
Concurrency (1)

Week 8

CS 3650 Computer Systems – Spring 2023

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Memory allocators

2

Dynamic Allocation of Pages

• Page tables allow the OS to dynamically assign
physical frames to processes on-demand
• E.g., if the stack grows, the OS can map in an

additional page

• On Linux, processes use sbrk()/brk()/mmap() to
request additional heap pages
• But these syscalls only allocates memory in

multiples of 4KB

• Why 4KB?

3

Virtual
Memory

Code

Stack

Heap

ESP

Stack

Stack

Heap
Heap

What About malloc() and free()?

• The OS only allocates and frees memory in units of 4KB pages
• What if you want to allocate <4KB of memory?

• E.g. char * string = (char *) malloc(100);

• Each process manages its own heap memory
• On Linux, glibc implements malloc() and free(), manages objects on

the heap

• The JVM uses a garbage collector to manage the heap

• There are many different strategies for managing free memory

4

Free Space Management

• Today’s topic: how do processes manage free memory?
1. Explicit memory management

• Languages like C, C++; programmers control memory allocation and
deallocation

2. Implicit memory management
• Languages like Java, Javascript, Python; runtime takes care of freeing

useless objects from memory

• In both cases, software must keep track of the memory that is in
use or available

5

Why Should You Care?

• Regardless of language, all of our code uses dynamic memory

• However, there is a performance cost associated with using
dynamic memory

• Understanding how the heap is managed leads to:
• More performant applications

• The ability to diagnose difficult memory related errors and
performance bottlenecks

6

Setting the Stage

• Many languages allow programmers to explicitly allocate and
deallocate memory
• C, C++

• malloc() and free()

• Programmers can malloc() any size of memory
• Not limited to 4KB pages

• free() takes a pointer, but not a size
• How does free() know how many bytes to deallocate?

• Pointers to allocated memory are returned to the programmer
• As opposed to Java or C# where pointers are “managed”

• Code may modify these pointers

7

Requirements and Goals

• Keep track of memory usage
• What bytes of the heap are currently allocated/unallocated?

• Store the size of each allocation
• So that free() will work with just a pointer

• Minimize fragmentation
• … without doing compaction or relocation

• More on this later

• Maintain higher performance
• O(1) operations are obviously faster than O(n), etc.

• We won’t cover this in class; you may refer to the textbook

8

Heap Fragmentation

obj * obj1, * obj2;

hash_tbl * ht;

int array[];

char * str1, * str2;

… // allocation of objects

…

free(obj2);

free(array);

…

str2 = (char *) malloc(300);

• This is an example of external fragmentation
• There is enough empty space for str2, but the space

isn’t usable

• As we will see, internal fragmentation may also
be an issue

9

Heap Memory

str1

str2

obj1

ht

array

obj2

The Free List

10

• Design challenge: linked lists are dynamic data structures
• Dynamic data structures go on the heap
• But in this case, we are implementing the heap?!

• A free list is a simple data structure for managing heap memory

• Three key components
1. A linked-list that records free regions of memory

• Free regions get split when memory is allocated

• Free list is kept in sorted order by memory address

2. Each allocated block of memory has a header that records the size
of the block

3. An algorithm that selects which free region of memory to use for
each allocation request

Free List Data Structures

• The free list is a linked list

• Stored in heap memory, alongside other data

• For malloc(n):
num_bytes = n + sizeof(header)

11

Heap Memory (4KB)

node * head

next

(sz) 4088

∅

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

• Linked list of regions of
free space

• size = bytes of free space

• Header for each block
of allocated space

• size = bytes of
allocated space

Allocating Memory (Splitting)

char * s1 = (char *) malloc(100); // 104 bytes

char * s2 = (char *) malloc(100); // 104 bytes

char * s3 = (char *) malloc(100); // 104 bytes

12

Heap Memory (4KB)

node * head

next

4088

∅

next

3984
∅

100
char * s1

node * head

next

3880

∅

100
char * s2

node * head

next

3776

∅

100
char * s3

node * head

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

Header

Free region is “split”
into allocated and free

regions

Freeing Memory

13

Heap Memory (4KB)

node * head 100
char * s1

node * head 100
char * s2

next

3776

∅

100
char * s3

node * headtypedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

• The free list is kept in sorted order
– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

free(s1); // returns 100 + 4 - 8 bytes

free(s3); // returns 100 + 4 - 8 bytes

All memory is free, but
the free list divided into

four regions

next

96

next

96

next

96

These pointers are
“dangling”: they still point
to heap memory, but the

pointers are invalid

If user calls malloc(4000)
what would happen?

