
File Systems

Week 12 and 13

CS 3650 Computer Systems – Spring 2023

* Acknowledgements: created based on Christo Wilson’s lecture slides for the same course.

Storage media

2

Storage media types

• Hard Drives
• SSD

3

Hard Drive Hardware

4

A Multi-Platter Disk

5

Addressing and Geometry
• Externally, hard drives expose a large number of sectors (blocks)

• Typically 512 or 4096 bytes
• Individual sector writes are atomic
• Multiple sectors writes may be interrupted (torn write)

• Drive geometry
• Sectors arranged into tracks
• Tracks arranged in concentric circles on platters
• A disk may have multiple, double-sided platters
• A cylinder is tracks on multiple platters

• Drive motor spins the platters at a constant rate
• Measured in rotations per minute (RPM)

6

Geometry Example

7

0

1

4

8

12

34

28

32

30

3529

3331

27

24

21

18

25

26

17

16

23

22

20

19

13

14

15

2
3

11

10

9

6
5

7

Ro
ta

tio
n

Three tracks

One platter

Sector

Outer tracks hold
more data

Read head

Seeks across the
various tracks

Common Disk Interfaces

• ST-506  ATA  IDE  SATA
• Ancient standard
• Commands (read/write) and addresses in cylinder/head/sector

format placed in device registers
• Recent versions support Logical Block Addresses (LBA)

• SCSI (Small Computer Systems Interface)
• Packet based, like TCP/IP
• Device translates LBA to internal format
• Transport independent

• USB drives, CD/DVD/Bluray, Firewire
• iSCSI is SCSI over TCP/IP and Ethernet

8

Types of Delay With Disks

9

Three types of delay
1. Rotational Delay

• Time to rotate the desired sector
to the read head

• Related to RPM

2. Seek delay
• Time to move the read head to a

different track

3. Transfer time
• Time to read or write bytes

0

1

4

8

12

34

28

32

30

3529

3331

27

24

21

18

25

26

17

16

23

22

20

19

13

14

15

2
3

11

10

9

6
5

7

Short delay

Long delay

Track skew: offset sectors so
that sequential reads across

tracks incorporate seek delay

How To Calculate Transfer Time

Cheetah 15K.5 Barracuda

Capacity 300 GB 1 TB

RPM 15000 7200

Avg. Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

10

Transfer time
TI/O = Tseek + Trotation + Ttransfer

Assume we are transferring
4096 bytes

TI/O = 4 ms + 1 / (15000 RPM / 60 s/M / 1000 ms/s) / 2
+ (4096 B / 125 MB/s * 1000 ms/s / 220 MB/B)

TI/O = 4 ms + 2ms + 0.03125 ms ≈ 6 msCh
ee

ta
h

Ba
rr

ac
ud

a TI/O = 9 ms + 1 / (7200 RPM / 60 s/M / 1000 ms/s) / 2
+ (4096 B / 105 MB/s * 1000 ms/s / 220 MB/B)

TI/O = 9 ms + 4.17 ms + 0.0372 ms ≈ 13.2 ms

Sequential vs. Random Access
Rate of I/O

RI/O = transfer_size / TI/O

11

Access Type Transfer Size Cheetah 15K.5 Barracuda

Random 4096 B
TI/O 6 ms 13.2 ms

RI/O 0.66 MB/s 0.31 MB/s

Sequential 100 MB
TI/O 800 ms 950 ms

RI/O 125 MB/s 105 MB/s

Max Transfer Rate 125 MB/s 105MB/s

Random I/O results in very
poor disk performance!

1 disk seek + 1 rotation +
continuous data transfer

Storage media types

• Hard Drives
• SSD

12

Beyond Spinning Disks

• Hard drives have been around since 1956
• The cheapest way to store large amounts of data
• Sizes are still increasing rapidly

• However, hard drives are typically the slowest component in
most computers

• CPU and RAM operate at GHz
• PCI-X and Ethernet are GB/s

• Hard drives are not suitable for mobile devices
• Fragile mechanical components can break
• The disk motor is extremely power hungry

13

Solid State Drives

• NAND flash memory-based drives
• High voltage is able to change the configuration of a floating-gate

transistor
• State of the transistor interpreted as binary data

14

Flash memory
chip

Data is striped
across all chips

(design varies by
vendors)

Advantages of SSDs
• More resilient against physical damage

• No sensitive read head or moving parts
• Immune to changes in temperature

• Greatly reduced power consumption
• No mechanical, moving parts

• Much faster than hard drives
• >500 MB/s vs ~200 MB/s for hard drives
• Little or no penalty for random access

• Each flash cell can be addressed directly
• No need to rotate or seek

• Extremely high throughput
• Although each flash chip is slow, they are RAIDed

15

HDD vs SSD price trends (by western digital)

16Source: https://www.anandtech.com/show/11925/western-digital-stuns-storage-industry-with-mamr-breakthrough-for-nextgen-hdds

Challenges with Flash

• Flash memory is written in pages, but erased in blocks
• Pages: 4 – 16 KB, Blocks: 128 – 256 KB
• Thus, flash memory can become fragmented
• Leads to the write amplification problem

• Flash memory can only be written a fixed number of times
• Typically 3000 – 5000 cycles for MLC
• SSDs use wear leveling to evenly distribute writes across all flash cells

17

Write Amplification

• Once all pages have been written, valid pages must be
consolidated to free up space

• Write amplification: a write triggers garbage
collection/compaction

• One or more blocks must be read, erased, and rewritten before
the write can proceed

18

Block X Block Y

A

B

C

D

E

F

G

A’

B’

C’

D’

E’

F’

D’’

E’’

F’’

H

I

J

A’’’

B’’’

A’’

B’’

