
Concurrency (2)

Week 9

CS 3650 Computer Systems – Spring 2023

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Recap on threads

• Light-weight processes that share the same memory and state

• Every process has at least one thread

• Benefits:
• Resource sharing, no need for IPC
• Economy: faster to create, faster to context switch
• Scalability: simple to take advantage of multi-core CPUs

2

Hello Thread

• The thread that is “launched” is
a function in the program
• This is done when the thread

is created
• Different attributes can be

sent to threads (in this case
the first NULL)

• Arguments can also be passed
to the function (second NULL)

• pthread_join is the
equivalent to “wait” for
threads

• What if we don’t call join?

3

Visual execution of “Hello Thread”

4

Launching multiple threads

• This time launch 10000 threads
• counter is shared between

threads
• What is wrong with this

program?
• What is the final output?

5

Example with lock

• Included a pthread_mutex_lock
• lock and unlock protects
• Locks in other words enforce,

that we have exclusive access
to a region of code.

6

BLO
CKS

EXECU
TIO

N
What was happening?
Thread 1 (counter = counter + 1)
pthread_mutex_lock
Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11
pthread_mutex_unlock

Thread 2 (counter = counter + 1)

pthread_mutex_lock
// Lock is held by thread 1 so
// thread 2 has to wait until
// thread 1 unlocks

// Now acquires the lock and runs
Read “counter”: 10
Add 1 to “counter”: 11
Write to “counter”: 11
pthred_mutex_unlock

7

Posix Threads API (PThreads Interface)

• Sample functions
• Creating and reaping threads

■ pthread_create()
■ pthread_join()

• Determining thread ID
■ pthread_self()

• Terminating threads
■ pthread_cancel()
■ pthread_exit()
• exit() - Terminates all threads
• return - terminates current thread

• Synchronizing access to shared variables
■ pthread_mutex_init
• pthread_mutex_lock and pthread_mutex_unlock

8

Bank Transactions

9

A series (i.e. serial) of Bank Transactions

1. If I start with $25 in my checking account.
2. Then I deposit $50, I have $75.
3. If I then withdraw $50, I now have $25.
4. My final balance is $25.
5. There is a variable checkings that monitors our balance.

10

Concurrent Bank Transaction

1. If I start with $25 in my checking account.
2. Then I deposit $50 and withdraw $50 at the same time (concurrently)
3. My final balance should still be $25.

4. There is a shared variable checkings in each
thread that monitors our balance.

11

Read our initial balance

12

checkings = 25

Thread Z:
checkings = ??

deposit(50)

checkings = ??

Thread Y:
checkings = ??
withdraw(50)
checkings = ??

checkings = ???

Ti
m
e Thread ZThread Y

Okay, we have $25 – now move on

13

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)
checkings = ??

checkings = ???

Ti
m
e Thread ZThread Y

withdraw and deposit occur (Thread Y and Z)

14

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)
checkings = ??

checkings = ???

Ti
m
e Thread ZThread Y

Checkings from Thread Y updates first

15

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m
e Thread ZThread Y

(Thread Z) updates its checkings value shortly after

16

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m
e Thread ZThread Y

Now we have conflicting information

17

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m
e Thread ZThread Y

checkings stores the last value of 75 (Thread Z)

18

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = 75

Ti
m
e

checkings = 75checkings = 75

Thread ZThread Y

checkings = -25

What if these operations had swapped!

19

checkings = 25

checkings = 25
deposit(50)

checkings = 75

checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m
e Thread ZThread Y

checkings = 75
checkings = -25

This time our balance is -25! (Thread Y)

20

checkings = 25

checkings = 25
deposit(50)

checkings = 75

checkings = 25
withdraw(50)

checkings = -25

checkings = -25

Ti
m
e Thread ZThread Y

checkings = -25
checkings = 75

How about if Thread Z lags behind Thread Y?

21

checkings = 25

checkings = ??
deposit(50)

checkings = ??

checkings = ??
withdraw(50)
checkings = ??

checkings = ??

Ti
m
e

Thread ZThread Y

How about if Thread Z lags behind Thread Y?

22

checkings = 25

checkings = ??
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = -25

Ti
m
e

Thread ZThread Y

How about if Thread Z lags behind Thread Y?

23

checkings = -25

checkings = ??
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = ??

