CS 3650 Computer Systems — Spring 2023

Processes

Week 5

Northeastern
University * Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Processes

Northeastern
University

Diving into the Operating Systems

e So far, we have been preparing for our further exploration:
* Assembly
e C

* Today we will dive into the OS itself. What we learned will be useful
* Registers and instruction concepts
* Memory as a linear array and ways to work with memory addresses
e Cis at the core of many common OSes

Northeastern
University

OS: Virtualization + Abstraction

The OS is a (software) land of magic and illusions

OS makes a computer “easy” to use

OS hides overwhelming complexities of hardware behind an API
* This is abstraction

OS creates the illusion of an ideal, general, and powerful machine
* This is virtualization

We will start by looking at how the processor virtualizes the CPU

And then process and other abstractions the OS uses

Northeastern
University

Recommended Reading

 The OSTEP book: up to Ch. 3-6
* Online: https://pages.cs.wisc.edu/~remzi/OSTEP/

e Hard copy: Lulu or Amazon

Operatlng
Systems -

“Three Easy Pleces e

- Remzi Arpaci-Dusseau _
. Andrea Arpaci-Dusseau” -

Northeastern
University

https://pages.cs.wisc.edu/~remzi/OSTEP/

Running Dynamic Code

* Basic function of an OS is to execute and manage code dynamically:

for example,

* A command issued at a command line terminal
* Anicon double clicked from the desktop
 Jobs/tasks run as part of a batch system

* A process is the basic unit of a program in execution

Northeastern
University

Programs and Processes

Application - o IES P — R
view v | Fie Options View Process

e » Chrome » Application ¥ ¢ Search Application P |Processes|Performance|App histc Th .
e running

o

Name Type Size Name - PID

' X L] L] L]

- [mBTHSS Mgre.. 4924 T
o o eSS instantiation of a B
| 34017972 File folder @ chrome.exe 1
@ chrome.exe Application 838 KB @ chrome.exe p rogra m’ Sto red I n

Application 839 KB
XML Document 1KB

| ma File 43 KB @ chrome.exe RAM
@ oid e @ chrome.exe

@ chrome.exe . 3 - o s 508
Running cbw 00 6,648 K Google Chrome

@chrome.exe
@ chrome.exe 2224 Running cbw 00 760 K Google Chrome
@ chrome.exe 5004 Running cbw 00 680 K Google Chrome
P rO ra m @ chrome.exe 5300 Running cbw 00 696 K Google Chrome
! @ chrome.exe Running Google Chrome
An executable @ chrome.exe
@ chrome.exe
file in long-term & crome e One-to-many
chrome.exe c 0
storage S relationship
@chrome.exe
€ chrome.exe bEtween program
‘@ CommonAgent.exe
Becriot e and processes
Northeastern 7

University

How to Run a Program?

 How does the OS turn the a double-clicked .exe file into a process?

* What information must the .exe file contain to run as a program?

Northeastern
University

Program Formats

* Programs obey specific file formats

* CP/M (control program monitor) and DOS (disk operating system)
: COM executables (*.com)

DOS: MZ executables (*.exe)
 Named after Mark Zbikowski, a DOS developer

Windows Portable Executable (PE, PE32+) (*.exe)
* Modified version of Unix COFF executable format

e PE files start with an MZ header.

Unix/Linux: Executable and Linkable Format (ELF)

Mac OSX: Mach object file format (Mach-0O)

Northeastern
University

ELF File Format

* Spec: https://refspecs.linuxfoundation.org/elf/elf.pdf

ELF Header

e Contains compatibility info
* Entry point of the executable code

ELF header

Program header table

text
* Program header table
.rodata
* Lists all the segments in the file
* Used to load and execute the program)
.data
.