Coalescing

• Free regions should be merged with their
neighbors
• Helps to minimize fragmentation

• This would be O(n2) if the list was not sorted

14

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

Heap Memory (4KB)

node * head

next

3776

∅

next

96

next

96

next

96

∅
2003044088

Choosing Free Regions (1)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Which free region should be chosen?

• Fastest option is First-Fit
• Split the first free region with >=8

bytes available

• Problem with First-Fit?
• Leads to external fragmentation

Heap Memory (4KB)

node * head

char * s1

char * s2

next

3596

∅

next

50

next

16

next

38

int i[]

node * head

15

Choosing Free Regions (2)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Second option: Best-Fit
• Locate the free region with size closest to

(and >=) 8 bytes

• Less external fragmentation than First-fit

• Problem with Best-Fit?
• Requires O(n) time

Heap Memory (4KB)

node * head

char * s1

char * s2

next

3596

∅

next

50

next

16

next

4

int i[]

16

Basic Free List Review

• Singly-linked free list

• List is kept in sorted order
• free() is an O(n) operation

• Adjacent free regions are coalesced

• Various strategies for selecting which free region to use
• First-fit: use the first free region with >=n bytes available

• Worst-case is O(n), but typically much faster

• Tends to lead to external fragmentation at the head of the list

• Best-fit: use the region with size closest (and >=) to n
• Less external fragments than first-fit, but O(n) time

17

Some clarification for the assignment

• You do not have to know about 4KB granularity allocation
happening behind the scene

• You may treat as if sbrk(X) newly allocates X bytes of memory block

• You do not have to split the memory block when reusing it for
allocation

• You do not have to merge the memory block during freeing

• You simply need to treat the allocated block from sbrk call as a
single memory block and reuse the blocks as they are

18

Concurrency

19

Concurrent thinking

• Humans tend to think sequentially

• Thinking about all the potential sequences of events is difficult for
humans.
• https://www.psychologicalscience.org/news/why-humans-are-bad-

at-multitasking.html

• Computers on the other hand, can multi-task quite well.

20

https://www.psychologicalscience.org/news/why-humans-are-bad-at-multitasking.html
https://www.psychologicalscience.org/news/why-humans-are-bad-at-multitasking.html

Parallelism vs Concurrency (programming context)

• What are parallelism and concurrency?

• What is the difference?

21

Parallelism vs Concurrency (programming context)

• Concurrency:

Happening at at the same time, interleaving, sharing resources
• Multiple tasks in progress at the same time

• Dealing with multiple things at once

• Parallelism:

Happening at the same time, progressing independently
• Multiple tasks executing at the same time

• Doing multiple things at once

• Simultaneous execution

22

Parallelism vs Concurrency (programming context)

• Concurrency
• Two queues for one vending machine

• Parallelism
• Two queues for two vending machines

23

Parallelism vs Concurrency (programming context)

• Concurrent execution on a single-core system:

• Parallel execution on a dual-core system:

24

Core 1 P1 P2 P3 P4 P1 P2 P3 P4 P1 …

Time

Core 2 P2 P4 P2 P4 P2 P4 P2 P4 P2 …

Time

Core 1 P1 P3 P1 P3 P1 P3 P1 P3 P1 …

Concurrent
Programs

Parallel
Programs

Why is concurrency so important?