Ti
m
e

Thread ZThread Y

How about if Thread Z lags behind Thread Y?

24

checkings = -25

checkings = -25
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = ??

Ti
m
e

Thread ZThread Y

Okay—this time we happen to get 25

25

checkings = -25

checkings = -25
deposit(50)

checkings = 25

checkings = 25
withdraw(50)

checkings = -25

checkings = 25 ok

Ti
m
e

Thread ZThread Y

We have witnessed a data race
A common concurrency problem

26

checkings = -25 checkings = 25 okcheckings = 75

We need to synchronize – enforce ordering

27

checkings = 25

Thread Y:
checkings = 25
withdraw(50)

Thread Z:
checkings = -25

deposit(50)

checkings = 25 always correct

Ti
m
e

(The Bug!)

• What is wrong with this
program?
• The problem is we have a

global “counter” that is shared
• There is an interleaving of

instructions here.
• Any possible interleaving can

occur!

• Solution is to add locks!

28

What Data is Shared in Threaded C Programs?

• Global variables are shared
• We just saw an example with counter.
• (Note: the compilers can be smart)

• (“counter” is only shared if it is referenced within the thread, otherwise
do not copy it.)

29

Threads Memory Model: Conceptual

• Multiple threads run within the context of a single process
• Each thread has its own separate thread context

• Thread ID, stack, stack pointer, PC, condition codes, and General
Purpose Registers

• All threads share the remaining process context
• Code, data, heap, and shared library segments for virtual address

space
• Open files

30

Threads Memory Model: Actual

• Separation of data is not strictly enforced:
• Register values are truly separate and protected
• Any thread however, can read and write the stack of any other thread

31

Mapping Variable Instances to Memory

• Global Variables
• Definition: Variable declared outside of a function
• Virtual Memory contains exactly one instance of any global variable

• Local Variables
• Definition: Variable declared inside function without static attribute
• Each thread stack contains one instance of each local variable

• Local static variables
• Definition: Variables declared inside function with the static attribute
• Virtual memory contains exactly one instance of any local static

variable.

32

Mapping Variable Instances to Memory

• 1 main thread “m” and two threads “p0” and “p1”

33

Shared Variable Analysis

• 1 main thread “m” and two threads “p0” and “p1”

34

Shared Variable Analysis

35

ptr?

Shared Variable Analysis

36

Global

Shared Variable Analysis

37

cnt?

Shared Variable Analysis

38

All threads share
this ‘static’ value

Shared Variable Analysis

39

i.m?

Shared Variable Analysis

40

Shared?

Shared Variable Analysis

41

Shared?
Yes.

YES YES

This example is
abusing “i”.

If a pointer to an
object is passed to

pthread_create then
it should be shared.

Shared Variable Analysis

42

msgs?
(careful)

Shared Variable Analysis

43

We have a ‘ptr’ to msg,
so effectively shared

Shared Variable Analysis

44

myid.p0?

Shared Variable Analysis

45

Local to peer
thread 0 only

Shared Variable Analysis

46

So for
myid.p1?

Shared Variable Analysis

47

Local to peer
thread 1 only

Synchronization of Threads

• Shared variables are thus handy for moving around data
• But if we do not share properly, we can have synchronization

errors!
• There is a solution however!
• (recap below)

48

=

We need a tool to protect shared resources

void deposit (float amount)
{

checkings += amount;

}

49

What to be careful with locks

50

Correctness (can be) Easy
Performance Hard

withdraw(…) {…}
deposit(…) {…}
addInterest(…) {…}
checkMinBalance(…) {…}
chargeFee(…) {…}
printBalance(…) {…}

51

Simply add locks!

lock
lock
lock
lock
lock
lock

Correctness (can be) Easy
Performance Hard

withdraw(…) {…}
deposit(…) {…}
addInterest(…) {…}
checkMinBalance(…) {…}
chargeFee(…) {…}
printBalance(…) {…}

52

Simply add locks!

lock
lock
lock
lock
lock
lock

Good job—
no data races

here!

By Max Roser, Hannah Ritchie - https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=98219918

Your program runs
sequentially– did you
forget about Amdahl’s

law?

Correctness (can be) Easy
Performance Hard

53

Where should we place locks?