Section header table

Section header table
* Used by the linker

Northeastern 10

University

https://refspecs.linuxfoundation.org/elf/elf.pdf

ELF Header Example

S gcec —g —o test test.c
S readelf --header test
ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class:

Data:

Version:

OS/ABI:

ABI Version:

Type:

Machine:

Version:

Entry point address:

Start of program headers:
Start of section headers:
Flags:

Size of this header:

Size of program headers:
Number of program headers:
Size of section headers:
Number of section headers:

Section header string table index:

Northeastern
University

ELF64

2's complement, little endian

1 (current)

UNIX - System V

0

EXEC (Executable file)
Advanced Micro Devices X86-64
Oxl—
0x400460

64 (bytes into file)

5216 (bytes into file)

0x0

64 (bytes)

56 (bytes)

9

64 (bytes)

36

33

The Program Loader

e OS functionality that loads programs into memory, creates
processes

* Places segments into memory

* Loads necessary dynamic libraries

* Performs relocation

* Allocated the initial stack frame

e Sets EIP to the programs entry point

* Process is a live program execution ELF Program

context or basic unit of execution
ELF Header

text

.data

.rodata

.bss

Northeastern 12
University

Warmup

* How many processes do you have open at any given time?

Process Name

* 10s, 100s? More!? :)

v

storelegacy
CVMServer
distnoted
signpost_notificationd
revisiond

pkd

autofsd

bird

distnoted
cfprefsd

imagent
syspolicyd

login

thermald

apfsd
identityservicesd
securityd_service
rapportd
usernoted
com.apple.AmbientDisplayAg...
logind
coreaudiod

Natificatinn Center

System:
User:
Idle:

Northeastern
University

Activity Monitor (All Processes)

(VB Memory Energy Disk Network
%CPU~ CPUTime Threads Idle Wake Ups PID
0.0 0.24 2 0 422
0.0 0.02 2 0 222
0.0 7.02 2 0 102
0.0 1.62 2 0 173
0.0 0.66 3 0 93
0.0 3.22 2 0 444
0.0 0.04 2 0 84
0.0 3.50 2 0 395
0.0 0.63 3 0 355
0.0 0.29 2 0 275
0.0 6.03 2 0 426
0.0 12.52 2 0 186
0.0 0.04 2 0 457
0.0 0.07 2 0 217
0.0 0.16 2 0 177
0.0 17.88 6 0 408
0.0 0.26 2 0 368
0.0 0.61 2 0 430
0.0 2.95 2 0 an
0.0 41.35 4 0 332
0.0 0.28 2 0 92
0.0 41.67 5 0 123
0.0 2158 3 0425
11.98% CPULOAD Threads:
17.75% Processes:
70.27%

User
awjacks
root
_distnote
root

root
awjacks
root
awjacks
_spotlight
_locationd
awjacks
root

root

root

root
awjacks
root
awjacks
awjacks
root

root
_coreaudiod

Awiacks

= M
Q
| BP Processes

Performance
O] App history

“@ Startup apps

& Users
i= Details
(3 Services
261
367
€3 Settings

Processes

Name
> Service Host: TCP/IP NetBIOS ...

> (2] Service Host: Text Input Mana...
> Service Host: Themes
> Service Host: Time Broker

> Service Host: UdkUserSve_5d4ad
> Service Host: Unistack Service ...

> 121 Service Host: Update Orchestr...

> 1] Service Host: User Manager
> 12 Senvice Host: User Profile Servi...
> 1] Service Host: UtcSve

> Service Host: Web Account M...

> Service Host: Web Threat Defe...

> Service Host: WebClient

> Service Host: webthreatdefuse...
> Service Host: Windows Audio ...
> [Service Host: Windows Biome...
> (2] Service Host: Windows Event ...
> Service Host: Windows Font C...
> Service Host: Windows Image ...
> Service Host: Windows Licens...
> [Service Host: Windows Manag..
> Service Host: Windows Push ...
> Service Host: Windows Time

> Service Host: Windows Update

> Service Host: WinHTTP Web P...
> Service Host: Workstation

> (2] Service Host: WpnUserService...