26

Moore’s law is slowing down

• The number of transistors on IC chips doubles approx. every 2 years

Source:The end of moore’s law & faster general purpose computing, and a road forward, John Hennessy.
https://p4.org/assets/P4WS_2019/Speaker_Slides/9_2.05pm_John_Hennessey.pdf

DRAM capacity Intel processor density

27

End of Dennard scaling

• Processor frequency increased for free as transistors became smaller

• Transistors became so small that current leakage overheats the chip

Source:The end of moore’s law & faster general purpose computing, and a road forward, John Hennessy.
https://web.stanford.edu/~hennessy/Future%20of%20Computing.pdf

Uniprocessor performance (single core)

28

Implications of CPU Evolution

• Increasing transistor count/clock speed
• Greater number of tasks can be executed concurrently

• Clock speed increases have almost stopped in the past few years
• Instead, more transistors = more CPU cores

• More cores = increased opportunity for parallelism

29

Amdahl’s Law

• Speed up does not necessarily apply to the entire system

• Speed up indicates a relative performance improvement
• Originally spent time to improved time ratio

• Speed up =
1

1−𝑃 +𝑃/𝑆

• (1 – P) = the part that was not enhanced

• P = the part that was enhanced

• S = speed up of the part that was enhanced

30

(1-P)P (1-P)Max improvement

Amdahl’s Law
• Upper bound on performance gains from parallelism

• If I take a single-threaded task and parallelize it over N CPUs, how
much more quickly will my task complete?

• Definition:
• seq is the fraction of processing time that is processed sequentially

• par is the fraction of processing time that can be parallelized

• seq+par = 1

• N is the number of CPU cores

Speedup =
1

𝑠𝑒𝑞+
𝑝𝑎𝑟

𝑁

31

32

0

5

10

15

20

25

30

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Sp
e

e
d

u
p

Number of Cores

0% Serial

10% Serial

25% Serial

50% Serial

100% Serial

Amdahl’s Law

Concurrency

• In general, concurrency (like parallelism) is used because it is
necessary for a system to function.
• (For example, our jazz ensemble)

• It is also largely motivated by increased performance
• The potential for more tasks to happen at once can thus increases

performance (especially, if we have multiple cores on our machine)

33

Concurrency comes with some

caveats however (next slide!)

Bad Concurrency = Data Race

• When two (or more) processes contending for one shared resource.

34

Bad Concurrency = Data Race

• When two (or more) processes contending for one shared resource.

35

One parking

spot 2 cars

want to

acquire

Data race is not always as obvious...(1/4)

• Imagine you check your fridge
and find there is no milk
• So you run to the store

36

Data race is not always as obvious...(2/4)

• Imagine you check your fridge
and find there is no milk
• So you run to the store

• Then moments later your
roommate checks the fridge
and finds it is empty
• So they run to the store

37

Data race is not always as obvious...(3/4)

• Imagine you check your fridge
and find there is no milk
• So you run to the store

• Then moments later your
roommate checks the fridge
and finds it is empty
• So they run to the store

• Roommate # 3 comes and
notices the same
•

38

Data race is not always as obvious...(4/4)

• You get the idea when you then
find out you have 3 times as
much milk as your house needs
when everyone returns.

39

Bad Concurrency = Deadlock

• Grid lock in a traffic jam

• Each car prevents others from
going through a shared
resource (the intersection).

• (One car needs a piece of the
intersection in order to move
forward)

40

Bad Concurrency = Starvation

• Imagine a constant stream of
green cars

• Progress is still being made by
the green cars

• The yellow cars can never make
progress to get across the
street.
• They are resource starved of a

shared resource (again, they
cannot cross the intersection)

41

Concurrent Programming needs some extra care

• Races
• Outcome depends on the arbitrary scheduling decisions

• e.g. Who gets the last seat on the airplane. (soln’s to this in
Distributed Systems course)

• Deadlock: Improper resource allocation prevents forward progress
• e.g. traffic gridlock

• Starvation/Fairness: External events and/or scheduling decisions
can prevent sub-task progress
• e.g. Someone jumping in front of you in line

• But regardless, concurrent programming is important and necessary
to get the most out of current processor architectures!

42

A Few Approaches to Concurrency

• Process-Based
• Fork() different processes

• Each process has its own private address space

• Event-Based
• Programmer manually interleaves multiple logical flows and polls for

events

• All flows share the same address space

• Uses technique called I/O multiplexing

• Thread-based (Today’s focus)
• Kernel automatically interleaves multiple logical flows

• Each flow shares the same address space

• Hybrid of process-based and event-based.

