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Recap on threads

• Light-weight processes that share the same memory and state

• Every process has at least one thread

• Benefits:
• Resource sharing, no need for IPC
• Economy: faster to create, faster to context switch
• Scalability: simple to take advantage of multi-core CPUs
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Hello Thread

• The thread that is “launched” is 
a function in the program
• This is done when the thread 

is created
• Different attributes can be 

sent to threads (in this case 
the first NULL)

• Arguments can also be passed 
to the function (second NULL)

• pthread_join is the 
equivalent to “wait” for 
threads

• What if we don’t call join?
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Visual execution of “Hello Thread”
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Launching multiple threads

• This time launch 10000 threads
• counter is shared between 

threads
• What is wrong with this 

program?
• What is the final output?
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Example with lock

• Included a pthread_mutex_lock
• lock and unlock protects
• Locks in other words enforce, 

that we have exclusive access 
to a region of code.
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BLO
CKS 

EXECU
TIO

N
What was happening?
Thread 1 (counter = counter + 1)
pthread_mutex_lock
Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11
pthread_mutex_unlock

Thread 2 (counter = counter + 1)

pthread_mutex_lock
// Lock is held by thread 1 so 
// thread 2 has to wait until 
// thread 1 unlocks

// Now acquires the lock and runs
Read “counter”: 10
Add 1 to “counter”: 11
Write to “counter”: 11
pthred_mutex_unlock
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Posix Threads API (PThreads Interface)

• Sample functions
• Creating and reaping threads

■ pthread_create()
■ pthread_join()

• Determining thread ID
■ pthread_self()

• Terminating threads
■ pthread_cancel()
■ pthread_exit()
• exit() - Terminates all threads
• return - terminates current thread

• Synchronizing access to shared variables
■ pthread_mutex_init
• pthread_mutex_lock and pthread_mutex_unlock
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Bank Transactions
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A series (i.e. serial) of Bank Transactions

1. If I start with $25 in my checking account.
2. Then I deposit $50, I have $75.
3. If I then withdraw $50, I now have $25.
4. My final balance is $25.
5. There is a variable checkings that monitors our balance.
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Concurrent Bank Transaction

1. If I start with $25 in my checking account.
2. Then I deposit $50 and withdraw $50 at the same time (concurrently)
3. My final balance should still be $25.

4. There is a shared variable checkings in each 
thread that monitors our balance.
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Read our initial balance
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checkings = 25

Thread Z:
checkings = ??

deposit(50)

checkings = ??

Thread Y:
checkings = ??
withdraw(50)
checkings = ??

checkings = ???

Ti
m
e Thread ZThread Y



Okay, we have $25 – now move on
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)
checkings = ??

checkings = ???

Ti
m
e Thread ZThread Y



withdraw and deposit occur (Thread Y and Z)
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)
checkings = ??

checkings = ???

Ti
m
e Thread ZThread Y



Checkings from Thread Y updates first
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m
e Thread ZThread Y



(Thread Z) updates its checkings value shortly after
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m
e Thread ZThread Y



Now we have conflicting information
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m
e Thread ZThread Y



checkings stores the last value of 75 (Thread Z)
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = 75

Ti
m
e

checkings = 75checkings = 75

Thread ZThread Y

checkings = -25



What if these operations had swapped!
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checkings = 25

checkings = 25
deposit(50)

checkings = 75

checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m
e Thread ZThread Y

checkings = 75
checkings = -25



This time our balance is -25! (Thread Y)
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checkings = 25

checkings = 25
deposit(50)

checkings = 75

checkings = 25
withdraw(50)

checkings = -25

checkings = -25

Ti
m
e Thread ZThread Y

checkings = -25
checkings = 75



How about if Thread Z lags behind Thread Y?
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checkings = 25

checkings = ??
deposit(50)

checkings = ??

checkings = ??
withdraw(50)
checkings = ??

checkings = ??

Ti
m
e

Thread ZThread Y



How about if Thread Z lags behind Thread Y?
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checkings = 25

checkings = ??
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = -25

Ti
m
e

Thread ZThread Y



How about if Thread Z lags behind Thread Y?
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checkings = -25

checkings = ??
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = ??

Ti
m
e

Thread ZThread Y



How about if Thread Z lags behind Thread Y?
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checkings = -25

checkings = -25
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = ??