C’’
Stale pages
cannot be

overwritten
or erased

individually

GK

L

G moved to new block
by the garbage collector

Cleaned
block can
now be

rewritten

Garbage Collection

• Garbage collection (GC) is vital for the performance of SSDs
• Older SSDs had fast writes up until all pages were written once

• Even if the drive has lots of “free space,” each write is amplified,
thus reducing performance

• Many SSDs over-provision to help the GC
• 240 GB SSDs actually have 256 GB of memory

• Modern SSDs implement background GC
• However, this doesn’t always work correctly

19

The Ambiguity of Delete

• Goal: the SSD wants to perform background GC
• But this assumes the SSD knows which pages are invalid

• Problem: most file systems don’t actually delete data
• On Linux, the “delete” function is unlink()
• Removes the file meta-data, but not the file itself

20

Delete Example

1. File is written to SSD
2. File is deleted
3. The GC executes

• 9 pages look valid to the SSD
• The OS knows only 2 pages are valid

21

Block X

Meta

Meta

File

File

File

File

File

File

File

Meta

Meta

File metadata
(inode, name,

etc.)

Metadata is
overwritten,
but the file

remains

• Lack of explicit delete
means the GC wastes effort
copying useless pages

• Hard drives are not GCed, so
this was never a problem

TRIM
• New SATA command TRIM (SCSI – UNMAP)

• Allows the OS to tell the SSD that specific LBAs are invalid, may
be GCed

22

• OS support for TRIM
– Win 7, OSX Snow Leopard, Linux 2.6.33, Android 4.3

• Must be supported by the SSD firmware

Block X

Meta

Meta

File

File

File

File

File

File

File

Meta

Meta

TRIM

Wear Leveling

• Recall: each flash cell wears out after several thousand writes

• SSDs use wear leveling to spread writes across all cells
• Typical consumer SSDs should last ~5 years

• Wear-leveling strategies
• GC blocks with fewer valid data (= reduces write amplification)
• GC blocks with fewer erase count (= even wearing of blocks)
• Periodically Move long-lived data around

23

Wear Leveling Examples

24

Block X Block Y

A

B

C

D

E

F

G

A’

B’

C’

D’

E’

F’

D’’

E’’

F’’

H

I

G’

A’’’

B’’’

A’’

B’’

C’’K

L

Wait as long
as possible

before
garbage

collecting

Block X Block Y

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

M’

N’

O’

M’’

N’’

O’’

M’’’

N’’’

O’’’

M*

N*

O*

A

B

C

D

E

F

G

H

I

J

K

L

M*

N*

SSD controller periodically swap long
lived data to different blocks

Blocks with
long lived

data receive
less wear

If the GC runs now, page
G must be copied

O*

SSD Controllers

• SSDs are extremely complicated internally

• All operations handled by the SSD controller
• Maps LBAs to physical pages
• Keeps track of free pages, controls the GC
• May implement background GC
• Performs wear leveling via data rotation

• Controller performance is crucial for overall SSD performance

• Modern SSDs are embedded systems
• Has multiple embedded processors and embedded OS runs on top

25

Flavors of NAND Flash Memory

Multi-Level Cell (MLC)
• One bit per flash cell

• 0 or 1

• Lower capacity and more
expensive than MLC flash

• Higher throughput than MLC
• 10,000 – 100,000 write cycles

Expensive, enterprise drives

Single-Level Cell (SLC)
• Multiple bits per flash cell

• For two-level: 00, 01, 10, 11
• 2, 3, and 4-bit MLC is

available
• Higher capacity and cheaper

than SLC flash
• Lower throughput due to the

need for error correction
• 3,000 – 5,000 write cycles
• Consumes more power

Consumer-grade drives

26

File Systems

27

Learning objectives

• We talked about hard drives and SSDs
• How they work
• Performance characteristics

• We will look into managing storage
• Disks/SSDs offer a blank slate of empty blocks
• How do we store files on these devices, and keep track of them?
• How do we maintain high performance?
• How do we maintain consistency in the face of random crashes?

28

Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems

29

Building the Root File System

• One of the first tasks of an OS during bootup is to build the root
file system

1. Locate all bootable media
• Internal and external hard disks
• SSDs
• Floppy disks, CDs, DVDs, USB sticks

2. Locate all the partitions on each media
• Read MBR(s), extended partition tables, etc.

3. Mount one or more partitions
• Makes the file system(s) available for access

30

MBR Partition 1
(ext3)

Partition 2
(swap)

Partition 3
(NTFS)

Partition 4
(FAT32)

The Master Boot Record

31

Address
Description Size

(Bytes)Hex Dec.

0x000 0 Bootstrap code area 446

0x1BE 446 Partition Entry #1 16

0x1CE 462 Partition Entry #2 16

0x1DE 478 Partition Entry #3 16

0x1EE 494 Partition Entry #4 16

0x1FE 510 Magic Number 2

Total: 512

Includes the starting
LBA and length of

the partition

Di
sk

 1

MBR Partition 1
(NTFS)Di

sk
 2

Extended Partitions

• In some cases, you may want >4 partitions
• Modern OSes support extended partitions

32

Partition 1
(ext3)

Partition 2
(swap)

Partition 3
(Extended Partition)

Partition 4
(FAT32)Di

sk
 1 Logical

Partition 1
(NTFS)

Logical
Partition 2

(NTFS)

• Extended partitions may use OS-specific partition table formats
(meta-data)
– Thus, other OSes may not be able to read the logical partitions

MBR Ext.
Part.