Status

E3 Run new task

1%
cPU
0%

0%

0%
0%
0%
0%

0%
0%
0%
0%

0%
0%
0%
0%

0%
0%
0%
0%

0%
0%
0%
0%

54%
Memory

03MB
0.6 MB
04MB
1.1MB
20MB
1.6MB
13MB
1.6 MB
09MB
93 MB
32MB
34MB
0.5MB
03 MB
1.1MB
62.7MB
11.4MB
1.0MB
09MB
29MB
6.0MB
20MB
12MB
37.1MB
12MB
0.7MB
47MB

1%
Disk
0 MB/s

0 MB/s
0MB/s
0MB/s
0 MB/s
0 MB/s
0 MB/s
0MB/s
0MB/s
0 MB/s
0 MB/s
0 MB/s
0MB/s
0MB/s
0 MB/s
0 MB/s
0 MB/s
0MB/s
0MB/s
0 MB/s
0 MB/s
0 MB/s
0MB/s
0MB/s
0 MB/s
0 MB/s
0 MB/s

View

0%
Network
0Mbps

0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps
0Mbps

13

First: Instruction Execution

Code in an executable is a sequence of instructions

[START OF CYCLE]

CPU runs an instruction at a time

Address in PC copied to MAR

This is done in a fetch-decode-execute cycle

If you have 4 cores, your processor can do s
4 FDE cycles at a time

Fetch Stage

Instruction found at address

But how do we see ~100s of programs
running on 4 cores?

What about a single core CPU?

Instruction in MDR copied
to the CIR

CU decodes the contents
of the CIR Decode Stage

CU sends signals to relevant

MAR: holds address of current instruction, MDR: holds contents of address in MAR components (=.9. ALL)
CIR: stores current instruction, so not overwritten by additional fetches to MBR/MDR

Execute Stage

END OF CYCLE

Northeastern 14
University

From the warm up

 Many programs are running, but only 8 CPUs that do the work

The Problem: So how does our

Operating System provide the illusion of
100s of processes running at once?

CPU History

System Monitor

Process Name ~ User
& atspi2-registryd mike
<& atspi-bus-launcher mike
<& bamfdaemon mike
@ cat mike
@ cat mike
@ chrome mike
<& chrome -type=-broker mike

<& chrome -type=gpu-process field-tria mike
& chrome -type=ppapi -field-trial-hand| mike
@ chrome -type=renderer —field-trial-ha mike
<& chrome -type=renderer —field-trial-ha mike
& chrome ~type=renderer —field-trial-ha mike
& chrome -type=renderer —field-trial-ha mike
<& chrome -type=renderer —field-trial-ha mike
& chrome ~type=renderer —field-trial-ha mike
& chrome -type=renderer —field-trial-ha mike
& chrome -type=renderer —field-trial-ha mike
<& chrome -type=renderer —field-trial-ha mike
& chrome ~type=renderer —field-trial-ha mike
& chrome -type=renderer —field-trial-ha mike
& chrome —type=renderer —field-trial-ha mike
& chrome ~type=renderer —field-trial-ha mike
& chrome -type=renderer —field-trial-ha mike
<& chrome -type=renderer —field-trial-ha mike
<& chrome -type=renderer —field-trial-ha mike
& chrome ~type=renderer —field-trial-ha mike
& chrome -type=renderer —field-trial-ha mike
<& chrome -tvpe=renderer —field-trial-ha mike

% CPU

C0OO0OO0OO0OO0OO0O0OO0OO0OO0OO0OO0OO0O0OO0OO0OO0OO0OO0O0O0O0O0OO OO

D

Processes Resources

2322
2313
2335
2972
2973
2965
3045
3043
9930
7595
9875
6739
7748
3163
6804
3197
3641
9435
7056
3778
3950
8845
3740
3578
3833
8927
3965
3842

Memory Priority
472.0KiB Normal
460.0KiB Normal

6.2 MiB Normal
68.0KiB Normal
64.0KiB Normal
131.5MiB Normal
11.0 MiB Normal
71.2MiB Normal
14.2 MiB Normal
383.3MiB Normal
33.2MiB Normal
58.3MiB Normal

