
OS Kernels, Booting, xv6 (1)

Week 10

CS 3650 Computer Systems – Spring 2023

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

What is an Operating System?

• OS is software that sits between user programs and hardware

2

Hardware
(e.g., mouse,

keyboard)
User

Program
Operating

System

• OS provides interfaces to computer hardware
– User programs do not have to worry about details

• OS is a resource manager and control program
– Controls execution of user programs
– Decides between conflicting requests for hardware access
– Attempts to be efficient and fair
– Prevents errors and improper use

Many Different OSes

3

Windows

Linux

BSD

Without an operating system

• Life would be hard for us as software engineers having to always
directly interface with hardware, and vice versa
• (Typically our computers, would be no better than a box with

blinking lights)

4

The OS and Computer Architecture

• Okay, great, let us say we have an OS like linux
• How does our architecture know what to do with an Operating

System or where to load it from?
• So far we have some idea about how our OS work with devices?

• (Interfacing with drivers)
• We also have a pretty good idea how the OS works with memory at

least on a process basis.
• But we’ll want to think even more about how processes are scheduled.

5

Operating System History

6

Brief Operating System History [link]

• 1955 and earlier: Very early mainframes have no operating system
• 1956: GM-NAA I/O used for research by General Motors -- first real

OS
• 1960s: IBM delivers System/360 OS

• Details recounted in
Mythical Man Month Book

• 1970-80s: Digital Equipment Corporation (DEC) and Data General
(DG) lead the minicomputer market
• Data General’s initial design detailed in The Soul of a New Machine
• There is no reason anyone would want a computer in their home. --

Ken Olsen, Founder and CEO of DEC

7

https://en.wikipedia.org/wiki/History_of_operating_systems
https://en.wikipedia.org/wiki/GM-NAA_I/O
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/The_Soul_of_a_New_Machine

Brief Operating System History [link]

• 1981: IBM releases a Personal Computer (PC) to compete with
Apple
• Basic Input/Output System (BIOS) for low-level control
• Three high-level OSes, including MS-DOS
• Developers were asked to write software for DOS or BIOS, not bare-

metal hardware

• 1982: Compaq and others release IBM-compatible PCs
• Different hardware implementations (except 808x CPU)
• Reverse engineered and reimplemented BIOS
• Relied on customized version of MS-DOS

8

https://en.wikipedia.org/wiki/History_of_operating_systems

IBM Eventually Loses Control

• 1985: IBM clones dominated computer sales
• Used the same underlying CPUs

and hardware chips
• Close to 100% BIOS compatibility
• MS-DOS was ubiquitous
• Thus, IBM PC hardware became the de-facto standard

• 1986: Compaq introduces 80386-based PC
• 1990’s: Industry is dominated by “WinTel” (Microsoft and Intel)

• Intel x86 CPU architectures (Pentium 1, 2, and 3)
• Windows 3.1, NT, 95 software compatibility

9

Let’s build an operating system!

10

To build an OS, what tools would we need?

• Potential tools needed:
• High-level programming languages

• Assembly, C, …
• Knowledge of

• Computer architecture
• Some idea about

• How to divide up resources: memory, processes, etc.

• Looks like we have some of these foundations!

• Note this is not a hypothetical question, new Operating Systems are
made all of the time
• e.g., Android, iOS, etc.

11

First Design Decision: Kernel

12

(Reminder of the Kernel)

One Program to rule them all,
One Program to find them,

One Program to bring them all,
and in darkness bind them in the
Land of Linux where
programmers code

13

*Pop Culture reference from Lord of the Rings

Towards a Kernel

• “The one program running at all times on the computer” is the
kernel
• Typically the first program loaded up

• (loaded by the bootloader--we’ll get to this)

• Questions:
• What are the features that kernels should implement?

• How should we architect the kernel to support these features?
• i.e. what feature does our kernel support and what goes into user land?

14

https://en.wikipedia.org/wiki/Kernel_(operating_system)

Kernel Features
• Device management

• Required: CPU and memory
• Optional: disks, keyboards, mice, video, etc.