Types of Root File Systems

• Windows exposes a multi-rooted system
• Each device and partition is assigned a letter
• Internally, a single root is maintained

• Linux has a single root
• One partition is mounted as /
• All other partitions are mounted somewhere under /

• Typically, the partition containing the kernel is mounted as / or C:
33

[khoury@cs3650 ~] df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda7 39G 14G 23G 38% /
/dev/sda2 296M 48M 249M 16% /boot/efi
/dev/sda5 127G 86G 42G 68% /media/khoury/Data1
/dev/sda4 61G 34G 27G 57% /media/khoury/Data2
/dev/sdb1 1.9G 352K 1.9G 1% /media/khoury/MiscData

1 drive, 4
partitions

1drive, 1
partition

Mounting a File System

1. Read the super block for the target file system
• Contains meta-data about the file system
• Version, size, locations of key structures on disk, etc.

2. Determine the mount point
• On Windows: pick a drive letter
• On Linux: mount the new file system under a specific directory

34

Filesystem Size Used Avail Use% Mounted on
/dev/sda5 127G 86G 42G 68% /media/khoury/Data1
/dev/sda4 61G 34G 27G 57% /media/khoury/Data2
/dev/sdb1 1.9G 352K 1.9G 1% /media/khoury/MiscData

Virtual File System Interface

• Problem:
OS may mount several partitions containing different file systems

Do processes have to use different APIs for different file systems?

• Linux uses a Virtual File System interface (VFS)
• Exposes POSIX APIs to processes
• Forwards requests to lower-level file system specific drivers

• Windows uses a similar system

35

VFS Flowchart

36

Ke
rn

el

Process 1 Process 2 Process 3

Virtual File System Interface

ext3 Driver NTFS Driver FAT32 Driver

ext3 Partition NTFS Partition FAT32 Partition

Processes (usually) don’t need to know
about low-level file system details

Relatively simple to
add additional file

system drivers

Mount isn’t Just for Bootup

• When you plug storage devices into your running
system, mount is executed in the background

• Example: plugging in a USB stick

• What does it mean to “safely eject” a device?
• Flush cached writes to that device
• Cleanly unmount the file system on that device

37

Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems

38

Status Check

• At this point, the OS can locate and mount partitions

• Next step: what is the on-disk layout of the file system?
• We expect certain features from a file system

• Named files
• Nested hierarchy of directories
• Meta-data like creation time, file permissions, etc.

• How do we design on-disk structures that support these features?

39

The Directory Tree

• Navigated using a path
• E.g. /home/bob/music.mp3

40

home

/ (root)

bin

tmp

python

alice

bob

cs3650

Absolute and Relative Paths
• Two types of file system paths

• Absolute
• Full path from the root to the object
• Example: /home/alice/cs3650/hw4.pdf
• Example: C:\Users\alice\Documents\

• Relative
• OS keeps track of the working directory for each process
• Path relative to the current working directory
• Examples [working directory = /home/alice]:

• syllabus.docx [ /home/alice/syllabus.docx]
• cs3650/hw4.pdf [ /home/alice/cs3650/hw4.pdf]
• ./cs3650/hw4.pdf [ /home/alice/cs3650/hw4.pdf]
• ../bob/music.mp3 [ /home/bob/music.mp3]

41

Files
• A file is just a representation of data

• Consists of bytes in blocks of storage drives

• A file is a composed of two components
• The file data itself

• One or more blocks (sectors) of binary data
• A file can contain anything

• Meta-data about the file
• Name, total size
• What directory is it in?
• Created time, modified time, access time
• Hidden or system file?
• Owner and owner’s group
• Permissions: read/write/execute

42

File Extensions

• File name are often written in dotted notation
• E.g. program.exe, image.jpg, music.mp3

• A file’s extension does not mean anything
• Any file (regardless of its contents) can be given any name or

extension

43

Rename

• Graphical shells (like Windows explorer) use extensions to try and
match files  programs
– This mapping may fail for a variety of reasons

Has the data in the
file changed from

music to an image?

More File Meta-Data
• Files have additional meta-data that is not typically shown to users

• Unique identifier (file names may not be unique)
• Structure that maps the file to blocks on the disk

• Managing the mapping from files to blocks is one of the key jobs of
the file system

44

Disk

Mapping Files to Blocks

• Every file is composed of >=1 blocks
• Key question: how do we map a file to its blocks?

45

0 2 3 4 5 7 91 86

[1] [4, 5, 7, 8] [6]

List of blocks

0 2 3 4 5 6 81 7 9

(1, 1) (4, 4) (9, 1)

As (start, length) pairs

• Problem?
– Really large files

• Problem?
– Fragmentation
– E.g. try to add a new file with 3 blocks

Directories

• Traditionally, file systems have used a hierarchical, tree-structured
namespace

• Directories are objects that contain other objects
• i.e. a directory may (or may not) have children

• Files are leaves in the tree

• By default, directories contain at least two entries

46

/ (root) bin
python

.

..

“.” self pointer“..” points the the
parents directory

More on Directories

• Directories have associated meta-data
• Name, number of entries
• Created time, modified time, access time
• Permissions (read/write), owner, and group

• The file system must encode directories and store them on the disk
• Typically, directories are stored as a special type of file
• File contains a list of entries inside the directory, plus some meta-data

for each entry

47

Example Directory File

48

2 3 4 5 6 7 8 9

Disk

C:\

Windows

Users

C:\

Name Index Dir? Perms

. 2 Y rwx

Windows 3 Y rwx

Users 4 Y rwx

pagefile.sys 5 N r

10

pagefile.sys

Directory File Implementation
• Each directory file stores many entries
• Key Question: how do you encode the entries?

Name Index Dir? Perms

. 2 Y rwx

Windows 3 Y rwx

Users 4 Y rwx

pagefile.sys 5 N r

Unordered List of Entries

• Good: O(1) to add new entries
– Just append to the file

• Bad: O(n) to search for an entry

Name Index Dir? Perms

. 2 Y rwx

pagefile.sys 5 N r

Users 4 Y rwx

Windows 3 Y rwx

Sorted List of Entries

• Good: O(log n) to search an entry
• Bad: O(n) to add new entries

– Entire file has the be rewritten

• Other alternatives: hash tables, B-trees (will learn later)
• Implementing directory files is complicated

File Allocation Tables (FAT)

• Simple file system popularized by MS-DOS
• First introduced in 1977
• Most devices today use the FAT32 spec from 1996
• FAT12, FAT16, FAT32, etc.