359.9 MiB Normal
251.6 MiB Normal
291.8 MiB Normal
16.7 MiB Normal
39.5MiB Normal
207.7 MiB Normal
337.0MiB Normal
54.6 MiB Normal
59.4 MiB Normal
129.4 MiB Normal
39.7 MiB Normal
56.5MiB Normal
37.4MiB Normal
340.0 MiB Normal
55.0 MiB Normal
34.2 MiB Normal

il
il
100% 1l
i
80% Il

[cPut 4.2% [cru2 0.0%

[cPus 8.9% [crPus 18.0%

Northeastern
University

[cpu3 7.9%
[crPu7 1.0%

[crus 9.8%

[crus 2.9%

File Systems

15

Virtualization with time sharing

* The Operating System(OS) runs one process at a time,
* That executes one instruction a time

* After some amount of time the process stops or finishes
* Then the OS starts another process

* Eventually the same process will run again and continue where it left off
* Repeat

Time Processy Process; Notes
1 Running Ready

2 Running Ready

3 Running Ready

4 Running Ready Processg now done
5 - Running

6 - Running

7 - Running

8

- Running Process; now done

* This concept is known as time sharing
* Are the two states, Running and Ready, enough?

Northeastern 16
University

Process States

* What if the process needs to read/write to disk or perform a
network request? Any problems?
* These operations take (comparatively) long to complete
* Keeping process state to Running?
* Hogs the CPU just waiting for disk/network access to complete
* Keeping process state to Ready?
* Might not be ready to run when its turn comes
e Asking it to run may be waste of time

e Solution?

* Introduce a 3rd state, Blocked

* Meaning: the process requested some |/O operation
and cannot run until that operation is completed

Northeastern 17
University

Process States

* Each process can be in one of several states
* The OS schedules the state the process is in

e Typically, these are:
* Running: the process is executing on the CPU

* Ready: the process is ready to execute,
but the OS did not choose to run it

* Blocked - the process issued some blocking operation

* |/Ois a common blocking operation
Descheduled
<——> | Ready
Scheduled

1/O: |nma /I/O: done

Blocked

Northeastern Figure 4.2: Process: State Transitions

University

Then how does OS switch processes?

Northeastern
University

OS Challenges to Virtualization

* Performance
* How to implement virtualization without excessive overhead

e Control
* How to run multiple processes without losing control over the CPU?

* Without OS control, a process
e could occupy the CPU and run forever
e access memory it does not have access impacting safety and security

Northeastern
University

Switching between processes

e Switching between processes is a challenge, because

If the CPU is running a program, then the OS is not running

e |f OS is not running, then how can it switch out/in processes?
* Think about how you would design the OS!

Northeastern
University

21

When Do You Switch Processes?

* To share CPU between multiple processes, control must
eventually return to the OS

* When should this happen?

 What mechanisms implements the switch from user process
back to the OS?

* Four approaches:

Voluntary yielding

Switch during API calls to the OS
Switch on I/O

Switch based on a timer interrupt

> wnN e

Northeastern
University

Voluntary Yielding

* |dea: processes must voluntary give up control by calling an OS API,
e.g. thread_yield()

* Problems?
* Misbehaving or buggy apps may never yield
e.g., while (1) { //do something without yielding }

* No guarantee that apps will yield in a reasonable amount of time

* Waste of CPU resources, i.e. what if a process is idle-waiting on |/O?

Northeastern
University

Interjection on OS APlIs

* ldea: whenever a process calls an OS API, this gives the OS an
opportunity to context switch

* E.g. printf(), fopen(), socket(), etc...

* The original Apple Macintosh used this approach
* Cooperative multi-tasking

* Problems?

* Misbehaving or buggy apps may never yield
 Some normal apps don’t use OS APIs for long periods of time
* E.g. along, CPU intensive matrix calculation

Northeastern
University

Switching on /O

* |dea: when one process is waiting on 1/0, switch to another process
* |/O APIs already go through the OS, so context switching is easy

* Problems?
* Some apps don’t have any I/O for long periods of time

Northeastern
University

Preemptive Switching

* So far, processes will not switch to another until an action is taken
* e.g. an APl call or an I/O interrupt

* |ldea: use a timer to force context switching at set intervals

* Timer is running at a fixed frequency to measure how long a process
has been running

 If it’s been running for some max duration (scheduling quantum), the
handler switches to the next process

* Problems? Who will trigger the timer

e Requires hardware support (a programmable timer)
* Thankfully, this is built-in to most modern CPUs

Northeastern
University

Mechanisms for switching:
Exceptional Control Flow

Northeastern
University

Remember

 Computers only really do one thing, they execute one instruction
one after another

* This is based on the execution in your program.

