live data mixed with stale data

• Periodically, the log must be garbage collected
• Disk regions are managed in a segment granularity
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Garbage Collection in LFS
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Summary block

• Each cluster has a summary block
• Contains the block  inode mapping for each block in the cluster

• To check liveness, the GC reads each file with blocks in the cluster
• If the current info doesn’t match the summary, blocks are stale

• Which blocks are stale?
• Pointers from other 

clusters are invisible



An Idea Whose Time Has Come

• LFS seems like a very strange design
• Totally unlike traditional file system structures
• Doesn’t map well to our ideas about directory hierarchies

• Initially, people did not like LFS

• However, today it’s features are widely used
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File Systems for SSDs

• SSD hardware constraints
• Wear leveling: writes must be spread across the blocks of flash
• Periodically, old blocks need to be garbage collected to prevent 

write-amplification

• Does this sounds familiar?

• LFS is the ideal file system for SSDs!

• Internally, SSDs manage all files in a LFS-like fashion
• This is transparent to the OS and end-users
• Ideal for wear-leveling and avoiding write-amplification 
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Copy-on-write

• Modern file systems incorporate ideas from LFS
• Copy-on-write semantics

• Updated data is written to empty space on disk, rather than 
overwriting the original data

• Helps prevent data corruption, improves sequential write 
performance

• Pioneered by LFS, now used in ZFS and btrfs
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Versioning File Systems

• LFS keeps old copies of data by default
• Old versions of files may be useful!

• Example: accidental file deletion
• Example: accidentally doing open(file, ‘w’) on a file full of data

• Turn LFS flaw into a virtue

• Many modern file systems are versioned
• Old copies of data are exposed to the user
• The user may roll-back a file to recover old versions
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