• Still quite popular today
• Default format for USB sticks and memory cards
• Used for EFI boot partitions

• Name comes from the index table used to track directories and files

50

51

Super
BlockDisk

• Stores basic info about the file system
• FAT version, location of boot files
• Total number of blocks
• Index of the root directory in the FAT

• Store file and directory data
• Each block is a fixed size (4KB – 64KB)
• Files may span multiple blocks

• File allocation table (FAT)
• Marks which blocks are free or in-use
• Linked-list structure to manage large files

2 3 4 5 6 7 8 9

52

Super
BlockDisk

C:\

Windows

Users

2 3 4 5 6 7 8 9

Root directory
index = 2

C:\

Name Index Dir? Perms

. 2 Y rwx

Windows 3 Y rwx

Users 4 Y rwx

pagefile.sys 5 N r

• Directories are special files
• File contains a list of entries inside the

directory

• Possible values for FAT entries:
• 0 – entry is empty
• 1 – reserved by the OS
• 1 < N < 0xFFFF – next block in a chain
• 0xFFFF – end of a chain

Fat Table Entries

• len(FAT) == Number of clusters on the disk
• Max number of files/directories is bounded
• Decided when you format the partition

• The FAT version roughly corresponds to the size in bits of each FAT
entry

• E.g. FAT16  each FAT entry is 16 bits
• More bits  larger disks are supported

53

Fragmentation

• Blocks for a file need not be contiguous

54

686765646362616059585756

0616705800xFF
FF

006500

686765646362616059585756

FAT

Blocks

Possible values for FAT entries:
• 0 – entry is empty
• 1 < N < 0xFFFF – next block in a chain
• 0xFFFF – end of a chain

FAT: The Good and the Bad

• The Good – FAT supports:
• Hierarchical tree of directories and files
• Variable length files
• Basic file and directory meta-data

• The Bad
• FAT32 supports 2TB disks (with 512B cluster size)
• Locating free chunks requires scanning the entire FAT
• Prone to internal and external fragmentation

• Large blocks  internal fragmentation
• Reads require a lot of random seeking

55

Lots of Seeking
• Consider the following code:

int fd = open(“my_file.txt”, “r”);
int r = read(fd, buffer, 1024 * 4 * 4); // 4 4KB blocks

56

686765646362616059585756

60590057560630xFF
FF

00xFF
FF

67

686765646362616059585756

FAT

Blocks

FAT may have very low
spatial locality, thus a
lot of random seeking

Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems

57

Status Check

• At this point, we have on-disk structures for:
• Building a directory tree
• Storing variable length files

• But, the efficiency of FAT is very low
• Lots of seeking over file chains in FAT
• Only way to identify free space is to scan over the entire FAT

• Linux file system uses more efficient structures
• Extended File System (ext) uses index nodes (inodes) to track files

and directories

58

Size Distribution of Files
• FAT uses a linked list for all files

• Simple and uniform mechanism
• … but, it is not optimized for short or long files

• Question: are short or long files more common?
• Studies over decades show that short files are much more common
• 2KB is the most common file size
• Average file size is 200KB (biased upward by a few very large files)

• Key idea: optimize the file system for many small files

59

60

• Super block, storing:
• Size and location of bitmaps
• Number and location of inodes
• Number and location of data blocks
• Index of root inodes

Data blocks (4KB each)

Bitmap of free &
used data blocks

• Table of inodes
• Each inode is a file/directory
• Includes meta-data and lists

of associated data blocks

Bitmap of free &
used inodes

61

SB

/

bin

home alice

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

Root inode = 0

• Directories are files
• Contains the list of

entries in the directory
Name inode

. 0

bin 1

home 2

initrd.img 3

• Each inode can directly point to 12
blocks

• Can also indirectly point to blocks
at 1, 2, and 3 levels of depth

ext2 inodes
Size (bytes) Name What is this field for?
2 mode Read/write/execute?
2 uid User ID of the file owner
4 size Size of the file in bytes
4 time Last access time
4 ctime Creation time
4 mtime Last modification time
4 dtime Deletion time
2 gid Group ID of the file
2 links_count How many hard links point to this file?
4 blocks How many data blocks are allocated to this file?
4 flags File or directory? Plus, other simple flags
60 block 15 direct and indirect pointers to data blocks

62

inode Block Pointers

63

• Each inode is the root of an unbalanced tree of data blocks

15 total pointers

12 blocks *
4KB = 48KB

230 blocks * 4KB = 4TB1024 blocks *
4KB = 4MB 1024 * 1024 blocks * 4KB = 4GB

inode

Single
Indirect

Double
Indirect

Triple
Indirect

Advantages of inodes

• Optimized for file systems with many small files
• Each inode can directly point to 48KB of data
• Only one layer of indirection needed for 4MB files

• Faster file access
• Greater meta-data locality  less random seeking
• No need to traverse long, chained FAT entries

• Easier free space management
• Bitmaps can be cached in memory for fast access
• inode and data space handled independently

64

File Reading Example

data inode root tmp file root tmp file[0] file[1] file[3]
op

en
(“

/t
m

p/
fil

e”
) read

read

read

read

read

read()

read

read

write

read()

read

read

write

read()

read

read

write

Bitmaps inodes Data Blocks

Update the last
accessed time

of the fileTi
m

e

File
Create
and
Write
Example

data inode root tmp file root tmp file[0]

op
en

(“
/t

m
p/

fil
e”