* Your programs follow some control flow based on jumps and
branches (and calls and returns)

* This is based on your programs state. Physical control flow

<startup>
inst,
g inst,
Time)
inst,
inst,,
<shutdown>

* However, sometimes we want to react based on the system state

* E.g., you hit Ctrl+C on the keyboard in your terminal and execution
stops.

Northeastern
University

Exceptional Control Flow Mechanisms

* Low level mechanism

* Exceptions
e Change in control flow in response to a system event.
* This is implemented in hardware and OS software

Northeastern
University

Exceptional Control Flow Mechanisms

* High level mechanisms

* Process context switch

* e.g. It appears that multiple programs are running at once on your OS,
but remember only one instruction at a time.

* Context switches provide this illusion
* Signals
* Implemented by OS software

Northeastern
University

Exceptions

* An exception is a transfer of control to the OS kernel

* The kernel is the memory-resident part of the OS
* Meaning OS lives in memory forever: we do not modify this!

* Examples of exceptions we may be familiar with:
* Divide by 0, arithmetic overflow, or typing Ctrl+C

User code Kernel code
Event — |_current ¥, Exception .
I_next Exception processing

by exception handler
* Return to I_current
* Return to |_next
* Abort

* How does the OS know how to handle the exception?

Northeastern 31

University

Exception Tables

 Somewhere in the OS, a table exists with different exceptions.
* Think of it like a giant switch or many if else-if statements.

* This is part of a kernel that you cannot modify.
* This code is in a “protected region” of memory

* For each exception, there is one way to handle it
e (We call these “exception handlers”)

Exception
numbers
Code for
exception handler 0
Exception Code for
vTable exception handler 1
0 g
1 o« Code for
2 o~ exception handler 2
n-1| o |

Northeastern Code f?r
University exception handler n-1

Our favorite: Invalid Memory Reference

* That is, the segmentation fault
* OS sends signal SIGSEGV to our user process
* This time the program gets terminated.

int a[l1000];
main ()
{

a[5000] = 13;

}

I 80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

movl

Detect invalid address

Signal process

Northeastern
University

33

Exceptional Control Flow Taxonomy

4)

Usually, hardware- 4 h

driven exceptions ECF Usually software-

) driven exceptions
%

Aynchronous Synchronous
Interrupts Traps Faults Aborts

Northeastern 34

University

Asynchronous Exceptions (Interrupts)

Asynchronous

| Traps H Faults H Aborts

* Caused by events external to processor

* |.e., not from the result of an instruction the user wrote
* E.g.
* Timer interrupts scheduled to happen every few milliseconds
* A kernel can use this to take back control from a program/user
* Some network data arrives (1/0)

* A nice example is while reading from disk

* The processor can start reading, then hop over and perform some other
tasks until memory is actually fetched.

Northeastern
University

Synchronous Exceptions

* Events caused by executing an instruction

* Traps

| Traps H Faults H Aborts

* Intentionally done by the user
e e.g. system calls, breakpoints (like in gdb)
* Returns control to the next instruction
* Faults
e Unintentional, but possibly recoverable
e e.g. page faults (we'll learn more about soon), floating point exceptions
* Handled by re-executing current instruction or aborting execution

* Aborts

* Unintentional and unrecoverable
e e.g.illegal instruction executed, parity error

Northeastern
University

https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/RAM_parity

Exceptional Control Flow Taxonomy

Asynchr

/

Interrupts

Northeastern
University

ECF

Okay, so Interrupts, Traps,
Faults, and Aborts are our
tools to change control

flow within a process

Traps

Faults

Aborts

37

Northeastern
University

System calls

38

Different privilege levels

* Most modern CPUs support protected mode

» x86 CPUs support three rings with different privileges
e Ring 0: OS kernel
* Ring 1, 2: device drivers
* Ring 3: userland Ring 2