Ti
m
e

Thread ZThread Y



Okay—this time we happen to get 25

25

checkings = -25

checkings = -25
deposit(50)

checkings = 25

checkings = 25
withdraw(50)

checkings = -25

checkings = 25 ok

Ti
m
e

Thread ZThread Y



We have witnessed a data race
A common concurrency problem
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checkings = -25 checkings = 25 okcheckings = 75



We need to synchronize – enforce ordering
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checkings = 25

Thread Y:
checkings = 25
withdraw(50)

Thread Z:
checkings = -25

deposit(50)

checkings = 25  always correct

Ti
m
e



(The Bug!)

• What is wrong with this 
program?
• The problem is we have a 

global “counter” that is shared
• There is an interleaving of 

instructions here.
• Any possible interleaving can 

occur!

• Solution is to add locks!
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What Data is Shared in Threaded C Programs?

• Global variables are shared
• We just saw an example with counter.
• (Note: the compilers can be smart)

• (“counter” is only shared if it is referenced within the thread, otherwise 
do not copy it.)
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Threads Memory Model: Conceptual

• Multiple threads run within the context of a single process
• Each thread has its own separate thread context

• Thread ID, stack, stack pointer, PC, condition codes, and General 
Purpose Registers

• All threads share the remaining process context
• Code, data, heap, and shared library segments for virtual address 

space
• Open files 
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Threads Memory Model: Actual

• Separation of data is not strictly enforced:
• Register values are truly separate and protected
• Any thread however, can read and write the stack of any other thread
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Mapping Variable Instances to Memory

• Global Variables
• Definition: Variable declared outside of a function
• Virtual Memory contains exactly one instance of any global variable

• Local Variables
• Definition: Variable declared inside function without static attribute
• Each thread stack contains one instance of each local variable

• Local static variables
• Definition: Variables declared inside function with the static attribute
• Virtual memory contains exactly one instance of any local static 

variable.
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Mapping Variable Instances to Memory

• 1 main thread “m” and two threads “p0” and “p1”
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Shared Variable Analysis

• 1 main thread “m” and two threads “p0” and “p1”
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Shared Variable Analysis
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ptr?



Shared Variable Analysis
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Global



Shared Variable Analysis
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cnt?



Shared Variable Analysis

38

All threads share 
this ‘static’ value



Shared Variable Analysis
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i.m?



Shared Variable Analysis

40

Shared?



Shared Variable Analysis
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Shared? 
Yes. 

YES                    YES

This example is 
abusing “i”.

If a pointer to an 
object is passed to 

pthread_create then 
it should be shared.



Shared Variable Analysis
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msgs?
(careful)



Shared Variable Analysis
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We have a ‘ptr’ to msg, 
so effectively shared



Shared Variable Analysis
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myid.p0?



Shared Variable Analysis

45

Local to peer 
thread 0 only



Shared Variable Analysis
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So for 
myid.p1?



Shared Variable Analysis
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Local to peer 
thread 1 only



Synchronization of Threads

• Shared variables are thus handy for moving around data
• But if we do not share properly, we can have synchronization 

errors!
• There is a solution however!
• (recap below)
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We need a tool to protect shared resources

void deposit (float amount) 
{

checkings += amount;

}
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What to be careful with locks
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Correctness (can be) Easy
Performance Hard

withdraw(…) {…}
deposit(…) {…}
addInterest(…) {…}
checkMinBalance(…) {…}
chargeFee(…) {…}
printBalance(…) {…}
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Simply add locks!

lock
lock
lock
lock
lock
lock



Correctness (can be) Easy
Performance Hard

withdraw(…) {…}
deposit(…) {…}
addInterest(…) {…}
checkMinBalance(…) {…}
chargeFee(…) {…}
printBalance(…) {…}
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Simply add locks!

lock
lock
lock
lock
lock
lock

Good job—
no data races 

here!



By Max Roser, Hannah Ritchie - https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=98219918

Your program runs  
sequentially– did you 
forget about Amdahl’s 

law?

Correctness (can be) Easy
Performance Hard
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Where should we place locks?