)

read

read

read

read

read

write

write

write

write

write()

read

read

write

write

write

Bitmaps inodes Data Blocks

Update the
modified time

of the directory

Ti
m

e

ext2 inodes, Again
Size (bytes) Name What is this field for?
2 mode Read/write/execute?
2 uid User ID of the file owner
4 size Size of the file in bytes
4 time Last access time
4 ctime Creation time
4 mtime Last modification time
4 dtime Deletion time
2 gid Group ID of the file
2 links_count How many hard links point to this file?
4 blocks How many data blocks are allocated to this file?
4 flags File or directory? Plus, other simple flags
60 block 15 direct and indirect pointers to data blocks

67

Hard Link Example
• Multiple directory entries may point to the same inode

68

home

alice

bob

my_file

alice_file

[bob@cs3650 ~] ln –T ../alice/my_file alice_file

SB

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

1. Add an entry to the “bob”
directory

2. Increase the link_count of the
“my_file” inode

Hard Link Details

• Hard links give you the ability to create many aliases of the same
underlying file

• Can be in different directories

• Target file will not be marked invalid (deleted) until link_count == 0
• This is why POSIX “delete” is called unlink()

• Disadvantage of hard links
• Inodes are only unique within a single file system
• Thus, can only point to files in the same partition

69

Soft Links

• Soft links are special files that include the path to another file
• Also known as symbolic links
• On Windows, known as shortcuts
• File may be on another partition or device

70

Soft Link Example

71

home

alice

bob

my_file

alice_file

[bob@cs3650 ~] ln –s ../alice/my_file alice_file

SB

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

1. Create a soft link file
2. Add it to the current

directory

ext: The Good and the Bad
• The Good – ext file system (inodes) support:

• All the typical file/directory features
• Hard and soft links
• More performant (less seeking) than FAT

• The Bad: poor locality
• ext is optimized for a particular file size distribution
• However, it is not optimized for spinning disks
• inodes and associated data are far apart on the disk!

72

SB

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems

73

Status Check

• At this point, we’ve moved from FAT to ext
• inodes are imbalanced trees of data blocks
• Optimized for the common case: small files

• Problem: ext has poor locality
• inodes are far from their corresponding data
• This is going to result in long seeks across the disk

• Problem: ext is prone to fragmentation
• ext chooses the first available blocks for new data
• No attempt is made to keep the blocks of a file contiguous

74

Fast File System (FFS)

• FFS developed at Berkeley in 1984
• First attempt at a disk aware file system
• i.e. optimized for performance on spinning disks

• Observation: processes tend to access files that are in the same (or
close) directories

• Spatial locality

• Key idea:
Place groups of directories and their files into cylinder groups

• Introduced into ext2, called block groups

75

76

SB

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

Block
Group 1

Block
Group 2

Block
Group 3

Block
Group 4

Block
Group 5

Block
Group 6

Block Groups
• In ext, there is a single set of key data structures

• One data bitmap, one inode bitmap
• One inode table, one array of data blocks

• In ext2, each block group contains its own key data structures

Allocation Policy

• ext2 attempts to keep related files and directories within the same
block group

home alicebob

SB Block
Group 1

Block
Group 2

Block
Group 3

Block
Group 4

Block
Group 5

Block
Group 6

ext2: The Good and the Bad

• The good – ext2 supports:
• All the features of ext…
• … with even better performance (because of increased spatial

locality)

• The bad
• Large files must cross block groups
• As the file system becomes more complex, the chance of file system

corruption grows
• E.g. invalid inodes, incorrect directory entries, etc.

78

Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems

79

Status Check

• At this point, we have a full featured file system
• Directories
• Fine-grained data allocation
• Hard/soft links

• File system is optimized for spinning disks
• inodes are optimized for small files
• Block groups improve locality

• What’s next?
• Consistency and reliability

80

Maintaining Consistency

• Many operations results in multiple, independent writes to the
file system

• Example: append a block to an existing file
1. Update the free data bitmap
2. Update the inode
3. Write the user data

• What happens if the computer crashes in the middle of this
process?

81

File Append Example

82

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

owner: christo
permissions: rw
size: 1
pointer: 4
pointer: null
pointer: null
pointer: null

Update the
inode

v2 D2

Write the
data

owner: alice
permissions: rw
size: 2
pointer: 4
pointer: 5
pointer: null
pointer: null

Update the
data bitmap

• These three operations can potentially be
done in any order

• … but the system can crash at any time

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

D2

Write the dataResult: file system is consistent, but the data is lost

v1 D1

Result: inode points to garbage data, and file
system is inconsistent (data bitmap vs. inode)

v2

v1 D1

Result: space leakage, and file system is
inconsistent (data bitmap vs. inode)

Update the
data bitmap

Update the inode

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

D2

Result: inode points to data, but file system is inconsistent

v1 D1

Result: file system is inconsistent, and the data is
useless since it’s not associated with an inode

v1 D1

Result: file system is consistent, but the inode
points to garbage data

v2

D2

v2

The Crash Consistency Problem

• The disk guarantees that sector writes are atomic
• No way to make multi-sector writes atomic

• How to ensure consistency after a crash?
1. Don’t bother to ensure consistency

• Accept that the file system may be inconsistent after a crash
• Run a program that fixes the file system during bootup
• File system checker (fsck)

2. Use a transaction log to make multi-writes atomic
• Log stores a history of all writes to the disk
• After a crash the log can be “replayed” to finish updates
• Journaling file system

85

Approach 1: File System Checker

• Key idea: fix inconsistent file systems during bootup
• Unix utility called fsck (chkdsk on Windows)
• Scans the entire file system multiple times, identifying and correcting

inconsistencies

• Why during bootup?
• No other file system activity can be going on
• After fsck runs, bootup/mounting can continue

86

fsck Tasks

• Superblock: validate the superblock, replace it with a backup if it is
corrupted

• Free blocks and inodes: rebuild the bitmaps by scanning all inodes
• Reachability: make sure all inodes are reachable from the root of

the file system
• inodes: delete all corrupted inodes, and rebuild their link counts

by walking the directory tree
• directories: verify the integrity of all directories
• … and many other minor consistency checks

87

fsck: the Good and the Bad

• Advantages of fsck
• Doesn’t require the file system to do any work to ensure consistency
• Makes the file system implementation simpler

• Disadvantages of fsck
• Very complicated to implement the fsck program

• Many possible inconsistencies that must be identified
• Many difficult corner cases to consider and handle

• fsck is super slow
• Scans the entire file system multiple times
• Imagine how long it would take to fsck a 40 TB RAID array

88

Approach 2: Journaling

• Problem: fsck is slow because it checks the entire file system after
a crash

• What if we knew where the last writes were before the crash, and
just checked those?