• Loading and executing programs

• System calls and APIs

• Protection and fault tolerance
• E.g. a program crash shouldn’t crash the computer

• Security
• E.g. only authorized users should be able to login

15

Architecting Kernels: Three basic approaches

• Monolithic kernels
• All functionality is compiled together
• All code runs in privileged kernel-space

• Microkernels
• Only essential functionality is compiled into the kernel
• All other functionality runs in unprivileged user space

• Hybrid kernels
• Most functionality is compiled into the kernel
• Some functions are loaded dynamically
• Typically, all functionality runs in kernel-space

16

Monolithic Kernel

17

User SpaceKernel Space

Memory
Manager

CPU
Scheduling

Program
Loader

Security
Policies

Error
Handling

System
APIs

Device
Drivers

File
Systems

Monolithic Kernel Code

User Program

Microkernel

18

User SpaceKernel Space

Memory
Manager

CPU
Scheduling

Interprocess
Communication

Kernel Code
Networking

Service

File
System

Disk
Driver

Network
Card Driver

User Program 1

User Program 2

Hybrid Kernel

19

User SpaceKernel Space

Memory
Manager

CPU
Scheduling

Program
Loader

Security
Policies

Error
Handling

System
APIs

File
Systems

Kernel Code

Device
Driver

Third-Party Code

Device
Driver

File
System

User Program

20

Microkernels:
Small code base,

Few features

Monolithic Kernels:
Huge code base,
Many features

Hybrid Kernels:
Pretty large code base,

Some features delegated

Research Kernels:
Mach

L4
GNU Hurd

Kernels for
Embedded System:

QNX

Pros/Cons of Monolithic Kernels

• Advantages?
• Single code base eases kernel development
• Robust APIs for application developers
• No need to find separate device drivers
• Fast performance due to tight coupling

• Disadvantages?
• Large code base, hard to check for correctness
• Bugs crash the entire kernel (and thus, the machine)

21

Pros/Cons of Microkernels

• Advantages?
• Small code base, easy to check for correctness
• Extremely modular and configurable
• Choose only the pieces you need for embedded systems
• Easy to add new functionality (e.g., a new file system)
• Services may crash, but the system will remain stable

• Disadvantages?
• Performance is slower: many context switches
• No stable APIs, more difficult to write applications

22

Pros/Cons of Hybrid

• Some mix of the tradeoffs taken from the Microkernels and
Monolithic kernels

23

Alright--let’s spec out something
closer to a hybrid kernel

Pieces of an Operating System

• We need to be able to perform some typical OS services
• Memory Management
• Some abstract data types (arrays, strings, etc.)
• Input and Output functions (printf, scanf, etc.)
• File System
• UI Management
• Textual Output
• Graphics
• Maybe more

• Security, networking, multi-processing

24

Pieces of an Operating System

• We need to be able to perform some typical OS services
• Memory Management
• Some abstract data types (arrays, strings, etc.)
• Input and Output functions (printf, scanf, etc.)
• File System
• UI Management
• Textual Output
• Graphics
• Maybe more

• Security, networking, multi-processing

25

If you take a close look, you’ll notice
some of these are starting to look like
our ‘system calls’

strace | strace cat test.c

• Remember the ‘strace’ tool?
• Something neat we can do too, is peak into all of these system calls

that are being made--again we can see there is no magic

26

So at some level, we can think of an
OS on the software side, as a
collection of system calls--great!

But how do we get here from the
hardware side?

27

What is an Operating System?

• OS is software that sits between user programs and hardware

28

Hardware
(e.g., mouse,

keyboard)
User

Program
Operating

System

• OS provides interfaces to computer hardware
– User programs do not have to worry about details

• OS is a resource manager and control program
– Controls execution of user programs
– Decides between conflicting requests for hardware access
– Attempts to be efficient and fair
– Prevents errors and improper use

Kernel Features
• Device management

• Required: CPU and memory
• Optional: disks, keyboards, mice, video, etc.

• Loading and executing programs

• System calls and APIs

• Protection and fault tolerance
• E.g. a program crash shouldn’t crash the computer

• Security
• E.g. only authorized users should be able to login

29

Architecting Kernels: Three basic approaches

• Monolithic kernels
• All functionality is compiled together
• All code runs in privileged kernel-space

• Microkernels
• Only essential functionality is compiled into the kernel
• All other functionality runs in unprivileged user space

• Hybrid kernels
• Most functionality is compiled into the kernel
• Some functions are loaded dynamically
• Typically, all functionality runs in kernel-space

30

Pieces of an Operating System

• We need to be able to perform some typical OS services
• Memory Management
• Some abstract data types (arrays, strings, etc.)
• Input and Output functions (printf, scanf, etc.)
• File System
• UI Management
• Textual Output
• Graphics
• Maybe more

• Security, networking, multi-processing

31

Does anything happen before our
Operating System is running?

