
Concurrency (1)

Week 8

CS 3650 Computer Systems – Spring 2023 

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.



Memory allocators
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Dynamic Allocation of Pages

• Page tables allow the OS to dynamically assign 
physical frames to processes on-demand
• E.g., if the stack grows, the OS can map in an 

additional page

• On Linux, processes use sbrk()/brk()/mmap() to 
request additional heap pages
• But these syscalls only allocates memory in 

multiples of 4KB

• Why 4KB?

3

Virtual
Memory

Code

Stack

Heap

ESP

Stack

Stack

Heap
Heap



What About malloc() and free()?

• The OS only allocates and frees memory in units of 4KB pages
• What if you want to allocate <4KB of memory?

• E.g. char * string = (char *) malloc(100);

• Each process manages its own heap memory
• On Linux, glibc implements malloc() and free(), manages objects on 

the heap

• The JVM uses a garbage collector to manage the heap

• There are many different strategies for managing free memory
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Free Space Management

• Today’s topic: how do processes manage free memory?
1. Explicit memory management

• Languages like C, C++; programmers control memory allocation and 
deallocation

2. Implicit memory management
• Languages like Java, Javascript, Python; runtime takes care of freeing 

useless objects from memory

• In both cases, software must keep track of the memory that is in 
use or available
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Why Should You Care?

• Regardless of language, all of our code uses dynamic memory

• However, there is a performance cost associated with using 
dynamic memory

• Understanding how the heap is managed leads to:
• More performant applications

• The ability to diagnose difficult memory related errors and 
performance bottlenecks
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Setting the Stage

• Many languages allow programmers to explicitly allocate and 
deallocate memory
• C, C++

• malloc() and free()

• Programmers can malloc() any size of memory
• Not limited to 4KB pages

• free() takes a pointer, but not a size
• How does free() know how many bytes to deallocate?

• Pointers to allocated memory are returned to the programmer
• As opposed to Java or C# where pointers are “managed”

• Code may modify these pointers
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Requirements and Goals

• Keep track of memory usage
• What bytes of the heap are currently allocated/unallocated?

• Store the size of each allocation
• So that free() will work with just a pointer

• Minimize fragmentation
• … without doing compaction or relocation

• More on this later

• Maintain higher performance
• O(1) operations are obviously faster than O(n), etc.

• We won’t cover this in class; you may refer to the textbook
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Heap Fragmentation

obj * obj1, * obj2;

hash_tbl * ht;

int array[];

char * str1, * str2;

… // allocation of objects

…

free(obj2);

free(array);

…

str2 = (char *) malloc(300);

• This is an example of external fragmentation
• There is enough empty space for str2, but the space 

isn’t usable

• As we will see, internal fragmentation may also 
be an issue
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The Free List
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• Design challenge: linked lists are dynamic data structures
• Dynamic data structures go on the heap
• But in this case, we are implementing the heap?!

• A free list is a simple data structure for managing heap memory

• Three key components
1. A linked-list that records free regions of memory

• Free regions get split when memory is allocated

• Free list is kept in sorted order by memory address

2. Each allocated block of memory has a header that records the size 
of the block

3. An algorithm that selects which free region of memory to use for 
each allocation request



Free List Data Structures

• The free list is a linked list

• Stored in heap memory, alongside other data

• For malloc(n):
num_bytes = n + sizeof(header) 
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Heap Memory (4KB)

node * head

next

(sz) 4088

∅

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

• Linked list of regions of 
free space

• size = bytes of free space

• Header for each block 
of allocated space

• size = bytes of 
allocated space



Allocating Memory (Splitting)

char * s1 = (char *) malloc(100); // 104 bytes

char * s2 = (char *) malloc(100); // 104 bytes

char * s3 = (char *) malloc(100); // 104 bytes
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Heap Memory (4KB)
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100
char * s1

node * head

next

3880
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100
char * s2

node * head

next

3776
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100
char * s3

node * head

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

Header

Free region is “split” 
into allocated and free 

regions



Freeing Memory
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Heap Memory (4KB)

node * head 100
char * s1

node * head 100
char * s2

next

3776

∅

100
char * s3

node * headtypedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

• The free list is kept in sorted order
– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

free(s1); // returns 100 + 4 - 8 bytes

free(s3); // returns 100 + 4 - 8 bytes

All memory is free, but 
the free list divided into 

four regions

next

96

next

96

next

96

These pointers are 
“dangling”: they still point 
to heap memory, but the 

pointers are invalid

If user calls malloc(4000) 
what would happen?