• Key idea: make writes transactional by using a write-ahead log
• Commonly referred to as a journal

• Ext3 and NTFS use journaling

89

Superblock Block
Group 0

Block
Group 1 … Block

Group N
Journal

Write-Ahead Log

• Key idea: writes to disk are first written into a log
• After the log is written, the writes execute normally
• In essence, the log records transactions

• What happens after a crash…
• If the writes to the log are interrupted?

• The transaction is incomplete
• The user’s data is lost, but the file system is consistent

• If the writes to the log succeed, but the normal writes are
interrupted?

• The file system may be inconsistent, but…
• The log has exactly the right information to fix the problem

90

Data Journaling Example

• Assume we are appending to a file
• Three writes: inode v2, data bitmap v2, data D2

• Before executing these writes, first log them

91

Jo
ur

na
l

D2B v2I v2TxB
ID=1

TxE
ID=1

1. Begin a new transaction with a unique ID=k
2. Write the updated meta-data block(s)
3. Write the file data block(s)
4. Write an end-of-transaction with ID=k

Commits and Checkpoints

• Transaction is committed after all writes to the log are complete
• After a transaction is committed, the OS checkpoints the update

92

Journal D2B v2I v2TxB TxE

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

v2 D2

• Final step: free the checkpointed transaction

Committed!

Checkpointed!

Journal Implementation

• Journals are typically implemented as a circular buffer
• Journal is append-only

• OS maintains pointers to the front and back of the transactions in
the buffer

• As transactions are freed, the back is moved up

• Thus, the contents of the journal are never deleted, they are just
overwritten over time

93

Crash Recovery (1)

• What if the system crashes during logging?
• If the transaction is not committed, data is lost
• But, the file system remains consistent

94

Journal D2B v2I v2TxB

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

Crash Recovery (2)

• What if the system crashes during the checkpoint?
• File system may be inconsistent
• During reboot, transactions that are committed but are not freed are

replayed in order
• Thus, no data is lost and consistency is restored

95

Journal D2B v2I v2TxB TxE

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

v2 D2

Corrupted Transactions

• Problem: the disk scheduler may not execute writes in-order
• Transactions in the log may appear committed, when in fact they are

invalid

96

Journal D2B v2I v2TxB TxE

• Transaction looks valid,
but the data is missing!

• During replay, garbage
data is written to the
file system

• Solution: add a checksum to TxB
• During recovery, reject transactions

with invalid checksums
• Implemented on Linux in ext4

Journaling: The Good and the Bad

• Advantages of journaling
• Robust, fast file system recovery

• No need to scan the entire journal or file system
• Relatively straight forward to implement

• Disadvantages of journaling
• Write traffic to the disk is doubled

• Especially the file data, which is probably large
• Deletes are very hard to correctly log

• Example in a few slides…

97

Making Journaling Faster

• Journaling adds a lot of write overhead

• OSes typically batch updates to the journal
• Buffer writes in memory, then issue one large write to the log
• Example: ext3 batches updates for 5 seconds

• Tradeoff between performance and persistence
• Long batch interval = fewer, larger writes to the log

• Improved performance due to large sequential writes
• But, if there is a crash, everything in the buffer will be lost

98

Meta-Data Journaling

• The most expensive part of journaling is writing the file data twice
• Meta-data is small (~1 sector), file data is large

• ext3 implements meta-data journaling

99

Journal B v2I v2TxB TxE

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

v2 D2

Crash Recovery Redux (1)

• What if the system crashes during logging?
• If the transaction is not committed, data is lost
• D2 will eventually be overwritten
• The file system remains consistent

100

Journal B v2I v2TxB

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

D2

Crash Recovery Redux (2)

• What if the system crashes during the checkpoint?
• File system may be inconsistent
• During reboot, transactions that are committed but not free are

replayed in order
• Thus, no data is lost and consistency is restored

101

Journal B v2I v2TxB TxE

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

v2 D2

Delete and Block Reuse

1. Create a directory: inode and data are written
2. Delete the directory: inode is removed
3. Create a file: inode and data are written

102

Journal dirdirTxB

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

f1
dir

TxE dirdirTxB TxE

dirf1

f1f1TxB TxE

The block that previously held directory
info is reused to hold file data

The Trouble With Delete
• What happens when the log is replayed?

103

Journal dirdirTxB

Data Blocks

TxE dirdirTxB TxE

f1

f1f1TxB TxE

file data is overwritten
by directory meta-data

dir

file data is not in the
log, thus it is lost! :(

Handling Delete

• Strategy 1: don’t reuse blocks until the delete is checkpointed and
freed

• Strategy 2: add a revoke record to the log
• ext3 used revoke records

104

Journal dirTxB
ID=1 TxE Rx

ID=1 dirTxB
ID=2 TxE f1TxB

ID=3 TxE

If the log is replayed,
ignore transaction ID=1

Journaling Wrap-Up

• Today, most OSes use journaling file systems
• ext3/ext4 on Linux
• NTFS on Windows

• Provides excellent crash recovery with relatively low space and
performance overhead

105

Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems

106

Status Check

• At this point:
• We not only have a fast file system
• But it is also resilient against corruption

• What’s next?
• More efficiency improvements!