• Suppose we have a shared counter which we increment by some 
precomputed value
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int cumulative_time = 0; // global variable

Int main(void) {
…
for (int i = 0; i < 100; i++)

pthread_create(&tid[i], NULL, 
thread, NULL);

…
// joins all threads
…
printf(“cumulative time %d\n”,

cumulative_time);
return 0;

}

void *thread(void *argv) {
int start = get_current_time_in_int();

int tmp = 0;
for (int i = 0; i < 100000; i++) {

tmp += I;
}

int end = get_current time_in_int();
int elapsed = end – start;

cumulative_time += elapsed;
}



Critical Sections

• These examples highlight the critical section problem
• Classical definition of a critical section:
“A piece of code that accesses a shared resource that MUST NOT be 

concurrently accessed by more than one thread of execution.”

• Unfortunately, this definition is somewhat misleading
• Implies that the piece of code is the problem
• In fact, the shared resource is the root of the problem

55



Concurrent queue example
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typedef struct node { 
int value; 
struct node *next; 

} node_t; 

typedef struct queue { 
node_t *head; 
node_t *tail; 

} queue_t;

void queue_enqueue(queue_t *q, int value) {
node_t *tmp = malloc(sizeof(node_t)); 

tmp->value = value; 
tmp->next = NULL; 

q->tail->next = tmp; 
q->tail = tmp; 

}

int queue_dequeue(queue_t *q, int *value) {  
node_t *tmp = q->head; 
node_t *new_head = tmp->next; 

if (new_head == NULL) 
return -1; // queue was empty

*value = new_head->value; 
q->head = new_head; 
free(tmp); 
return 0; 

}

queue_t *queue_new() { 
queue_t *q = malloc(sizeof(queue_t)); 
node node_t *tmp = 

malloc(sizeof(node_t)); 
tmp->next = NULL; 
q->head = q->tail = tmp; 
return q; 

}



Queue
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dummy 1 2head

tail tailtail

void queue_enqueue(queue_t *q, int value) {
node_t *tmp = malloc(sizeof(node_t)); 

tmp->value = value; 
tmp->next = NULL; 

q->tail->next = tmp; 
q->tail = tmp; 

}

int queue_dequeue(queue_t *q, int *value) {  
node_t *tmp = q->head; 
node_t *new_head = tmp->next; 

if (new_head == NULL) 
return -1; // queue was empty

*value = new_head->value; 
q->head = new_head; 
free(tmp); 
return 0; 

}

head head



Queue (enqueue race)
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dummy 1

2

head

tail

3

tail

tail

void queue_enqueue(queue_t *q, int value) {
node_t *tmp = malloc(sizeof(node_t)); 

tmp->value = value; 
tmp->next = NULL; 

q->tail->next = tmp; 
q->tail = tmp; 

}

int queue_dequeue(queue_t *q, int *value) {  
node_t *tmp = q->head; 
node_t *new_head = tmp->next; 

if (new_head == NULL) 
return -1; // queue was empty

*value = new_head->value; 
q->head = new_head; 
free(tmp); 
return 0; 

}



Queue (dequeue race)
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dummy 1head

tail

void queue_enqueue(queue_t *q, int value) {
node_t *tmp = malloc(sizeof(node_t)); 

tmp->value = value; 
tmp->next = NULL; 

q->tail->next = tmp; 
q->tail = tmp; 

}

int queue_dequeue(queue_t *q, int *value) {  
node_t *tmp = q->head; 
node_t *new_head = tmp->next; 

if (new_head == NULL) 
return -1; // queue was empty

*value = new_head->value; 
q->head = new_head; 
free(tmp); 
return 0; 

}

head

head

Free twice



Queue (fixes)

• Use a lock
• Problems?

• Can use two different locks
• Tail lock, head lock
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void queue_enqueue(queue_t *q, int value) {
node_t *tmp = malloc(sizeof(node_t)); 

tmp->value = value; 
tmp->next = NULL; 

q->tail->next = tmp; 
q->tail = tmp; 

}

int queue_dequeue(queue_t *q, int *value) {  
node_t *tmp = q->head; 
node_t *new_head = tmp->next; 

if (new_head == NULL) 
return -1; // queue was empty

*value = new_head->value; 
q->head = new_head; 
free(tmp); 
return 0; 

}

dummy 1 2head

tail



What can go wrong with locks?