32

Pop Interview Question

• “What happens after you push the power button on your machine?”
(i.e. what happens in software?)

33

Pop Interview Question

• “What happens after you push the power button on your machine?”
(i.e. what happens in software?)
• (True story: Prof. Shin had this as an interview question)

• Understanding operating systems and putting together our hardware
knowledge will answer this question!

34

Boot Process
(Before we get to our Operating System!)

35

The first program is executed: The BIOS

• x86 machines start by executing a
program called the BIOS
• BIOS: Basic Input/Output System

• The BIOS is ‘baked into’ our
computers motherboard
• This means it is stored in non-volatile

memory
(i.e. memory that persists)

• (A motherboard is the entirety of the
printed circuit you see on the right. It
helps organize all of the components
that are attached together).

36

https://www.digitaltrends.com/computing/what-is-a-motherboard/

More on BIOS and the ‘boot loader’ (1/2)

• The Basic Input/Output System’s (BIOS) job is to make sure that all
of the hardware is ready to go

• If all of the components are ready, then control is transferred into
what is called the ‘boot loader’

37

More on BIOS and the ‘boot loader’ (2/2)

• The BIOS transfers control to the ‘boot loader’ by looking at the
‘boot sector’, which has some amount of bytes (e.g. 512 bytes) that
tell us where the boot loader is.
• You may have seen programs like GRUB which allow you to select

which operating system to load.

• Our goal at this stage, is to use this very primitive ‘boot loader’
program, to launch and execute a more modern operating system.

• e.g. Windows, MacOS, Ubuntu, CentOS, etc.

38

Here is the OS loading process

• Here is the high-level abstraction--at the very least the steps to
remember
• BIOS
• Boot loader
• Operating System

39

[image source]

https://image.slidesharecdn.com/qi-090611024517-phpapp02/95/qi-lightweight-boot-loader-applied-in-mobile-and-embedded-devices-6-728.jpg?cb=1269055727

A few more steps

40

Pushing power

• Start the BIOS
• Load settings from CMOS

(complementary metal-oxide semiconductor)
• Initialize any attached devices
• Run POST (Power on self-test)
• Initiate the bootstrap sequence

41

https://en.wikipedia.org/wiki/Power-on_self-test

Starting the BIOS (1/5)

• Basic Input/Output System (BIOS)
• A mini-OS burned onto a chip

• Begins executing a soon as a PC powers on
• Code from the BIOS chip gets copied to RAM at a low address

(e.g. 0xFF)
• jmp 0xFF (16 bits) written to RAM at 0xFFFF0
• x86 CPUs always start with 0xFFFF0 in the EIP register

• Essential goals of the BIOS
• Check hardware to make sure its functional
• Install simple, low-level device drivers
• Scan storage media for a Master Boot Record (MBR)

• Load the boot record into RAM
• Tells the CPU to execute the loaded code

42

Load settings from CMOS (2/5)

• BIOS often has configurable options
• Values are stored in a special battery-backed CMOS memory
• These values are then read in by the BIOS, often containing

information about how devices have been configured.

43

https://en.wikipedia.org/wiki/CMOS

Initialize any attached devices (3/5)

• Scans and initializes hardware
• CPU and memory
• Keyboard and mouse
• Video
• Bootable storage devices

• Installs interrupt handlers in memory
• Builds the Interrupt Vector Table

• Runs additional BIOSes on expansion cards
• Video cards and SCSI cards often have their own BIOS

44

Run Power On Self-Test (POST) test (4/5)

• This is a diagnostic test to make sure all of the devices that are
connected and initialized in the previous steps are working.
• POST Test

• Check RAM by read/write to each address
• Check to make sure keyboard is working
• Check to make sure connected hard drives are working
• etc.