• Suppose we have a shared counter which we increment by some
precomputed value

54

int cumulative_time = 0; // global variable

Int main(void) {
…
for (int i = 0; i < 100; i++)

pthread_create(&tid[i], NULL,
thread, NULL);

…
// joins all threads
…
printf(“cumulative time %d\n”,

cumulative_time);
return 0;

}

void *thread(void *argv) {
int start = get_current_time_in_int();

int tmp = 0;
for (int i = 0; i < 100000; i++) {

tmp += I;
}

int end = get_current time_in_int();
int elapsed = end – start;

cumulative_time += elapsed;
}

Critical Sections

• These examples highlight the critical section problem
• Classical definition of a critical section:
“A piece of code that accesses a shared resource that MUST NOT be

concurrently accessed by more than one thread of execution.”

• Unfortunately, this definition is somewhat misleading
• Implies that the piece of code is the problem
• In fact, the shared resource is the root of the problem

55

Concurrent queue example

56

typedef struct node {
int value;
struct node *next;

} node_t;

typedef struct queue {
node_t *head;
node_t *tail;

} queue_t;

void queue_enqueue(queue_t *q, int value) {
node_t *tmp = malloc(sizeof(node_t));

tmp->value = value;
tmp->next = NULL;

q->tail->next = tmp;
q->tail = tmp;

}

int queue_dequeue(queue_t *q, int *value) {
node_t *tmp = q->head;
node_t *new_head = tmp->next;

if (new_head == NULL)
return -1; // queue was empty

*value = new_head->value;
q->head = new_head;
free(tmp);
return 0;

}

queue_t *queue_new() {
queue_t *q = malloc(sizeof(queue_t));
node node_t *tmp =

malloc(sizeof(node_t));
tmp->next = NULL;
q->head = q->tail = tmp;
return q;

}

Queue

57

dummy 1 2head

tail tailtail

void queue_enqueue(queue_t *q, int value) {
node_t *tmp = malloc(sizeof(node_t));

tmp->value = value;
tmp->next = NULL;

q->tail->next = tmp;
q->tail = tmp;

}

int queue_dequeue(queue_t *q, int *value) {
node_t *tmp = q->head;
node_t *new_head = tmp->next;

if (new_head == NULL)
return -1; // queue was empty

*value = new_head->value;
q->head = new_head;
free(tmp);
return 0;

}

head head

Queue (enqueue race)

58

dummy 1

2

head

tail

3

tail

tail

void queue_enqueue(queue_t *q, int value) {
node_t *tmp = malloc(sizeof(node_t));

tmp->value = value;
tmp->next = NULL;

q->tail->next = tmp;
q->tail = tmp;

}

int queue_dequeue(queue_t *q, int *value) {
node_t *tmp = q->head;
node_t *new_head = tmp->next;

if (new_head == NULL)
return -1; // queue was empty

*value = new_head->value;
q->head = new_head;
free(tmp);
return 0;

}

Queue (dequeue race)

59

dummy 1head

tail

void queue_enqueue(queue_t *q, int value) {
node_t *tmp = malloc(sizeof(node_t));

tmp->value = value;
tmp->next = NULL;

q->tail->next = tmp;
q->tail = tmp;

}

int queue_dequeue(queue_t *q, int *value) {
node_t *tmp = q->head;
node_t *new_head = tmp->next;

if (new_head == NULL)
return -1; // queue was empty

*value = new_head->value;
q->head = new_head;
free(tmp);
return 0;

}

head

head

Free twice

Queue (fixes)

• Use a lock
• Problems?

• Can use two different locks
• Tail lock, head lock

60

void queue_enqueue(queue_t *q, int value) {
node_t *tmp = malloc(sizeof(node_t));

tmp->value = value;
tmp->next = NULL;

q->tail->next = tmp;
q->tail = tmp;

}

int queue_dequeue(queue_t *q, int *value) {
node_t *tmp = q->head;
node_t *new_head = tmp->next;

if (new_head == NULL)
return -1; // queue was empty

*value = new_head->value;
q->head = new_head;
free(tmp);
return 0;

}

dummy 1 2head

tail

What can go wrong with locks?