Ring 3

* Most OSes only use rings 0 and 3 Ring 1

Ring O
Kernel

Device Drivers

Device Drivers

Applications

Northeastern 39
University

Dual-Mode Operation

* Ring 0: kernel/supervisor mode
e Execution with the full privileges of the hardware

* Read/write to any memory, access any I/O device, read/write any disk
sector, send/read any packet

* Ring 3: user mode or “userland”
* Limited privileges
* Only those granted by the operating system kernel

Northeastern
University

Protected Features

* What system features are impacted by protection?
* Privileged instructions
e Only available to the kernel
* Limits on memory accesses
* Prevents user code from overwriting the kernel
* Access to hardware
* Only the kernel may directly interact with peripherals
* Programmable Timer Interrupt
* May only be set by the kernel
* Used to force context switches between processes

Northeastern
University

System Calls

 Syscall is the lowest level of interaction with an operating system
from a C programmer
e A user program can ask the OS for services that the OS manages

* You may have used ‘_exit’ in your assignment
* Anything else you can think of?

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 it Send signal to process

Northeastern
University

Changing Modes

* Applications often need to access the OS
* j.e.system calls
* Writing files, displaying on the screen, receiving data from the
network, etc...
e But the OSis ring 0, and apps are ring 3

 How do apps get access to the OS?
* Apps invoke system calls with an interrupt
* E.g.int
e int causes a mode transfer from ring 3 to ring O

Northeastern
University

4.

Note: this shows a physical memory

SySte m Ca | | Exa m p | e layout. The user program thinks it owns

the entire memory space (the diagram
Software executes int that we saw in previous lectures).

. Pushes EIP, CS, and EFLAGS Physical
Main Memory

CPU transfers execution to the OS handler

. Look up the handler in the Interrupt Vector Table (IVT)
. Switch fromring3to 0

printf()

OS executes the system call —
« Save the processes state 0x80 Handler

. Use EAX to locate the system call Syscall Table

. Execute the system call
. Restore the processes state
. Put the return value in EAX

Return to the process with iret

. Pops EIP, CS, and EFLAGS
. Switches from ring 0 to 3

User Program

Northeastern 44
University

System Calls and arguments

* Helpful webpage with syscalls and arguments
* https://filippo.io/linux-syscall-table/

8 lseek sys_lseek fs/read_write.c

9 mmap sys_mmap arch/x86/kernel/sys_x86_64.c
10 mprotect sys_mprotect mm/mprotect.c

11 munmap sys_munmap mm/mmap.c

12 brk sys_brk mm/mmap.c

%rdi
unsigned long brk

Northeastern
University

https://filippo.io/linux-syscall-table/

Opening a File

* rax holds the system call # that we want to pass.
e Other arguments accessed as follows

%rax Name Entry point Implementation
0 read sys_read fs/read_write.c
1 write sys_write fs/read_write.c
2 open sys_open fs/open.c
Zordi Jorsi Zordx
const char __user * filename int flags umode_t mode
Northeastern

University

46

Opening a File | Illustration

00000000000e5d70 <__open>:

e5d79: b8 02 00 00 00
e5d7e: of 05
e5d8e: 48 3d 01 fo ff ff

ebdfa: c3

mov $0x2,%eax # open is syscall #2

syscall # Return value in %rax
cmp S$Oxfffffffffffffool,%srax

retq

User code

syscall®

-

Kernel code

Exception

A J

Northeastern
University

Returns

47

Northeastern
University

Processes

48

The Process

A single
* A process is alive, a program is dead. Long live the process! h;rocess
* (A program is just the code.) emory
Stack
Heap
* Processes are organized by the OS using two key (I:Ja(tja
abstractions ode
* Logical Control Flow CPU
* Programs “appear” to have exclusive control over the CPU Registers

* Done by “context switching”

* Private Address Space
* Each program “appears” to have exclusive use of main memory

* Provided by mechanism called virtual memory

Northeastern
University

Multiprocessing: Illusion

 When running processes, it appears that we are running many
different tasks at the same time
* It also appears that our memory is neatly organized.