• Forgetting to unlock
• Other threads wait indefinitely and program can freeze

• Unlocking more than once 
• Undefined behavior

• Locking more than once
• Thread blocks at the second call 
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Deadlocks
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Layers
of Locks
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mutex A
mutex B 

Thread 1

lock A
lock B
// do something
unlock B
unlock A

Thread 2

lock B
lock A
// do something
unlock A
unlock B

Thread 1 Thread 2

lock(A)

lock(B)

unlock(B)

unlock(b)

lock(B)

lock(A)

unlock(A)

unlock(B)

Thread 1 Thread 2

lock(A)

lock(B)

lock(B)

unlock(B)

unlock(A) lock(A)

unlock(A)

unlock(B)

Thread 1 Thread 2

lock(A) lock(B)

lock(B) lock(A)

Deadlock :(



Deadlock

• Four necessary conditions
• Mutual exclusion

• Only one owner is allowed for the resource
• Hold and wait

• Holding on one or more resources and waiting to acquire more
• No preemption

• Resources cannot be taken away 
• Circular wait

• Holding on a resource and waiting for others in circular manner

• Removing one or more conditions will resolve deadlocks
• Use of try_lock and releasing existing resources upon trying to lock
• Carefully ordering lock function call orders to avoid circular waits
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pthread_mutex_trylock

• Tries to acquire lock
• If successful, return true and 

proceed with exclusive access
• Else return false and proceed 

without exclusive access

• Why is unlock() called only 
inside if statement?

• What is the final counter 
value if 10 thread execute 
concurrently?

65

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

int counter = 0;

void *thread (void *argv) {
for (int i = 0; i < 10; i++) {

if (pthread_mutex_tryloc(&mtx)) {
counter = counter + 1;
pthread_mutex_unlock(&mtx);

}
}

}



Thread safety
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Thread Safety

• Functions called from a thread need to be ‘thread-safe’

• A Function is thread-safe if it: 
• Always produces correct results 
• When called repeatedly from multiple concurrent threads.
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Thread-Safety Classes

• Class 1: Functions that do not protect shared variables

• Class 2: Functions that keep state across multiple invocations

• Class 3: Functions that return a pointer to a static variable

• Class 4: Functions that call thread-unsafe functions
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Thread-Unsafe Functions Class 1

• Functions that do not protect shared variables
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Thread-Unsafe Functions Class 1 - Fix

• Functions that do not protect shared variables
• The solution: Ensure locks are around everything
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Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations
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Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations

72

rand() is a classic example. In 
fact, why might we not want a 
race condition in our random 
number generator?



Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations

73

Ans: May want repeatability 
for testing. So since rand is 
deterministic, we don’t want 
multiple threads returning the 
same value



Thread-Unsafe Functions Class 2 - Fix

• Functions that keep state across multiple invocations
• The solution: Pass state as part of an argument so ‘static’ can be 

removed
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Thread-Unsafe Functions Class 2 - Fix

• Functions that keep state across multiple invocations
• The solution: Pass state as part of an argument so ‘static’ can be 

removed

75

This function is called a 
‘reentrant’ function. That 
is, the result is based 
only on the input. Our 
input here is the ‘state’



Thread-Unsafe Functions Class 3

• Functions that return a pointer to a static variable
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Thread-Unsafe Functions Class 3 - Fix

• Functions that return a pointer to a static variable
• The solution: Use locks, and rewrite function to return address of 

variable.
• Extra mutex’s can generally be used to make things thread-safe
• May cost extra, in terms of performance.
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Thread-Unsafe Functions Class 4

• Functions that call thread-unsafe functions

• Any function that calls a thread-unsafe function is now unsafe!

• The solution: do not call thread-unsafe functions

• Document your functions if they are thread-unsafe to prevent 
yourself from making errors!
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Reentrant Functions - Recap

• A function is reentrant if it accesses no shared variables when 
called by multiple threads
• Important to note because:

• These functions require no synchronization
• (It is the only way to fix Class 2 functions and make them thread-safe)
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Example thread-safe functions?

• What do you think, are the following thread-safe?
• e.g. malloc, free, printf, scanf

80

In these 4 alone, 
we would 
certainly have lots 
of problems if not 
thread-safe! 