Coalescing

• Free regions should be merged with their 
neighbors
• Helps to minimize fragmentation

• This would be O(n2) if the list was not sorted
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typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;
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Choosing Free Regions (1)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Which free region should be chosen?

• Fastest option is First-Fit
• Split the first free region with >=8 

bytes available

• Problem with First-Fit?
• Leads to external fragmentation

Heap Memory (4KB)

node * head

char * s1

char * s2

next

3596

∅

next
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next
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next
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int i[]

node * head
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Choosing Free Regions (2)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Second option: Best-Fit
• Locate the free region with size closest to 

(and >=) 8 bytes

• Less external fragmentation than First-fit

• Problem with Best-Fit?
• Requires O(n) time

Heap Memory (4KB)

node * head

char * s1

char * s2

next

3596

∅

next

50

next

16

next

4

int i[]
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Basic Free List Review

• Singly-linked free list

• List is kept in sorted order
• free() is an O(n) operation

• Adjacent free regions are coalesced

• Various strategies for selecting which free region to use
• First-fit: use the first free region with >=n bytes available

• Worst-case is O(n), but typically much faster

• Tends to lead to external fragmentation at the head of the list

• Best-fit: use the region with size closest (and >=) to n
• Less external fragments than first-fit, but O(n) time
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Some clarification for the assignment

• You do not have to know about 4KB granularity allocation 
happening behind the scene

• You may treat as if sbrk(X) newly allocates X bytes of memory block

• You do not have to split the memory block when reusing it for 
allocation

• You do not have to merge the memory block during freeing

• You simply need to treat the allocated block from sbrk call as a 
single memory block and reuse the blocks as they are
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Concurrency
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Concurrent thinking

• Humans tend to think sequentially

• Thinking about all the potential sequences of events is difficult for 
humans.
• https://www.psychologicalscience.org/news/why-humans-are-bad-

at-multitasking.html

• Computers on the other hand, can multi-task quite well.
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Parallelism vs Concurrency (programming context)

• What are parallelism and concurrency?

• What is the difference?
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Parallelism vs Concurrency (programming context)

• Concurrency: 

Happening at at the same time, interleaving, sharing resources
• Multiple tasks in progress at the same time

• Dealing with multiple things at once

• Parallelism: 

Happening at the same time, progressing independently
• Multiple tasks executing at the same time

• Doing multiple things at once

• Simultaneous execution
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Parallelism vs Concurrency (programming context)

• Concurrency
• Two queues for one vending machine

• Parallelism
• Two queues for two vending machines
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Parallelism vs Concurrency (programming context)

• Concurrent execution on a single-core system:

• Parallel execution on a dual-core system:
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Time
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Concurrent
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Parallel
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Why is concurrency so important?
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Moore’s law is slowing down

• The number of transistors on IC chips doubles approx. every 2 years

Source:The end of moore’s law & faster general purpose computing, and a road forward, John Hennessy. 
https://p4.org/assets/P4WS_2019/Speaker_Slides/9_2.05pm_John_Hennessey.pdf

DRAM capacity Intel processor density
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End of Dennard scaling

• Processor frequency increased for free as transistors became smaller

• Transistors became so small that current leakage overheats the chip

Source:The end of moore’s law & faster general purpose computing, and a road forward, John Hennessy. 
https://web.stanford.edu/~hennessy/Future%20of%20Computing.pdf

Uniprocessor performance (single core)
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Implications of CPU Evolution

• Increasing transistor count/clock speed
• Greater number of tasks can be executed concurrently

• Clock speed increases have almost stopped in the past few years
• Instead, more transistors = more CPU cores

• More cores = increased opportunity for parallelism
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Amdahl’s Law

• Speed up does not necessarily apply to the entire system

• Speed up indicates a relative performance improvement
• Originally spent time to improved time ratio

• Speed up =
1

1−𝑃 +𝑃/𝑆

• (1 – P) = the part that was not enhanced

• P = the part that was enhanced

• S = speed up of the part that was enhanced
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Amdahl’s Law
• Upper bound on performance gains from parallelism

• If I take a single-threaded task and parallelize it over N CPUs, how 
much more quickly will my task complete?