* Note from this diagram we see every process has its own
 stack

Process 1 Process 2 Process N
* heap
e data Memory || Memory Memory
e code Stack Stack Stack
* registers Heap Heap Heap
Data Data Data
Code Code Code
CPU CPU CPU
Registers Registers Registers

Northeastern
University

Multiprocessing: Reality

Remember, at any time, only one processor is really running code

Program execution is interleaved

OS manages memory addresses in virtual memory

OS stores the saved registers for different programs.

* (At some point in this class, you probably figured 16 registers is not
enough for all of the processes that you were running.)

When we switch which process is executing: this is a context switch

Memory
Stack Stack Stack
Heap : Heap Heap
Data : Data - Data
Code : Code Code
: Saved Saved
registers registers

Northeastern :

University

Context switch: a high-level view

Memory Memory

Stack | : Stack Stack Stack ' [Stack | : Stack
Heap : Heap Heap Heap - |_Heap : Heap
Data : Data oo Data Data : Data © eee Data
Code | : Code Code Code : [Code | : Code
: Saved Saved Saved : : Saved
registers registers |_registers : : registers

CPU | cPu

s
e Save register values to memory /Contextx
Switch

Move on to the next process
* Point to the stack of the next process
* Restore saved register values

Start running executing the next process

Northeastern
University

Process 1’s Code An example of a context switch: Process 1’s Stack

there can be different implementations
Top Frame

OS Code

<switch>:
push eax

push ebx

push edx
OS Memory

mov [saved_esp], esp

Process 2’s Stack

{ Top Frame

Process 2’s Code

puts(my_str);
switch();
my_str[0] = ‘\n’;

i = strlen(my_str);
switch();

Storing Register Context | Data Structures

* |n order to store the state of

the reglsterS’ your OS W|” keep // the registers xv6 will save and restore

. e . VY |0] sub uently restart ro 3S
track of this information N kol C R
int eip;
int esi;
int ebx;
. . . int ecx;
* Typically there is a process list, int edx;
int esi;

and the list contains Y
information like the registers. s

e To the right is a struct for the
Xv6 operating system storing
32-bit registers. We will use
xv6 later in the semester.

Northeastern
University

Storing Process Information | Data Structures

* Additional information such as
// the different states a process can be in

the process state is stored by [enn erocseace oosen, susso, siceenc, '
the OS.

// the information xvé6 tracks about each process
// including its register context and state
struect proc {

char *mem; // Start of process memory
uint. 82; // Size of process memory
. R char xkstack; // Bottom of kernel stack
* proc is the data structure which // for this process
enum proc_state state; // Process state
H H int pid; // Process ID
stores information about each | 2. e, 77 basent process

o void xchan; // If non-zero, sleeping on chan
process (linux uses task_struct) | i rieq; // 1f non-zero, have been killed
— struct file *ofile[NOFILE]; // Open files
struct inode x*cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe xtf; // Trap frame for the
// current interrupt

e To therightisthe struct
proc for the xv6 operating
system

Northeastern 55
University

Storing Process Information | Data Structures

Process state

* AC
thi
the OS.

ich as
d by

Process id
. whijch

stores Intormation apout each
nrocess (linux 1ises task struct)

Registers that we saw
earlier

. uct
Proc for the xv6 operating
system

Northeastern
University

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

// the information xv6 tracks about each process
// including its register context and state
struect proc {

char xmem; fof.

uint sz; // Size of process memory

char xkstack; // Bottom of kernel stack

// for this process

enum proc_state state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

void =*chan; // If non-zero, sleeping on chan

Start of process memory

int killed; // 1f non-zero, have been killed
struct file *ofile[NOFILE]; // Open files

struct inode x*cwd; // Current directory

struct context context; // Switch here to run process
struct trapframe xtf; // Trap frame for the

// current interrupt

56

man proc

@ @ 2. ssh

X bash ® 381 X ssh 82

PROC(5) Linux Programmer's Manual PROC(5)
NAME

proc - process information pseudo-file system

DESCRIPTION
The proc file system is a pseudo-file system which is used as an interface to kernel data struc-
tures. It is commonly mounted at /proc. Most of it is read-only, but some files allow kernel
variables to be changed.