45

Bootstrap in an operating system (5/5)

• Finally we need to find and load a real OS

• BIOS identifies all potentially bootable devices
• Tries to locate Master Boot Record (MBR) on each device
• Order in which devices are tried is configurable

• Master Boot Record (MBR) has code that can load the actual OS
• Code is known as a bootloader

• Example bootable devices:
• Hard drive, SSD, floppy disk, CD/DVD/Bluray, USB flash drive,

network interface card (NIC)

46

The Master Boot Record (MBR)

• Special 512-byte file in sector 1 (address 0) of a storage device

• Contains
• 446 bytes of executable code
• Entries for 4 partitions

• Too small to hold an entire OS
• Starts a sequence of chain-loading

47

Address
Description Size

(Bytes)Hex Dec.

0x000 0 Bootstrap code area 446

0x1BE 446 Partition Entry #1 16

0x1CE 462 Partition Entry #2 16

0x1DE 478 Partition Entry #3 16

0x1EE 494 Partition Entry #4 16

0x1FE 510 Magic Number 2

Total: 512

Visualization of Master Boot Record

48

Example Bootloader: GRUB

• Grand Unified Bootloader
• Used with Unix, Linux, Solaris, etc.

49
*Source: https://en.wikipedia.org/wiki/GNU_GRUB

We need to find and load a real OS now
(xv6)

50

But now lets really see it in action

• We will actually work with a small operating system so we can see
exactly what the code looks like.

Introducing xv6!

51

Goal: Figure out the boot process from a
programmer’s perspective
• Our tool is going to be to use the xv6 operating system.

• xv6 is yet another Unix inspired variant--although much more
lightweight (Several thousands of lines of code versus millions).

52

We are the best
Operating
Systems!

Our tool xv6 | https://pdos.csail.mit.edu/6.828/2017/xv6.html

• Not something your instructor developed
• But some smart folks at MIT have been working on this for long

• You can and certainly should browse this link for a deeper dive.
• There is some handy documentation if you want to browse online

from NEU faculty (be warned, this is 2 revisions old)
https://course.ccs.neu.edu/cs3650/unix-xv6/

53

https://pdos.csail.mit.edu/6.828/2017/xv6.html
https://course.ccs.neu.edu/cs3650/unix-xv6/

xv6

• Monolithic kernel
• Runs on x86 processors

• Note that x86-based versions are no longer maintained
• xv6 development has moved on to RISC-V

• Refer to the course webpage for useful resources
• https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf
• https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

54

https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

Boot process in xv6

55

Files we will look at

• Bootasm.S
• Real mode -> protected mode
• Calls bootmain.c

• Bootmain.c
• Reads main from disk

• Main.c
• Initializes the kernel

• Proc.c
• Process creation and scheduling

• Initcode.S
• Starter code for init process

• Init.c
• Init process

56

bootasm.S - real mode to protected mode

• Real mode
• x86 machine starts with real mode
• Simulates the old Intel 8088 (1979)
• 16 bit registers
• 20 bit memory address (1MB memory)
• No virtual memory support
• No memory protection
• No paging support

• (32bit) Protected mode (CR0 register)
• Virtual address space enabled
• Max 4GB memory
• Protected ring support (recall ring 0 to 3)

57

bootasm.S - Where our bootstrapping process begins

Start the first CPU: switch to 32-bit protected mode, jump into C.

The BIOS loads this code from the first sector of the hard disk into

memory at physical address 0x7c00 and starts executing in real mode

with %cs=0 %ip=7c00.

.code16 # Assemble for 16-bit mode

.globl start

start:

cli # BIOS enabled interrupts; disable

Zero data segment registers DS, ES, and SS.

xorw %ax,%ax # Set %ax to zero

movw %ax,%ds # -> Data Segment

movw %ax,%es # -> Extra Segment

movw %ax,%ss # -> Stack Segment

58

Bootmain.c: loads ELF kernel from disk

// Boot loader.

// Part of the boot block, along with bootasm.S, which calls bootmain().

// bootasm.S has put the processor into protected 32-bit mode.

// bootmain() loads an ELF kernel image from the disk starting at

// sector 1 and then jumps to the kernel entry routine.

#include "types.h"

#include "elf.h"

#include "x86.h"

#include "memlayout.h"

#define SECTSIZE 512

void readseg(uchar*, uint, uint);

void bootmain(void)

59

main.c

• After we have successfully
bootstrapped, we can begin
executing main

• We can actually see various
parts of the OS that get setup!
• Handling files, working with

disk, setting up processes,
etc.

