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An Introduction to Caches
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Cache

• Cache
• A smaller, faster storage device than the layer below

• A staging area for a subset of the data in a larger, slower device

• For each level in the memory hierarchy K
• K serves as a cache for the larger slower device at level K+1

• A memory hierarchy works because of locality
• Programs access data at level K more often than data at K+1

• With this, we can holds a lot of data at lower levels, and still access 
data at high speeds using higher level caches
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Cache on Hardware

• CPU will look for data in Cache first
• Attempt to load into registers

• If not found, then will travel on 
System Bus -> I/O Bridge -> then to main memory 
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Main memory



General Cache Concepts
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Small Example

• Cache keeps a copy of data from main memory
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Cache hit and misses

• Cache Hit 
• Data is requested and it is in the cache

• Cache Miss 
• Data is not in the cache and must be fetched from main memory

• So ideally, we want lots of cache hits! 
• We want to take advantage of these faster memory accesses!

• This may also be a good metric to quantify locality of our programs.
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Cache Hit
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Cache Miss
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Cache Miss
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Note on Fetching

• It is almost always worthwhile to 
put data from memory into cache

• Memory access latency >> cache 
access latency 

• Memory access is over 10X slower

• The exact algorithm on how to 
replace and remove items depends 
on your policy.
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Policies

• Now how I choose where to put that block is based on:

• Placement Policy 
• Determine where blocks of memory go in the cache

• Replacement Policy
• Determines which block gets evicted when we run out of room.

• These policies in general are very simple! We usually do not want a 
complicated scheme that takes more processing power!

• Can you think of any?
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Sample Replacement Policies

• Random - Just randomly 
remove something

• Least Recently Used (LRU) -
Move out the youngest 
item.

• Here are some more:
• https://en.wikipedia.org/w

iki/Cache_replacement_po
licies
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https://en.wikipedia.org/wiki/Cache_replacement_policies
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LRU Example | A-D added, ()’s represent age bit 
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LRU = Least Recently Used (Item with youngest age)



Cache Misses

• Cold (Compulsory) Miss 
• First time you access a cache 

(e.g., when you start a program)

• Capacity Miss 
• Set of the things you want to keep is larger than the cache size

• Conflict Miss 
• Cache is large enough, but multiple data map to the same block.

• E.g., placement/alignment of data prevents different data to coexist
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Caches are everywhere!

• Registers (Instruction Cache)

• L1 cache

• L2 cache

• Translation Lookaside Buffer (TLB) 

• Virtual Memory
• Buffer Cache

• Disk Cache

• Network buffer cache

• Browser cache

• Web Cache, CDNs, ...
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Virtual Memory and 

Memory Management Unit (MMU)
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Some slides figures and slides from Bryant and O’Halloran text



Early Computers

• Computers historically were really good at just doing one thing

• So a computer's memory stored the operating system and whatever 
program was currently running in memory
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Sharing Physical Memory

• Later computer operators wanted to run more than 
one program at a time

• So as memory expanded, multiple processes could 
be loaded into fixed size chunks to run.

• And we have talked about how processes context 
switch and make this possible.
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More efficient memory

• Eventually, programmers did not want to have a 
“fixed” size memory block.

• Maybe one process needed more or less 
memory than the other

• Also memory size was limited but wanted to run 
more programs

• How can we enable flexibly-sized processes?
• Virtual memory could be the solution
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Virtual Memory concept

• What do we mean by virtual memory?
• Processes use virtual (or logical) addresses

• Virtual addresses are translated to physical addresses
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0xFFFF
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(Reality)

Process’ View of
Virtual Memory

0x0000

0xFFFF

Process 2
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Process 1

All the memory 
belongs to me!

Physical Address

Virtual Address

Magical Address 
Translation Black Box
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We do not need to map the entire virtual 
address space to the physical memory 



Introducing the Memory Management Unit (MMU)

• We still retrieve memory from main memory

• BUT, there is an additional translation step that occurs in the 
Memory Management Unit (MMU)
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Memory Management Unit (MMU)

• MMU’s job is to figure out (i.e. translate) the mappings from virtual 
memory address to physical memory address

• MMU moves memory in units called ‘pages’
• A page size varies by architecture and configuration settings

• A common page size 4096 bytes (i.e. 4KB)
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Memory Management Unit (MMU)
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CPU requests 

some virtual 

address (e.g. 