• Definition:
• seq is the fraction of processing time that is processed sequentially

• par is the fraction of processing time that can be parallelized

• seq+par = 1

• N is the number of CPU cores

Speedup = 
1

𝑠𝑒𝑞+
𝑝𝑎𝑟

𝑁
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Concurrency

• In general, concurrency (like parallelism) is used because it is 
necessary for a system to function.
• (For example, our jazz ensemble)

• It is also largely motivated by increased performance
• The potential for more tasks to happen at once can thus increases 

performance (especially, if we have multiple cores on our machine)
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Concurrency comes with some 

caveats however (next slide!)



Bad Concurrency = Data Race

• When two (or more) processes contending for one shared resource.
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Bad Concurrency = Data Race

• When two (or more) processes contending for one shared resource.
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Data race is not always as obvious...(1/4)

• Imagine you check your fridge 
and find there is no milk
• So you run to the store
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Data race is not always as obvious...(2/4)

• Imagine you check your fridge 
and find there is no milk
• So you run to the store

• Then moments later your 
roommate checks the fridge 
and finds it is empty
• So they run to the store
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Data race is not always as obvious...(3/4)

• Imagine you check your fridge 
and find there is no milk
• So you run to the store

• Then moments later your 
roommate checks the fridge 
and finds it is empty
• So they run to the store

• Roommate # 3 comes and 
notices the same
• ....
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Data race is not always as obvious...(4/4)

• You get the idea when you then 
find out you have 3 times as 
much milk as your house needs 
when everyone returns.
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Bad Concurrency = Deadlock

• Grid lock in a traffic jam

• Each car prevents others from 
going through a shared 
resource (the intersection).

• (One car needs a piece of the 
intersection in order to move 
forward)
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Bad Concurrency = Starvation

• Imagine a constant stream of 
green cars

• Progress is still being made by 
the green cars

• The yellow cars can never make 
progress to get across the 
street.
• They are resource starved of a 

shared resource (again, they 
cannot cross the intersection)
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Concurrent Programming needs some extra care

• Races
• Outcome depends on the arbitrary scheduling decisions

• e.g. Who gets the last seat on the airplane.  (soln’s to this in 
Distributed Systems course)

• Deadlock: Improper resource allocation prevents forward progress
• e.g. traffic gridlock

• Starvation/Fairness: External events and/or scheduling decisions 
can prevent sub-task progress
• e.g. Someone jumping in front of you in line

• But regardless, concurrent programming is important and necessary 
to get the most out of current processor architectures!
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A Few Approaches to Concurrency

• Process-Based
• Fork() different processes

• Each process has its own private address space

• Event-Based
• Programmer manually interleaves multiple logical flows and polls for 

events

• All flows share the same address space

• Uses technique called I/O multiplexing

• Thread-based (Today’s focus)
• Kernel automatically interleaves multiple logical flows

• Each flow shares the same address space

• Hybrid of process-based and event-based.
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Threads

44



Problems with Processes

• Process creation is heavyweight (i.e. slow)
• Space must be allocated for the new process

• fork() copies all state of the parent to the child

• IPC mechanisms are cumbersome
• Difficult to use fine-grained synchronization

• Message passing is slow
• Each message may have to go through the kernel
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Threads

• Light-weight processes that share the same memory and state

• Every process has at least one thread

• Benefits:
• Resource sharing, no need for IPC

• Economy: faster to create, faster to context switch

• Scalability: simple to take advantage of multi-core CPUs
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A Process can have Multiple Threads

• Each thread shares the same code, data, and kernel context

• A thread has its own thread id (TID)

• A thread has its own logical control flow (no need to exec)

• A thread has its own stack for local variables
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View of Threads

• Threads associated with a process form a “pool” of peers
• Unlike processes (on the right) which form a tree hierarchy 

(i.e. parent/child relationship)
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Remember this diagram on Concurrent 
Processes?
• We looked at multiple processes running on a single core (next slide 

for multiple cores)
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Concurrent Thread (or Process) Execution