Example thread-safe functions

• All of the functions in the Standard C Library are thread-safe
• e.g. malloc, free, printf, scanf

• Most Unix system calls are thread-safe. Below are a selection of 
exceptions.  See man pthreads for the full list

81

Time

Networking

Time
Random



Lock implementations

82



Implementing Mutual Exclusion

• Typically, developers don’t write their own locking-primitives
• You use an API from the OS or a library

• Why don’t people write their own locks?
• Much more complicated than they at-first appear
• Very, very difficult to get correct
• May require access to privileged instructions
• May require specific assembly instructions

• Instruction set architecture dependent
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Instruction-level Atomicity

• Modern CPUs have atomic instruction(s)
• Enable you to build high-level synchronized objects

• On x86:
• The lock prefix makes an instruction atomic 

• lock inc eax ; atomic increment
• lock dec eax ; atomic decrement

• Only legal with some instructions

• The xchg instruction is guaranteed to be atomic
• xchg eax, [addr] ; swap eax and the value in memory
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Behavior of xchg

• Atomicity ensures that each xchg occurs before or after xchg’s
from other CPUs
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eax: 1
1
0
0

eax: 2
2
0

0
0
1
1
1

xchg xchg

Illegal execution

CPU 1 CPU 2memory

Non-Atomic xchg

eax: 1
1
0
0

eax: 2
2
1xchg xchg

Legal execution

CPU 1 CPU 2
0
0
1
2
2

memory

Atomic xchg



Building a Spin Lock with xchg

spin_lock:

mov eax, 1

xchg eax, [lock_addr]
test eax, eax

jnz spin_lock

spin_unlock:

mov [lock_addr], 0

86

CPU 1 locks.

CPUs 0 and 2 both try 
to lock, but cannot.

CPU 1 unlocks.

CPU 0 locks, simply 
because it requested 
it slightly before CPU 
2. 

If (1st & 2nd) == 0 then ZF=1
else  ZF=0
…

Do you see any problem with spinlocks?



Building a Multi-CPU Mutex
(avoids extensive spinning)
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typedef struct mutex_struct {
int spinlock = 0; // spinlock variable
int locked = 0;   // is the mutex locked? guarded by spinlock
queue waitlist;   // waiting threads, guarded by spinlock

} mutex;

void mutex_lock(mutex * m) {
spin_lock(&m->spinlock);
if (!m->locked){

m->locked = 1;
spin_unlock(&m->spinlock);

}
else {

m->waitlist.add(current_process);
spin_unlock(&m->spinlock);
yield();
// wake up here when the mutex is acquired

}
}



Building a Multi-CPU Mutex
(avoids extensive spinning)

88

typedef struct mutex_struct {
int spinlock = 0; // spinlock variable
int locked = 0;   // is the mutex locked? guarded by spinlock
queue waitlist;   // waiting threads, guarded by spinlock

} mutex;

void mutex_unlock(mutex * m) {
spin_lock(&m->spinlock);
if (m->waitlist.empty()) {

m->locked = 0;
spin_unlock(&m->spinlock);

}
else {

next_thread = m->waitlist.pop_from_head();
spin_unlock(&m->spinlock);
wake(next_thread);

}
}



Semaphores
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Semaphores
• Generalization of a mutex

• Invented by Edsger Dijkstra
• Associated with a positive integer N
• May be locked by up to N concurrent threads

• Semaphore methods
• sem_wait(): N--; if N < 0 then sleep; 

• Wait/aquire/lock
• Also commonly known as P (proberen – test) operation

• sem_post(): N++; if waiting threads > 0, wake one up; // a.k.a. V()
• Unlock
• Also commonly known as V (verhogen – increment) operation

• Depending on the initial value N, interesting features can be implemented
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Semaphore
sem_t s;
sem_init(&s, 0, 1);

int sem_wait(sem_t *s) {
// executes atomically
decrement the value of semaphore s by one
wait if value of semaphore s is negative

}

int sem_post(sem_t *s) {
// executes atomically
increment the value of semaphore s by one
if there are one or more threads waiting, wake one

}



C semaphore programming example

• API
• #include <semaphore.h>

• int sem_init(sem_t *s, 0, unsigned int val)
• Second argument: shared among threads (0) vs processes (non-zero)
• Third argument: initial value of N

• int sem_wait(sem_t *s);

• int sem_post(sem_t *s);

• Int sem_destroy(sem_t *sem);
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Using semaphores for mutual exclusion

• Basic Idea:
• Associate a unique semaphore S, initially 1

• (i.e. 1 spot open for a thread to enter)
• Surround corresponding critical sections with P(S) and V(S) operations