• Forgetting to unlock
• Other threads wait indefinitely and program can freeze

• Unlocking more than once
• Undefined behavior

• Locking more than once
• Thread blocks at the second call

61

Deadlocks

62

Layers
of Locks

63

mutex A
mutex B

Thread 1

lock A
lock B
// do something
unlock B
unlock A

Thread 2

lock B
lock A
// do something
unlock A
unlock B

Thread 1 Thread 2

lock(A)

lock(B)

unlock(B)

unlock(b)

lock(B)

lock(A)

unlock(A)

unlock(B)

Thread 1 Thread 2

lock(A)

lock(B)

lock(B)

unlock(B)

unlock(A) lock(A)

unlock(A)

unlock(B)

Thread 1 Thread 2

lock(A) lock(B)

lock(B) lock(A)

Deadlock :(

Deadlock

• Four necessary conditions
• Mutual exclusion

• Only one owner is allowed for the resource
• Hold and wait

• Holding on one or more resources and waiting to acquire more
• No preemption

• Resources cannot be taken away
• Circular wait

• Holding on a resource and waiting for others in circular manner

• Removing one or more conditions will resolve deadlocks
• Use of try_lock and releasing existing resources upon trying to lock
• Carefully ordering lock function call orders to avoid circular waits

64

pthread_mutex_trylock

• Tries to acquire lock
• If successful, return true and

proceed with exclusive access
• Else return false and proceed

without exclusive access

• Why is unlock() called only
inside if statement?

• What is the final counter
value if 10 thread execute
concurrently?

65

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

int counter = 0;

void *thread (void *argv) {
for (int i = 0; i < 10; i++) {

if (pthread_mutex_tryloc(&mtx)) {
counter = counter + 1;
pthread_mutex_unlock(&mtx);

}
}

}

Thread safety

66

Thread Safety

• Functions called from a thread need to be ‘thread-safe’

• A Function is thread-safe if it:
• Always produces correct results
• When called repeatedly from multiple concurrent threads.

67

Thread-Safety Classes

• Class 1: Functions that do not protect shared variables

• Class 2: Functions that keep state across multiple invocations

• Class 3: Functions that return a pointer to a static variable

• Class 4: Functions that call thread-unsafe functions

68

Thread-Unsafe Functions Class 1

• Functions that do not protect shared variables

69

Thread-Unsafe Functions Class 1 - Fix

• Functions that do not protect shared variables
• The solution: Ensure locks are around everything

70

Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations

71

Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations

72

rand() is a classic example. In
fact, why might we not want a
race condition in our random
number generator?

Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations

73

Ans: May want repeatability
for testing. So since rand is
deterministic, we don’t want
multiple threads returning the
same value

Thread-Unsafe Functions Class 2 - Fix

• Functions that keep state across multiple invocations
• The solution: Pass state as part of an argument so ‘static’ can be

removed

74

Thread-Unsafe Functions Class 2 - Fix

• Functions that keep state across multiple invocations
• The solution: Pass state as part of an argument so ‘static’ can be

removed

75

This function is called a
‘reentrant’ function. That
is, the result is based
only on the input. Our
input here is the ‘state’

Thread-Unsafe Functions Class 3

• Functions that return a pointer to a static variable

76

Thread-Unsafe Functions Class 3 - Fix

• Functions that return a pointer to a static variable
• The solution: Use locks, and rewrite function to return address of

variable.
• Extra mutex’s can generally be used to make things thread-safe
• May cost extra, in terms of performance.

77

Thread-Unsafe Functions Class 4

• Functions that call thread-unsafe functions

• Any function that calls a thread-unsafe function is now unsafe!

• The solution: do not call thread-unsafe functions

• Document your functions if they are thread-unsafe to prevent
yourself from making errors!

78

Reentrant Functions - Recap

• A function is reentrant if it accesses no shared variables when
called by multiple threads
• Important to note because:

• These functions require no synchronization
• (It is the only way to fix Class 2 functions and make them thread-safe)

79

Example thread-safe functions?

• What do you think, are the following thread-safe?
• e.g. malloc, free, printf, scanf

80

In these 4 alone,
we would
certainly have lots
of problems if not
thread-safe!