0x0001 in a 

program)



Memory Management Unit (MMU)
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MMU grabs 

this address 

(0x0001)



Memory Management Unit (MMU)
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MMU 

translates to 

the actual 

physical 

address 

(0xFB01)



Memory Management Unit (MMU)
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Data is retrieved by process (and 

the process does not really care 

about the true address)



Virtual Memory

28



Three Virtual Memory Advantages

1.Uses main memory efficiently

2.Simplifies memory management (for application developers)

3.Isolates address spaces
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Why Virtual Memory (1/3)

1. Uses main memory efficiently

• Use physical memory as a “cache” for parts of a virtual 
address space

• Not all data in the virtual address space may be mapped to 
physical memory and some may be in disk
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Why Virtual Memory (2/3)

2. Simplifies memory management (for application developers)

• Each process gets the same linear address space
• This is how we have always thought of memory at this point
• Our programs each have a simple linear address space
• This is also (arguably) easier for the Operating System to manage
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Why Virtual Memory (3/3)

3. Isolates Address Spaces

• A process is sandboxed in the virtual address space

• One process cannot interfere with another

• User’s program cannot access kernel information and code.

• We do not need to memorize specific addresses
• (e.g. where some device that is plugged in is located versus some 

other memory)
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So here’s another high level view

• The kernel gets a large chunk of memory
• Roughly the top 1-2 GB of virtual address space for linux.
• We don’t want anyone else to touch this space.

• But the rest of the virtual addresses are for us, the users.
• We call these user space addresses for user space processes.
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(e.g. 0xC0000000)

0x00000000



#1 Use Main Memory efficiently

34



Some terminology for Address Spaces (1/2)

• We refer to a Linear Address Space as
• Order of contiguous non-negative integer addresses

• {0,1,2,3,...}

• A ‘page’ of memory is some fixed size
• Typically 4096 bytes (4KB)
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Some terminology for Address Spaces (2/2)

• Virtual address space:
• Set of N = 2n virtual addresses

• {0,1,2,3,..., N-1}

• Physical Address Space
• Set of M = 2m virtual addresses

• {0,1,2,3,..., M-1}

• Okay, so this means we really have 2 memory addresses spaces to 
keep track of: Virtual and Physical 
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Two Address Spaces

• Physical Address Space
• Is used by the hardware

• Virtual Addresses Space
• Used by the software

• Again, this is what we are familiar with

• The exact translation happens in hardware for us by the MMU
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Virtual Memory to assist with caching (1/5)

• Conceptually, 
virtual memory is an array of contiguous bytes stored on disk
(and memory pages indeed gets swapped out to disk)

• The contents of these arrays are cached in physical memory
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Virtual Memory to assist with caching (2/5)

• Conceptually, 
virtual memory is an array of contiguous bytes stored on disk
(and memory pages indeed gets swapped out to disk)

• The contents of these arrays are cached in physical memory
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I am taking 

these large 

‘blocks’(pages) 

of memory



Virtual Memory to assist with caching (3/5)

• Conceptually, 
virtual memory is an array of contiguous bytes stored on disk
(and memory pages indeed gets swapped out to disk)

• The contents of these arrays are cached in physical memory
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They are stored 

on our slow disk



Virtual Memory to assist with caching (4/5)

• Conceptually, 
virtual memory is an array of contiguous bytes stored on disk
(and memory pages indeed gets swapped out to disk)

• The contents of these arrays are cached in physical memory
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Now I have put this 

large block (‘page’) of 

memory into faster 

memory (DRAM)



Virtual Memory to assist with caching (5/5)

• Conceptually, 
virtual memory is an array of contiguous bytes stored on disk
(and memory pages indeed gets swapped out to disk)

• The contents of these arrays are cached in physical memory
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Our DRAM is faster 

than disk



Swap Space

• Key idea: 

Take frames from physical memory and swap (write) them to disk
• This frees up space for other code and data

• Load data from swap back into memory on-demand
• If a process attempts to access a page that has been swapped out…

• A page-fault occurs and the instruction pauses

• The OS can swap the frame back in, insert it into the page table, and 
restart the instruction
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Swapping Example
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• Suppose memory is full

• The user opens a new program

• Swap out idle pages to disk

• If the idle pages are accessed, 
page them back in 
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Introducing the Page Table!

• A page table keeps track of the mapping between virtual and 
physical memory addresses. 

• Page table exists per process
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Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c



Introducing the Page Table!

• A page table keeps track of the mapping between virtual and 
physical memory addresses. 

• Page table exists per process
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Our process 

requests some 

address (which 

is actually a 

virtual address)

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c



Introducing the Page Table!

• A page table keeps track of the mapping between virtual and 
physical memory addresses. 

• Page table exists per process
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The Page 

Table maps 

us to the 

real physical 

address in 

DRAM

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c



Introducing the Page Table!

• A page table keeps track of the mapping between virtual and 
physical memory addresses. 

• Page table exists per process
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And we 

retrieve the 

actual data 

we need 

from DRAM.

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c



Introducing the Page Table!

• A page table keeps track of the mapping between virtual and 
physical memory addresses. 

• Page table exists per process
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Now remember, we are actually 

looking up ‘pages’.