• Single Core Process
• Simulate parallelism 

by time slicing

• Multi-Core Processor
• Can have true parallelism
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Threads vs Processes

• Similarities
• Each has its own logical control flow

• Each can run concurrently with others 
(possibly on different cores if available)

• Each is context switched

• Differences
• Threads share all code and data (except local stacks)

• Processes (typically) do not (i.e. fork makes a copy)

• Threads are usually less expensive than managing processes
• Process control is twice as expensive as thread control

• Linux estimates

• ~20k cycles to create and reap a process

• ~10k cycles to create and reap a thread
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Pthreads

(POSIX Threads)
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POSIX Pthreads

• POSIX standard API for thread creation
• IEEE 1003.1c

• Specification, not implementation
• Defines the API and the expected behavior

• … but not how it should be implemented

• Implementation is system dependent
• On some platforms, user-level threads

• On others, maps to kernel-level threads
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Posix Threads API (PThreads Interface)

• Sample functions
• Creating and reaping threads

■ pthread_create()
■ pthread_join()

• Determining thread ID
■ pthread_self()

• Terminating threads
■ pthread_cancel()
■ pthread_exit()
• exit() - Terminates all threads
• return - terminates current thread

• Synchronizing access to shared variables
■ pthread_mutex_init
• pthread_mutex_lock and pthread_mutex_unlock
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PThread examples
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Hello Thread

• The thread that is “launched” is 
a function in the program
• This is done when the thread 

is created
• Different attributes can be 

sent to threads (in this case 
the first NULL)

• Arguments can also be passed 
to the function (second NULL)
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Hello Thread

• The thread that is “launched” is 
a function in the program
• This is done when the thread 

is created
• Different attributes can be 

sent to threads (in this case 
the first NULL)

• Arguments can also be passed 
to the function (second NULL)

• pthread_join is the 
equivalent to “wait” for 
threads

• What if we don’t call join?
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Visual execution of “Hello Thread”
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Launching multiple threads 

• Store 10 thread ids.
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Launching multiple threads

• Store 10 thread ids.

• Launch 10 threads
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Launching multiple threads

• Store 10 thread ids.

• Launch 10 threads

• Print out their thread ids to 
show which thread is 
executing.
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Launching multiple threads

• Store 10 thread ids.

• Launch 10 threads

• Print out their thread ids to 
show which thread is 
executing.

• Join all of our threads with the 
main thread
• (i.e. make the main thread 

wait until all 10 threads have 
executed.)
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Launching multiple threads

• *New Program*
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Launching multiple threads

• *New Program*

• This time launch 10000 threads
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Launching multiple threads

• *New Program*

• This time launch 10000 threads

• counter is shared between 
threads
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Launching multiple threads

• This time launch 10000 threads

• counter is shared between 
threads

• What is wrong with this 
program?

• What is the final output?
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What was happening?

Thread 1 (counter = counter + 1)

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

Thread 2 (counter = counter + 1)

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11
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What was happening?

Thread 1 (counter = counter + 1)

Read “counter”: 11

Add 1 to “counter”: 12
Write to “counter”: 12

Thread 2 (counter = counter + 1)
Read “counter”: 11
Add 1 to “counter”: 12

Write to “counter”: 12
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Thread 3 (counter = counter + 1)
Read “counter”: 12
Add 1 to “counter”: 13
Write to “counter”: 13



Synchronization of Threads

• Shared variables are thus handy for moving around data

• If we do not share properly, we can have synchronization errors!
• There is a solution however!
• (recap below)
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Example with lock

• Included a pthread_mutex_lock
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Example with lock

• Included a pthread_mutex_lock

• lock and unlock protects

• Locks in other words enforce, 
that we have exclusive access 
to a region of code.
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What was happening?

Thread 1 (counter = counter + 1)

pthread_mutex_lock

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

pthread_mutex_unlock

Thread 2 (counter = counter + 1)

pthread_mutex_lock

// Lock is held by thread 1 so 

// thread 2 has to wait until 

// thread 1 unlocks

// Now acquires the lock and runs

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

pthred_mutex_unlock
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Example with lock

• Included a pthread_mutex_lock

• lock and unlock protect

• Locks in other words enforce, 
that we have exclusive access 
to a region of code.
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