Example thread-safe functions

• All of the functions in the Standard C Library are thread-safe
• e.g. malloc, free, printf, scanf

• Most Unix system calls are thread-safe. Below are a selection of
exceptions. See man pthreads for the full list

81

Time

Networking

Time
Random

Lock implementations

82

Implementing Mutual Exclusion

• Typically, developers don’t write their own locking-primitives
• You use an API from the OS or a library

• Why don’t people write their own locks?
• Much more complicated than they at-first appear
• Very, very difficult to get correct
• May require access to privileged instructions
• May require specific assembly instructions

• Instruction set architecture dependent

83

Instruction-level Atomicity

• Modern CPUs have atomic instruction(s)
• Enable you to build high-level synchronized objects

• On x86:
• The lock prefix makes an instruction atomic

• lock inc eax ; atomic increment
• lock dec eax ; atomic decrement

• Only legal with some instructions

• The xchg instruction is guaranteed to be atomic
• xchg eax, [addr] ; swap eax and the value in memory

84

Behavior of xchg

• Atomicity ensures that each xchg occurs before or after xchg’s
from other CPUs

85

eax: 1
1
0
0

eax: 2
2
0

0
0
1
1
1

xchg xchg

Illegal execution

CPU 1 CPU 2memory

Non-Atomic xchg

eax: 1
1
0
0

eax: 2
2
1xchg xchg

Legal execution

CPU 1 CPU 2
0
0
1
2
2

memory

Atomic xchg

Building a Spin Lock with xchg

spin_lock:

mov eax, 1

xchg eax, [lock_addr]
test eax, eax

jnz spin_lock

spin_unlock:

mov [lock_addr], 0

86

CPU 1 locks.

CPUs 0 and 2 both try
to lock, but cannot.

CPU 1 unlocks.

CPU 0 locks, simply
because it requested
it slightly before CPU
2.

If (1st & 2nd) == 0 then ZF=1
else ZF=0
…

Do you see any problem with spinlocks?

Building a Multi-CPU Mutex
(avoids extensive spinning)

87

typedef struct mutex_struct {
int spinlock = 0; // spinlock variable
int locked = 0; // is the mutex locked? guarded by spinlock
queue waitlist; // waiting threads, guarded by spinlock

} mutex;

void mutex_lock(mutex * m) {
spin_lock(&m->spinlock);
if (!m->locked){

m->locked = 1;
spin_unlock(&m->spinlock);

}
else {

m->waitlist.add(current_process);
spin_unlock(&m->spinlock);
yield();
// wake up here when the mutex is acquired

}
}

Building a Multi-CPU Mutex
(avoids extensive spinning)

88

typedef struct mutex_struct {
int spinlock = 0; // spinlock variable
int locked = 0; // is the mutex locked? guarded by spinlock
queue waitlist; // waiting threads, guarded by spinlock

} mutex;

void mutex_unlock(mutex * m) {
spin_lock(&m->spinlock);
if (m->waitlist.empty()) {

m->locked = 0;
spin_unlock(&m->spinlock);

}
else {

next_thread = m->waitlist.pop_from_head();
spin_unlock(&m->spinlock);
wake(next_thread);

}
}

Semaphores

89

Semaphores
• Generalization of a mutex

• Invented by Edsger Dijkstra
• Associated with a positive integer N
• May be locked by up to N concurrent threads

• Semaphore methods
• sem_wait(): N--; if N < 0 then sleep;

• Wait/aquire/lock
• Also commonly known as P (proberen – test) operation

• sem_post(): N++; if waiting threads > 0, wake one up; // a.k.a. V()
• Unlock
• Also commonly known as V (verhogen – increment) operation

• Depending on the initial value N, interesting features can be implemented

90

Semaphore
sem_t s;
sem_init(&s, 0, 1);

int sem_wait(sem_t *s) {
// executes atomically
decrement the value of semaphore s by one
wait if value of semaphore s is negative

}

int sem_post(sem_t *s) {
// executes atomically
increment the value of semaphore s by one
if there are one or more threads waiting, wake one

}

C semaphore programming example

• API
• #include <semaphore.h>

• int sem_init(sem_t *s, 0, unsigned int val)
• Second argument: shared among threads (0) vs processes (non-zero)
• Third argument: initial value of N

• int sem_wait(sem_t *s);

• int sem_post(sem_t *s);

• Int sem_destroy(sem_t *sem);

92

Using semaphores for mutual exclusion

• Basic Idea:
• Associate a unique semaphore S, initially 1

• (i.e. 1 spot open for a thread to enter)
• Surround corresponding critical sections with P(S) and V(S) operations

• Binary semaphore: Semaphore whose value is always 0 or 1
• P operation: “locking” the mutex
• V operation: “unlocking” or “releasing” the mutex
• “Holding” a mutex: locked and not yet unlocked

• Counting semaphore: Used as a counter for set of available
resources.