(Otherwise we would have lots of 1 

byte entries--which would make our 

page table huge!)

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c



(Again) Enabling Data Structure: Page Table

• We divide memory into pages
• Typically 4 KB for 1 page

• A page table then stores the 
mappings from a virtual page 
to its physical page address
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Enabling Data Structure: Page Table

• We divide memory into pages
• Typically 4 KB for 1 page

• A page table then stores the 
mappings from a virtual page 
to its physical page address
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These pages 

are referenced 

in DRAM



Enabling Data Structure: Page Table

• We divide memory into pages
• Typically 4 KB for 1 page

• A page table then stores the 
mappings from a virtual page 
to its physical page address

52

These pages are 

not in DRAM, but 

page table points 

to where on disk 

virtual memory is



Enabling Data Structure: Page Table

• We divide memory into pages
• Typically 4 KB for 1 page

• A page table then stores the 
mappings from a virtual page 
to its physical page address
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0 for 

null or 

invalid 

pages



Page Hit

• Just like a cache hit, we see if our page is in DRAM
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Page miss causes a Page Fault

• If our page is not in memory, then we get a page fault.
• (VP 6 for example is not in our DRAM, but 1,2,7, and 4 are)

55



Page Fault Example 

• User attempts to write to memory location

• OS may recognize this particular address is invalid.
• Invalid in the sense of the OS noticing

“hey, this page is not in our page table”

• The proper behavior is for the OS to do something 
(i.e. handle this exception)

• This involves evicting some page we do not need (some victim)

• The instruction that caused the fault is then restarted

• We get a page hit and move on.
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A walkthrough
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58

We try to 

access/write 

some data
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The page however is 

invalid (See the ‘0’), 

so now OS has to 

handle our page fault



60

Choose some victim to 

evict (How about VP4)
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Update to VP3
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VP4 as a result is evicted
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We execute 

where we left off 

and now see we 

have a valid 

page. a[500] is 

now 13.



Question: Page Faults

• When your program executes, do you get a lot of page faults?

• Use “perf record -e page-faults -ag”
• Use ‘perf list’ to see more events you can record

• Use”perf stat ./myProgram”
• Observe the different counts of the page-faults and context-switches
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Answer and New Question

• When your program executes, do you get a lot of page faults?

• Typically yes!

• But this is okay because a lot of the nitty gritty is handled for us.

• Generally we do not try to predict the access patterns of page 
accesses

• After our compulsory misses, we generally do pretty well. Why?
• Locality to the rescue!
• If we have a page of memory in our DRAM Cache, typically where we 

are working (our working set) only on a small piece of data at a time in 
our programs.

• If the data we are working on is larger than our main memory size, then 
we get thrashing!

• i.e. lots and lots of page swaps!
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Quick Summary of Virtual Memory so far

• We found we could access our memory and organize them into 
4096 byte pages 

• (Again, usually 4096 bytes per page, but this can vary by OS)

• We could then access these pages by looking in a page table

• These individual pages can be cached in the DRAM
• This is a trend in computer science (i.e., we’ve seen this a couple of 

times), figure out how to cache things and speed up lookup times
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Three Virtual Memory Advantages

1.Use Main memory efficiently

2.Simplifies memory management (for application developers)

3.Isolates Address Spaces
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#2 Simplifies memory management 

(for application developers)
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Virtual Memory for Memory Management

• Each process has its own virtual address space

• This means we can view (within a process), memory as a linear array.

• In reality, we known we have many pages scattered around.
• (This could cause locality issues...so the OS needs to choose good 

mappings)
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Example of page mappings
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Process 1

Process 2

Our Physical Address Space



Example of page mappings
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All of my 

physical 

memory is 

here



Example of page mappings
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And our 

process sees 

its memory 

stored linearly 

here



Example of page mappings
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Question: 

How can 

this occur?



Example of page mappings
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Answer: Assume 

this is a fork(). As 

long as the data 

does not change 

(.rodata or 

library), no need 

to map to 

different data



Virtual Memory supports Linking and Loading

• To our program, the virtual 
address space is roughly the 
same

• code, data, and heap sections 
start at same address
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Virtual Memory as Memory Manager Summary

• So for each of these virtual 
pages, they map to a physical 
page (PP)

• Processes store any number of 
virtual pages at a given time.

• And sometimes these virtual 
pages (VP) are shared if read-
only code (e.g. a library of 
code--which will not change!)
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#3 Isolates Address Spaces 
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Virtual Memory protection

• Certain files have read/write/execute permissions set.
• This ensures one process cannot just overwrite another, or access 

data it should not.

• You can view them as follows:
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Virtual Memory protection

• Depending on the access, the MMU (Memory Management Unit) 
determines which pages can be executed.
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Revisiting our picture - One missing component
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Revisiting our picture - One missing component

81

How 

does 

this 

occur?