107

Revisiting inodes

• Recall: inodes use indirection to acquire blocks of pointers

• Problem: inodes are not efficient for large files
• Example: for a 100MB file, you need 25600 block pointers

(assuming 4KB blocks)

• This is unavoidable if the file is 100% fragmented
• However, what if large groups of blocks are contiguous?

108

From Pointers to Extents

• Modern file systems try hard to minimize fragmentation
• Since it results in many seeks, thus low performance

• Extents are better suited for contiguous files

109

inode
block 1
block 2
block 3
block 4
block 5
block 6

inode
block 1
length 1
block 2
length 2
block 3
length 3

Each extent
includes a block

pointer and a
length

Implementing Extents

• ext4 and NTFS use extents

• ext4 inodes include 4 extents instead of block pointers
• Each extent can address at most 128MB of contiguous space

(assuming 4KB blocks)
• If more extents are needed, a data block is allocated
• Similar to a block of indirect pointers

110

Revisiting Directories

• In ext, ext2, and ext3, each directory is a file with a list of entries
• Entries are not stored in sorted order
• Some entries may be blank, if they have been deleted

• Problem: searching for files in large directories takes O(n) time
• Practically, you can’t store >10K files in a directory
• It takes way too long to locate and open files

111

From Lists to B-Trees

• ext4 and NTFS encode directories as B-Trees
• Improves lookup time to O(log N)

• A B-Tree is a type of balanced tree that is optimized for disks
• Items are stored in sorted order in blocks
• Each block stores between m and 2m items

(where m is the branching factor of the tree)

• Suppose items i and j are in the root of the tree
• The root must have 3 children, since it has 2 items
• The three child groups contain items a < i, i < a < j, and a > j

112

Example B-Tree
• ext4 uses a B-Tree variant known as a H-Tree

• The H stands for hash (sometime called B+Tree)

• Suppose you try to open(“my_file”, “r”)

113

hash(“my_file”) = 0x0000C194

H-Tree Node H-Tree Node

H-Tree Leaf

H-Tree Root

0x00AD1102 0xCFF1A412

H-Tree Leaf

H-Tree Node

0x0000C195 0x00018201

my_file inode

H-Tree Leaf

0x0000A0D1 0x0000C194

ext4: The Good and the Bad

• The good – ext4 (and NTFS) supports:
• All of the basic file system functionality we require
• Improved performance from ext3’s block groups
• Additional performance gains from extents and B-Tree directory files

• The bad:
• ext4 is an incremental improvement over ext3
• Next-gen file systems have even nicer features

• Copy-on-write semantics (btrfs and ZFS)

114

Learning objectives

• Partitions and Mounting
• Basics (FAT)
• inodes and Blocks (ext)
• Block Groups (ext2)
• Journaling (ext3)
• Extents and B-Trees (ext4)
• Log-based File Systems

115

Status Check

• At this point:
• We have arrived at a modern file system like ext4

• What’s next?
• Go back to the drawing board and reevaluate from first-principals

116

Reevaluating Disk Performance

• How has computer hardware been evolving?
• RAM has become cheaper and grown larger :)
• Random access seek times have remained very slow :(

• This changing dynamic alters how disks are used
• More data can be cached in RAM = less disk reads
• Thus, writes will dominate disk I/O

• Can we create a file system that is optimized for sequential writes?

117

Log-structured File System

• Key idea: buffer all writes (including meta-data) in memory
• Write these long segments to disk sequentially
• Treat the disk as a circular buffer, i.e. don’t overwrite

• Advantages:
• All writes are large and sequential

• Big question:
• How do you manage meta-data and data in this kind of design?

118

Treating the Disk as a Log
• Same concept as data journaling

• Data and meta-data get appended to a log
• Stale data isn’t overwritten, its replaced

119

Di
sk Data

Block 1
Data

Block 2
inode

1
Data

Block 5
inode

2
Data

Block 1
inode

1

Giant Log

Buffering Writes

• LFS buffers writes in-memory into chunks

120

• Chunks get appended to the log once they are sufficiently large

M
em

or
y

Di
sk

Data
Block 1

Data
Block 2

Data
Block 3

Data
Block 4

inode
1

Data
Block 5

inode
2

How to Find inodes

• In a typical file system, the inodes are stored at fixed locations
(relatively easy to find)

• How do you find inodes in the log?
• Remember, there may be multiple copies of a given inode

• Solution: add a level of indirection
• The traditional inode map can be broken into pieces
• When a portion of the inode map is updated, write it to the log!

121

Giant Log

inode
map

N

inode Maps

122

M
em

or
y

Di
sk

Data
Block 1

Data
Block 2

Data
Block 3

Data
Block 4

inode
1

Data
Block 5

inode
2

• New problem: the inode map is scattered throughout the log
• How do we find the most up-to-date pieces?