93

The Bounded Buffer Problem
• We want to keep the buffer size to a limit
• Multiple threads puts and gets from the buffer
list buffer
put(item):

if len(buffer) >= N
return ERROR

else
buffer.add_tail(item)

Get():
if len(buffer) == 0

return NULL
else

return buffer.remove_head()

list buffer
mutex m
put(item):

m.lock()
if len(buffer) >= N

m.unlock()
return ERROR

else
buffer.add_tail(item)
m.unlock()

Get():
m.lock()
if len(buffer) == 0

m.unlock()
return NULL

else
tmp = buffer.remove_head()
m.unlock()
return tmp

The Bounded Buffer Problem
• Use of semaphore can limit the number of threads that can

put/get at the same time

95

class semaphore_bounded_buffer:
mutex m
list buffer
semaphore S_space = semaphore(N)
semaphore S_items = semaphore(0)

put(item):
S_space.wait()
m.lock()
buffer.add_tail(item)
m.unlock()
S_items.post()

get():
S_items.wait()
m.lock()
result = buffer.remove_head()
m.unlock()
S_space.post()
return result

Example Bounded Buffer

buffer S_items S_space

[] 0 2

[a] 1 1

[a, b] 2 0

[a, b] 2 -1

[b] 1 0

[b, c] 2 0

96

Thread 1 Thread 2 Thread 3 Thread 4

put(a)

put(b)

put(c)

get()

Signaling and condition variables

97

Signaling

• Goal: Once something happens in one thread, then another
thread may proceed

98

Thread A

statement A1
sem.pos(&s) \\ send signal

Thread B

sem.wait(&s) \\ wait until
post
statement B1

sem_init(&s, 0, 0)

The problem…

• Suppose a thread wants to check a condition is TRUE before
continuing

• Say the main thread wants to see if a child thread has finished some
operation, how could the wait be implemented?

parent: begin
child: completes a task and moves on to the next step
parent: does something according to the completion

• All we have is join…

• Could we use the state of a shared variable?

99

The problem…

• Yes, but performance is NOT good: inefficient and wastes CPU time

100

int main(int argc, char *argv[]) {

pthread_t p;

printf("parent: begin\n");

pthread_create(&p, NULL, child, NULL);

while (done == 0)

; // spin

printf("parent: end\n");

done = 0;

pthread_create(&p, NULL, child, NULL);

while (done == 0)

; // spin

...

return 0;

}

int done = 0;

void *child(void *arg) {
printf("child\n");
sleep(5);
done = 1;
sleep(10);
return NULL;

}

Note: this code is unsafe

Use a condition variable

• condition variable: an explicit queue that threads can put
themselves on to wait for some state/condition to change

• when it changes: wake one of waiting threads and allow them to
continue

• Two operations: wait() and signal()

• wait(): a thread wishes to put itself to sleep
• pthread_cond_wait()

• signal(): when a condition has changed and a thread needs to be
waken from sleeping

• pthread_cond_signal()

101

Use a condition variable

102

int main(int argc, char *argv[]) {

pthread_t p;

printf("parent: begin\n");

pthread_create(&p, NULL, child, NULL);

pthread_mutex_lock(&m);

while (done == 0) {

// releases lock when going to sleep

pthread_cond_wait(&c, &m);

// when woken up it automatically

// acquires the lock

}

pthread_mutex_unlock(&m);

printf("parent: end\n");

return 0;

}

pthread_cond_t c = PTHREAD_COND_INITIALIZER;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
int done = 0;

void *child(void *arg) {
printf("child\n");
sleep(1);

pthread_mutex_lock(&m);

done = 1;

pthread_cond_signal(&c);

pthread_mutex_unlock(&m);

sleep(10);
return NULL;

}

Summary of Synchronization

• Programmers need a clear model of how variables are shared by
threads

• Variables shared by multiple threads must be protected to ensure
mutually exclusive access

• Deadlocks must be prevented

• Synchronization primitives
• Mutex
• Semaphores
• Condition variables

103