// Bootstrap processor starts running C code here.
// Allocate a real stack and switch to it, first
// doing some setup required for memory allocator to work.
int
main(void)
{
kinit1(end, P2V(4*1024*1024)); // phys page allocator
kvmalloc(); // kernel page table
mpinit(); // detect other processors
lapicinit(); // interrupt controller
seginit(); // segment descriptors
picinit(); // disable pic
ioapicinit(); // another interrupt controller
consoleinit(); // console hardware
uartinit(); // serial port
pinit(); // process table
tvinit(); // trap vectors
binit(); // buffer cache
fileinit(); // file table
ideinit(); // disk
startothers(); // start other processors
kinit2(P2V(4*1024*1024), P2V(PHYSTOP)); // must come after startothers()
userinit(); // first user process
mpmain(); // finish this processor's setup

}

60

Memory

61

User init

• Userinit
• Creates a process from process table
• Run initcode.S which the compiled binary is part of the kernel
• Initcode.S code “exec” compiled binary at /init (i.e., init.c)
• Init.c opens console for stdin, stdout, sterr and forks shell

62

proc.c

• Once our OS is running, proc schedules
different processes from a table to run
• See ‘scheduler’ in proc.c

// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:
// - choose a process to run
// - swtch to start running that process
// - eventually that process transfers control
// via swtch back to the scheduler.
void
scheduler(void)
{
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();
// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
…

63

Walkthrough of xv6 Scheduler

• Thinking about some of these trade-offs, it will be beneficial to look
at things from an xv6 perspective.
• Investigating ‘scheduler’ within xv6 will show how scheduling is done.

64

Operating System Scheduler

• The scheduler in an Operating system is responsible for picking
which process runs.
• The OS gives each process a ‘time slice’ to execute.
• The OS tries to be fair in making sure every process can make some

progress
• However, there are some trade-offs

• Should a long running process using lots of resources get more time?

• Or would we rather have short running processes just finish and be
done?

• How does the Operating System even know or estimate time spent?

65

Basic Scheduler Architecture

• Scheduler selects from ready processes, and assigns them to a CPU
• System may have >1 CPU
• Various different approaches for selecting processes

• Scheduling decisions are made when a process:
1. Switches from running to waiting
2. Terminates
3. Switches from running to ready
4. Switches from waiting to ready

• Scheduler may have access to additional information
• Process deadlines, data in shared memory, etc.

66

No preemption

Preemption

Basic Process Behavior
• Processes alternate between

doing work and waiting
• Work à CPU Burst

• Process behavior varies
• I/O bound
• CPU bound

• Expected CPU burst
distribution is important for
scheduler design
• Do you expect more CPU or

I/O bound processes?

67

Process 1 Process 2

Execute
Code

Execute
Code

Execute
Code

Execute
Code

Execute
Code

Waiting
on I/O

Waiting
for mutex

sleep(1)

CPU
Burst

Wait

Waiting
on I/O

Waiting
on I/O

Scheduling Optimization Criteria
• Max CPU utilization – keep the CPU as busy as possible
• Max throughput – # of processes that finish over time

• Min turnaround time – amount of time to finish a process
• Min waiting time – amount of time a ready process waits until it runs

• Min response time – amount time between submitting a request and
receiving a response
• E.g. time between clicking a button and seeing a response

• Fairness – all processes receive fair CPU resources

68

• No scheduler can meet all these criteria
• Which criteria are most important depend on types of processes

and expectations of the system
• E.g. response time is key on the desktop
• Throughput is more important for MapReduce

First Come, First Serve (FCFS)
• Simple scheduler

• Processes stored in a FIFO queue
• Served in order of arrival

69

Process Burst
Time

Arrival
Time

P1 24 0.000

P2 3 0.001

P3 3 0.002

P1 P2 P3
Time: 0 24 27 30

• Turnaround time = completion time - arrival time
– P1 = 24; P2 = 27; P3 = 30
– Average turnaround time: (24 + 27 + 30) / 3 = 27

The Convoy Effect
• FCFS scheduler, but the arrival order has changed

70

P1P2 P3
Time: 0 3 6 30

• Turnaround time: P1 = 30; P2 =3; P3 = 6
– Average turnaround time: (30 + 3 + 6) / 3 = 13
– Much better than the previous arrival order!