• Binary semaphore: Semaphore whose value is always 0 or 1
• P operation: “locking” the mutex
• V operation: “unlocking” or “releasing” the mutex
• “Holding” a mutex: locked and not yet unlocked

• Counting semaphore: Used as a counter for set of available 
resources.
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The Bounded Buffer Problem
• We want to keep the buffer size to a limit
• Multiple threads puts and gets from the buffer
list      buffer
put(item):

if len(buffer) >= N
return ERROR

else
buffer.add_tail(item)

Get():
if len(buffer) == 0

return NULL
else

return buffer.remove_head()

list      buffer
mutex     m
put(item):

m.lock()
if len(buffer) >= N

m.unlock()
return ERROR

else
buffer.add_tail(item)
m.unlock()

Get():
m.lock()
if len(buffer) == 0

m.unlock()
return NULL

else
tmp = buffer.remove_head()
m.unlock()
return tmp



The Bounded Buffer Problem
• Use of semaphore can limit the number of threads that can 

put/get at the same time

95

class semaphore_bounded_buffer:
mutex m
list      buffer
semaphore S_space = semaphore(N)
semaphore S_items = semaphore(0)

put(item):
S_space.wait()
m.lock()
buffer.add_tail(item)
m.unlock()
S_items.post()

get():
S_items.wait()
m.lock()
result = buffer.remove_head()
m.unlock()
S_space.post()
return result



Example Bounded Buffer

buffer S_items S_space

[] 0 2

[a] 1 1

[a, b] 2 0

[a, b] 2 -1

[b] 1 0

[b, c] 2 0

96

Thread 1 Thread 2 Thread 3 Thread 4

put(a)

put(b)

put(c)

get()



Signaling and condition variables
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Signaling

• Goal: Once something happens in one thread, then another 
thread may proceed

98

Thread A

statement A1
sem.pos(&s)  \\ send signal

Thread B

sem.wait(&s)  \\ wait until 
post
statement B1

sem_init(&s, 0, 0)



The problem…

• Suppose a thread wants to check a condition is TRUE before 
continuing

• Say the main thread wants to see if a child thread has finished some 
operation, how could the wait be implemented?

parent: begin
child: completes a task and moves on to the next step
parent: does something according to the completion

• All we have is join…

• Could we use the state of a shared variable?
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The problem…

• Yes, but performance is NOT good: inefficient and wastes CPU time 
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int main(int argc, char *argv[]) {

pthread_t p;

printf("parent: begin\n");

pthread_create(&p, NULL, child, NULL);

while (done == 0)

; // spin

printf("parent: end\n");

done = 0;

pthread_create(&p, NULL, child, NULL);

while (done == 0)

; // spin

...

return 0;

}

int done = 0;

void *child(void *arg) {
printf("child\n");
sleep(5);
done = 1;
sleep(10);
return NULL;

}

Note: this code is unsafe



Use a condition variable

• condition variable: an explicit queue that threads can put 
themselves on to wait for some state/condition to change

• when it changes: wake one of waiting threads and allow them to 
continue

• Two operations: wait() and signal()

• wait(): a thread wishes to put itself to sleep
• pthread_cond_wait()

• signal(): when a condition has changed and a thread needs to be 
waken from sleeping

• pthread_cond_signal()
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Use a condition variable
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int main(int argc, char *argv[]) {

pthread_t p;

printf("parent: begin\n");

pthread_create(&p, NULL, child, NULL);

pthread_mutex_lock(&m);

while (done == 0) {

// releases lock when going to sleep

pthread_cond_wait(&c, &m); 

// when woken up it automatically

// acquires the lock

}

pthread_mutex_unlock(&m);

printf("parent: end\n");

return 0;

}

pthread_cond_t c = PTHREAD_COND_INITIALIZER;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
int done = 0;

void *child(void *arg) {
printf("child\n");
sleep(1);

pthread_mutex_lock(&m);

done = 1;

pthread_cond_signal(&c);

pthread_mutex_unlock(&m);

sleep(10);
return NULL;

}



Summary of Synchronization

• Programmers need a clear model of how variables are shared by 
threads

• Variables shared by multiple threads must be protected to ensure 
mutually exclusive access

• Deadlocks must be prevented

• Synchronization primitives
• Mutex
• Semaphores
• Condition variables
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