The Checkpoint Region

• The superblock in LFS contains pointers to all of the up-to-date
inode maps

• The checkpoint region is always cached in memory
• Written periodically to disk, say ~30 seconds
• Only part of LFS that isn’t maintained in the log

123

inode
map

NDi
sk

Data
Block

1

Data
Block

2

Data
Block

3

Data
Block

4

inode
1

Data
Block

5

inode
2CR

How to Read a File in LFS
• Suppose you want to read inode 1

1. Look up inode 1 in the checkpoint region
• inode map containing inode 1 is in sector X

2. Read the inode map at sector X
• inode 1 is in sector Y

3. Read inode 1
• File data is in sectors A, B, C, etc.

124

inode
map

NDi
sk

Data
Block

1

Data
Block

2

Data
Block

3

Data
Block

4

inode
1

Data
Block

5

inode
2CR

Directories in LFS

• Directories are stored just like in typical file systems
• Directory data stored in a file
• inode points to the directory file
• Directory file contains name  inode mappings

125

inode
map

NDi
sk

Data
Block

1

Data
Block

2

Data
Block

3

Data
Block

4

inode
1

Dir
Data

1

inode
2CR

Garbage

• Over time, the log is going to fill up with stale data
• Highly fragmented: live data mixed with stale data

• Periodically, the log must be garbage collected
• Disk regions are managed in a segment granularity

126

Di
sk Data

Block 1
Data

Block 2
inode

1
Data

Block 5
inode

2
Data

Block 1
inode

1

Garbage Collection in LFS

127

Di
sk D1 D1 i1 D2 i2 D1 i1 D3 D3 D3

segment 1 segment 2

M
em

or
y

D1 D1 i1 D2 i2

D1 D2 i2 i1

S

S S S

Summary block

• Each cluster has a summary block
• Contains the block  inode mapping for each block in the cluster

• To check liveness, the GC reads each file with blocks in the cluster
• If the current info doesn’t match the summary, blocks are stale

• Which blocks are stale?
• Pointers from other

clusters are invisible

An Idea Whose Time Has Come

• LFS seems like a very strange design
• Totally unlike traditional file system structures
• Doesn’t map well to our ideas about directory hierarchies

• Initially, people did not like LFS

• However, today it’s features are widely used

128

File Systems for SSDs

• SSD hardware constraints
• Wear leveling: writes must be spread across the blocks of flash
• Periodically, old blocks need to be garbage collected to prevent

write-amplification

• Does this sounds familiar?

• LFS is the ideal file system for SSDs!

• Internally, SSDs manage all files in a LFS-like fashion
• This is transparent to the OS and end-users
• Ideal for wear-leveling and avoiding write-amplification

129

Copy-on-write

• Modern file systems incorporate ideas from LFS
• Copy-on-write semantics

• Updated data is written to empty space on disk, rather than
overwriting the original data

• Helps prevent data corruption, improves sequential write
performance

• Pioneered by LFS, now used in ZFS and btrfs

130

Versioning File Systems

• LFS keeps old copies of data by default
• Old versions of files may be useful!

• Example: accidental file deletion
• Example: accidentally doing open(file, ‘w’) on a file full of data

• Turn LFS flaw into a virtue

• Many modern file systems are versioned
• Old copies of data are exposed to the user
• The user may roll-back a file to recover old versions

131

	File Systems
	Slide Number 2
	Storage media types
	Hard Drive Hardware
	A Multi-Platter Disk
	Addressing and Geometry
	Geometry Example
	Common Disk Interfaces
	Types of Delay With Disks
	How To Calculate Transfer Time
	Sequential vs. Random Access
	Storage media types
	Beyond Spinning Disks
	Solid State Drives
	Advantages of SSDs
	HDD vs SSD price trends (by western digital)
	Challenges with Flash
	Write Amplification
	Garbage Collection
	The Ambiguity of Delete
	Delete Example
	TRIM
	Wear Leveling
	Wear Leveling Examples
	SSD Controllers
	Flavors of NAND Flash Memory
	Slide Number 27
	Learning objectives
	Learning objectives
	Building the Root File System
	The Master Boot Record
	Extended Partitions
	Types of Root File Systems
	Mounting a File System
	Virtual File System Interface
	VFS Flowchart
	Mount isn’t Just for Bootup
	Learning objectives
	Status Check
	The Directory Tree
	Absolute and Relative Paths
	Files
	File Extensions
	More File Meta-Data
	Mapping Files to Blocks
	Directories
	More on Directories
	Example Directory File
	Directory File Implementation
	File Allocation Tables (FAT)
	Slide Number 51
	Slide Number 52
	Fat Table Entries
	Fragmentation
	FAT: The Good and the Bad
	Lots of Seeking
	Learning objectives
	Status Check
	Size Distribution of Files
	Slide Number 60
	Slide Number 61
	ext2 inodes
	inode Block Pointers
	Advantages of inodes
	File Reading Example
	File Create and Write Example
	ext2 inodes, Again
	Hard Link Example
	Hard Link Details
	Soft Links
	Soft Link Example
	ext: The Good and the Bad
	Learning objectives
	Status Check
	Fast File System (FFS)
	Block Groups
	Allocation Policy
	ext2: The Good and the Bad
	Learning objectives
	Status Check
	Maintaining Consistency
	File Append Example
	Slide Number 83
	Slide Number 84
	The Crash Consistency Problem
	Approach 1: File System Checker
	fsck Tasks
	fsck: the Good and the Bad
	Approach 2: Journaling
	Write-Ahead Log
	Data Journaling Example
	Commits and Checkpoints
	Journal Implementation
	Crash Recovery (1)
	Crash Recovery (2)
	Corrupted Transactions
	Journaling: The Good and the Bad
	Making Journaling Faster
	Meta-Data Journaling
	Crash Recovery Redux (1)
	Crash Recovery Redux (2)
	Delete and Block Reuse
	The Trouble With Delete
	Handling Delete
	Journaling Wrap-Up
	Learning objectives
	Status Check
	Revisiting inodes
	From Pointers to Extents
	Implementing Extents
	Revisiting Directories
	From Lists to B-Trees
	Example B-Tree
	ext4: The Good and the Bad
	Learning objectives
	Status Check
	Reevaluating Disk Performance
	Log-structured File System
	Treating the Disk as a Log
	Buffering Writes
	How to Find inodes
	inode Maps
	The Checkpoint Region
	How to Read a File in LFS
	Directories in LFS
	Garbage
	Garbage Collection in LFS
	An Idea Whose Time Has Come
	File Systems for SSDs
	Copy-on-write
	Versioning File Systems