43

Threads

44

Problems with Processes

• Process creation is heavyweight (i.e. slow)
• Space must be allocated for the new process

• fork() copies all state of the parent to the child

• IPC mechanisms are cumbersome
• Difficult to use fine-grained synchronization

• Message passing is slow
• Each message may have to go through the kernel

45

Threads

• Light-weight processes that share the same memory and state

• Every process has at least one thread

• Benefits:
• Resource sharing, no need for IPC

• Economy: faster to create, faster to context switch

• Scalability: simple to take advantage of multi-core CPUs

46

47

Process-Level Shared Data

Code
Global
Data

File
Descriptors

Registers

Stack

Registers

Stack

Registers

Stack

Thread 1 Thread 2 Thread 3

Process-Level Shared Data

Code
Global
Data

File
Descriptors

Registers Stack

Thread 1

Single-Threaded Process Multi-Threaded Process

A Process can have Multiple Threads

• Each thread shares the same code, data, and kernel context

• A thread has its own thread id (TID)

• A thread has its own logical control flow (no need to exec)

• A thread has its own stack for local variables

48

View of Threads

• Threads associated with a process form a “pool” of peers
• Unlike processes (on the right) which form a tree hierarchy

(i.e. parent/child relationship)

49

Remember this diagram on Concurrent
Processes?
• We looked at multiple processes running on a single core (next slide

for multiple cores)

50

Concurrent Thread (or Process) Execution

• Single Core Process
• Simulate parallelism

by time slicing

• Multi-Core Processor
• Can have true parallelism

51

Threads vs Processes

• Similarities
• Each has its own logical control flow

• Each can run concurrently with others
(possibly on different cores if available)

• Each is context switched

• Differences
• Threads share all code and data (except local stacks)

• Processes (typically) do not (i.e. fork makes a copy)

• Threads are usually less expensive than managing processes
• Process control is twice as expensive as thread control

• Linux estimates

• ~20k cycles to create and reap a process

• ~10k cycles to create and reap a thread

52

Pthreads

(POSIX Threads)

53

POSIX Pthreads

• POSIX standard API for thread creation
• IEEE 1003.1c

• Specification, not implementation
• Defines the API and the expected behavior

• … but not how it should be implemented

• Implementation is system dependent
• On some platforms, user-level threads

• On others, maps to kernel-level threads

54

Posix Threads API (PThreads Interface)

• Sample functions
• Creating and reaping threads

■ pthread_create()
■ pthread_join()

• Determining thread ID
■ pthread_self()

• Terminating threads
■ pthread_cancel()
■ pthread_exit()
• exit() - Terminates all threads
• return - terminates current thread

• Synchronizing access to shared variables
■ pthread_mutex_init
• pthread_mutex_lock and pthread_mutex_unlock

55

PThread examples

56

Hello Thread

• The thread that is “launched” is
a function in the program
• This is done when the thread

is created
• Different attributes can be

sent to threads (in this case
the first NULL)

• Arguments can also be passed
to the function (second NULL)

57

Hello Thread

• The thread that is “launched” is
a function in the program
• This is done when the thread

is created
• Different attributes can be

sent to threads (in this case
the first NULL)

• Arguments can also be passed
to the function (second NULL)

• pthread_join is the
equivalent to “wait” for
threads

• What if we don’t call join?

58

Visual execution of “Hello Thread”

59

Launching multiple threads

• Store 10 thread ids.

60

Launching multiple threads

• Store 10 thread ids.

• Launch 10 threads

61

Launching multiple threads

• Store 10 thread ids.

• Launch 10 threads

• Print out their thread ids to
show which thread is
executing.

62

Launching multiple threads

• Store 10 thread ids.

• Launch 10 threads

• Print out their thread ids to
show which thread is
executing.

• Join all of our threads with the
main thread
• (i.e. make the main thread

wait until all 10 threads have
executed.)

63

Launching multiple threads

• *New Program*

64

Launching multiple threads

• *New Program*

• This time launch 10000 threads

65

Launching multiple threads

• *New Program*

• This time launch 10000 threads

• counter is shared between
threads

66

Launching multiple threads

• This time launch 10000 threads

• counter is shared between
threads

• What is wrong with this
program?

• What is the final output?

67

What was happening?

Thread 1 (counter = counter + 1)

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

Thread 2 (counter = counter + 1)

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

68

What was happening?