• Convoy effect (a.k.a. head-of-line blocking)
– Long process can impede short processes
– E.g.: CPU bound process followed by I/O bound process

Process Burst
Time

Arrival
Time

P1 24 0.002

P2 3 0.000

P3 3 0.001

Shortest Job First (SJF)

• Schedule processes based on the length of their next CPU burst time
• Shortest processes go first

71

Process Burst
Time

Arrival
Time

P1 6 0

P2 8 0

P3 7 0

P4 3 0

P3P4 P1
Time: 0 3 9 16

P2
24

• Average turnaround time: (3 + 9 + 16 + 24) / 4 = 13
• SJF is optimal: guarantees minimum average wait time

(if all jobs arrive at the same time) We already have an optimal solution …
Do you see any problem?

Predicting Next CPU Burst Length
• Problem: future CPU burst times may be unknown
• Solution: estimate the next burst time based on previous burst lengths

• Assumes process behavior is not highly variable
• Use exponential averaging

• tn – measured length of the nth CPU burst
• τn+1 – predicted value for n+1th CPU burst
• α – weight of current and previous measurements (0 ≤ α ≤ 1)
• τn+1 = αtn + (1 – α) τn

• Typically, α = 0.5

72

What About Arrival Time?

• SJF scheduler, CPU burst lengths are known

73

Process Burst
Time

Arrival
Time

P1 24 0

P2 3 2

P3 3 3

P1 P2 P3
Time: 0 24 27 30

• Scheduler must choose from available processes
– Can lead to head-of-line blocking
– Average turnaround time: (24 + 25 + 27) / 3 = 25.3

Shortest Time-To-Completion First (STCF)
• Also known as Preemptive SJF (PSJF)

• Processes with long bursts can be context switched out in favor
or short processes

74

Process Burst
Time

Arrival
Time

P1 24 0

P2 3 2

P3 3 3

P1 P2 P3
Time: 0 2 5 8

P1
30

• Turnaround time: P1 = 30; P2 = 3; P3 = 5
– Average turnaround time: (30 + 3 + 5) / 3 = 12.7

• STCF is also optimal
– Assuming you know future CPU burst times

Interactive Systems

• Imagine you are typing/clicking in a desktop app
• You don’t care about turnaround time
• What you care about is responsiveness

• E.g. if you start typing but the app doesn’t show the text for 10 seconds,
you’ll become frustrated

• Response time = first run time – arrival time

75

Response vs. Turnaround

• Assume an STCF scheduler

76

Process Burst
Time

Arrival
Time

P1 6 0

P2 8 0

P3 10 0

P1
Time: 0 6 24

P2 P3
14

• Avg. turnaround time: (6 + 14 + 24) / 3 = 14.7
• Avg. response time: (0 + 6 + 14) / 3 = 6.7

Round Robin (RR)

• Round robin (a.k.a time slicing) scheduler is designed to reduce
response times
• RR runs jobs for a time slice (a.k.a. scheduling quantum)
• Size of time slice is some multiple of the timer-interrupt period

77

RR vs. STCF

78

Process Burst
Time

Arrival
Time

P1 6 0

P2 8 0

P3 10 0

P1
Time: 0 6 24

P2 P3
14

• Avg. turnaround time: (6 + 14 + 24) / 3 = 14.7
• Avg. response time: (0 + 6 + 14) / 3 = 6.7

P1

Time: 0 2

• 2 second time slices
• Avg. turnaround time: (14 + 20 + 24) / 3 = 19.3
• Avg. response time: (0 + 2 + 4) / 3 = 2

P2 P3 P1 P2 P3 P1 P2 P3 P2 P3

4 6 8 10 12 14 16 18 20 24

STCF

RR

Tradeoffs

RR
+ Excellent response times

+ With N process and time slice of Q…
+ No process waits more than
N-1 time slices

+ Achieves fairness
+ Each process receives 1/N CPU time

- Worst possible turnaround times
- If Q is large à FIFO behavior

STCF
+ Achieves optimal, low

turnaround times
- Bad response times
- Inherently unfair

- Short jobs finish first

79

• Optimizing for turnaround or response time is a trade-off
• Achieving both requires more sophisticated algorithms

Selecting the Time Slice
• Smaller time slices = faster response times
• So why not select a very tiny time slice?

• E.g. 1µs

• Context switching overhead
• Each context switch wastes CPU time (~10µs)
• If time slice is too short, context switch overhead will dominate

overall performance

• This results in another tradeoff
• Typical time slices are between 1ms and 100ms

80