Address Translation Example
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Address Translation - Notation

• Basic Parameters
• N=2n: Number of addresses in virtual address space
• M=2m: Number of addresses in physical address space
• P=2p: Page size (bytes)

• Components of virtual address (VA)
• VPO: Virtual page offset
• VPN: Virtual page number [what we are looking for]

• Components of physical address (PA)
• PPO: Physical page offset (same as VPO)
• PPN: Physical page number

• How would you design the address translation?
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Address Translation with Page Table
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Here’s a virtual address I 

want to translate to its 

physical address



Address Translation with Page Table
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This same lower order 

index of bits, will map 

to the same physical 

address bits.



Address Translation with Page Table
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4096 byte page, means 

12 bits are used (to tell 

us where in the page 

we are)

0000 0000 0000



Address Translation with Page Table
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So now we translate our 

virtual page number(VPN) 

to physical page 

number(PPN)



Address Translation with Page Table
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We can now use our VPN as an 

index into our page table



Address Translation with Page Table
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Finally we know if our page is 

valid if this is a 1 (or invalid if 0)



Address Translation with Page Table
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Page Table returns us the correct 

physical frame #, and we have 

our physical address



Address Translation with Page Table
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Note: A 

special 

register 

stores a 

pointer to 

the actual 

page table.



This looks like a LOT of work!

• There is a bit going on--remember what our goals are though

• We want our operating system to have the ability to handout more 
memory as needed.

• And often this memory is not in nice sequential order

• And often when there is a lot of work to be done, we have special 
hardware for it

• Let us take a look at the Memory Management Unit (MMU)!
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Address Translation: Page Hit

1) Processor sends virtual address to MMU

word to processor
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1. CPU attempts 

some MOV 

instr



Address Translation: Page Hit

2, 3) MMU Fetches Page Table Entry from 
page table in memory
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2) Get page 

table entry 

address



Address Translation: Page Hit

2, 3) MMU Fetches Page Table Entry from 
page table in memory
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2) Get page 

table entry 

address



Address Translation: Page Hit

2, 3) MMU Fetches Page Table Entry from 
page table in memory
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3) Now read 

the memory 

for the Page 

table entry



Address Translation: Page Hit

4) MMU Sends physical address to cache/memory
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4) Now get 

the physical 

address



Address Translation: Page Hit

5) Cache/memory sends data word to processor
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5) Finally send 

data to 

processor 

from 

cache/memory



Address Translation: Page Hit
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How many 

memory 

accesses are 

here? (i.e 

arrows into 

memory)



Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU Fetches Page Table Entry from 
page table in memory

4) Valid bit is zero; page fault 
exception!

5) Handler identifies victim 
(pages it out to disk)

6) Handler pages in new page 
and updates Page table entry 
in memory

7) Handler returns to original 
process, restarting from our 
‘faulty’ instruction
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7) At this point, 

we will get a hit, 

and resume 

(See previous 

“Page Hit” 

slides)



Let’s speed up memory accesses

• Translation Lookaside Buffer (TLB)
• It is called a buffer, but really it is a cache.

• It’s a set-associative hardware cache in the Memory Management 
Unit (MMU).

• Contains complete page table entries for (some small amount) of 
pages.

• More simply defined: 
• The TLB - stores recent translations of virtual memory to physical 

addresses in a table

• (The Translation Lookaside Buffer is part of the MMU system)
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Address Translation - Notation

• Basic Parameters
• N=2n: Number of addresses in virtual address space
• M=2m: Number of addresses in physical address space
• P=2p: Page size (bytes)

• Components of virtual address (VA)
• TLBI: TLB index
• TLBT: TLB tag
• VPO: Virtual page offset
• VPN: Virtual page number

• Components of physical address (PA)
• PPO: Physical page offset (same as VPO)
• PPN: Physical page number
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Two new items 



Accessing the Translation Lookaside Buffer (TLB)

• This looks quite familiar to our set-associative cache!
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Accessing the Translation Lookaside Buffer (TLB)

• This looks quite familiar to our set-associative cache!
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Now we can 

look in this 

cache and 

quickly find 

valid page 

table entries. 



Translation Lookaside Buffer (TLB) Hit

• On a hit, we reduce by 1 memory access

• In practice, misses are rare
• We pay an extra memory access if so
• Why?
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Only one 

memory 

access with 

hits



Summary of Virtual Memory

• Programmers
• We see a process as owning a private linear address space 

[easy to program]
• Our address space cannot be corrupted by other processes 

[isolation]

• System view of virtual memory
• We use memory efficiently by caching our virtual memory pages

• Locality saves the day!
• Memory management and protection is significantly simplified
• Different configurations could exist, such that we have multiple levels 

of paging.
• (As always, there are trade-offs!)
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