Thread 1 (counter = counter + 1)

Read “counter”: 11

Add 1 to “counter”: 12
Write to “counter”: 12

Thread 2 (counter = counter + 1)
Read “counter”: 11
Add 1 to “counter”: 12

Write to “counter”: 12

69

Thread 3 (counter = counter + 1)
Read “counter”: 12
Add 1 to “counter”: 13
Write to “counter”: 13

Synchronization of Threads

• Shared variables are thus handy for moving around data

• If we do not share properly, we can have synchronization errors!
• There is a solution however!
• (recap below)

70

=

Example with lock

• Included a pthread_mutex_lock

71

Example with lock

• Included a pthread_mutex_lock

• lock and unlock protects

• Locks in other words enforce,
that we have exclusive access
to a region of code.

72

What was happening?

Thread 1 (counter = counter + 1)

pthread_mutex_lock

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

pthread_mutex_unlock

Thread 2 (counter = counter + 1)

pthread_mutex_lock

// Lock is held by thread 1 so

// thread 2 has to wait until

// thread 1 unlocks

// Now acquires the lock and runs

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

pthred_mutex_unlock

73

B
LO

C
K

S
EX

EC
U

TIO
N

Example with lock

• Included a pthread_mutex_lock

• lock and unlock protect

• Locks in other words enforce,
that we have exclusive access
to a region of code.

74

	Slide 1: Concurrency (1)
	Slide 2
	Slide 3: Dynamic Allocation of Pages
	Slide 4: What About malloc() and free()?
	Slide 5: Free Space Management
	Slide 6: Why Should You Care?
	Slide 7: Setting the Stage
	Slide 8: Requirements and Goals
	Slide 9: Heap Fragmentation
	Slide 10: The Free List
	Slide 11: Free List Data Structures
	Slide 12: Allocating Memory (Splitting)
	Slide 13: Freeing Memory
	Slide 14: Coalescing
	Slide 15: Choosing Free Regions (1)
	Slide 16: Choosing Free Regions (2)
	Slide 17: Basic Free List Review
	Slide 18: Some clarification for the assignment
	Slide 19
	Slide 20: Concurrent thinking
	Slide 21: Parallelism vs Concurrency (programming context)
	Slide 22: Parallelism vs Concurrency (programming context)
	Slide 23: Parallelism vs Concurrency (programming context)
	Slide 24: Parallelism vs Concurrency (programming context)
	Slide 25
	Slide 26
	Slide 27: Moore’s law is slowing down
	Slide 28: End of Dennard scaling
	Slide 29: Implications of CPU Evolution
	Slide 30: Amdahl’s Law
	Slide 31: Amdahl’s Law
	Slide 32
	Slide 33: Concurrency
	Slide 34: Bad Concurrency = Data Race
	Slide 35: Bad Concurrency = Data Race
	Slide 36: Data race is not always as obvious...(1/4)
	Slide 37: Data race is not always as obvious...(2/4)
	Slide 38: Data race is not always as obvious...(3/4)
	Slide 39: Data race is not always as obvious...(4/4)
	Slide 40: Bad Concurrency = Deadlock
	Slide 41: Bad Concurrency = Starvation
	Slide 42: Concurrent Programming needs some extra care
	Slide 43: A Few Approaches to Concurrency
	Slide 44
	Slide 45: Problems with Processes
	Slide 46: Threads
	Slide 47
	Slide 48: A Process can have Multiple Threads
	Slide 49: View of Threads
	Slide 50: Remember this diagram on Concurrent Processes?
	Slide 51: Concurrent Thread (or Process) Execution
	Slide 52: Threads vs Processes
	Slide 53
	Slide 54: POSIX Pthreads
	Slide 55: Posix Threads API (PThreads Interface)
	Slide 56
	Slide 57: Hello Thread
	Slide 58: Hello Thread
	Slide 59: Visual execution of “Hello Thread”
	Slide 60: Launching multiple threads
	Slide 61: Launching multiple threads
	Slide 62: Launching multiple threads
	Slide 63: Launching multiple threads
	Slide 64: Launching multiple threads
	Slide 65: Launching multiple threads
	Slide 66: Launching multiple threads
	Slide 67: Launching multiple threads
	Slide 68: What was happening?
	Slide 69: What was happening?
	Slide 70: Synchronization of Threads
	Slide 71: Example with lock
	Slide 72: Example with lock
	Slide 73: What was happening?
	Slide 74: Example with lock