The following outline gives a quick tour through the /proc hierarchy.

/proc/[pid]
There 1s a numerical subdirectory for each running process; the subdirectory is named by
the process ID. Each such subdirectory contains the following pseudo-files and directo-
ries.

/proc/[pid]/auxv (since 2.6.0-test?7)
This contains the contents of the ELF interpreter information passed to the process at exec

Manual page proc(5) line 1 (press h for help or g to quit)

Northeastern 57
University

top User Commands

top - display Linux processes

* top is a program that will show linux processes that are running
* Top shows all of the processes running on a system
* Intuitively, it must be possible for a machine to host multiple
processes, we do so when we ssh.

@ ® 2. ssh

X bash ® 381 X ssh 38’2

top - 11:12:43 up 2 days, 3:00, 5 users, load average: 0.00, 0.01, 0.05
Tasks: 397 total, 1 running, 396 sleeping, @ stopped, @ zombie

%Cpu(s): ©0.0 us, 0.0 sy, 0.0 ni,100.0 id, ©0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 65691044 total, 57594584 free, 1004664 used, 7091796 buff/cache

KiB Swap: 4194300 total, 4194300 free, @ used. 64011808 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
112514 awjacks 20 @ 168276 2544 1596 R 0.7 0.0 0:00.09 top
1 root 20 ©@ 195772 9000 4096 S 0.0 0.0 0:48.21 systemd
2 root 20 7} (4} (4} QS 0.0 0.0 0:00.19 kthreadd
3 root 20 %} (4} 0 QS 0.0 0.0 0:01.05 ksoftirqd/0
5 root 0 -20 o 0o QS 0.0 0.0 0:00.00 kworker/@:0H
6 root 20 7} 0o 0 oS 0.0 0.0 0:00.00 kworker/u288:0
8 root rt 7} 0 0 oS 0.0 0.0 0:00.14 migration/0
9 root 20 7} (7} (%} QS 0.0 0.0 0:00.00 rcu_bh
10 root 20 7} 0 0 QS 0.0 0.0 0:19.69 rcu_sched
Northeastern 58

University

h t 0 p HTOP(1)

NAME
htop - interactive process viewer

* htop is another program to show running processes
It shows cores and their load
It also shows the process tree (process / subprocess relationships)
It can be scrolled left/right and up/down

®0e 2. ssh

x bash ®:1 | X ssh %2 |
1 C 0.1 9 [0.0%] 17 [0.0%] 25 [0.0%]
2 T 0.0%] 10 [0.0%] 18 [0.0%5] 26 [0.0%]
3 C 0.0%] 11 [0.0%] 19 [0.0%] 27 [0.0%]
4 0.0%] 12 [0.0%] 20 [0.0%] 28 [0.0%]
5 C 0.0%] 13 [0.0%] 21 [0.0%] 29 [0.0%]
6 [0.0%] 14 [0.0%] 22 [0.0%] 30 [0.0%]
7 [N 1.3%] 15 [0.0%] 23 [0.0%] 31 [0.0%]
8 [0.0%] 16 [0.0%] 24 [0.0%] 32 [0.0%]
Mem[I 11 1.12G/62.6G] Tasks: 66, thr; running
Swp[OK/4.00G] Load average: 0.00 0.01 0.05

Uptime: 2 days, 02:53:59

3778 sensu 20 © 194M 20380 2512 S 0.0 0.0 0:19.39 /opt/sensu/embedded/bin/ruby /opt/sensu/bin/sensu-client -b -c /etc/sensu/config.json -d /etc/sensu/conf.d
3780 sensu 20 © 194M 20380 2512 S 0.0 0.0 0:00.00 L /opt/sensu/embedded/bin/ruby /opt/sensu/bin/sensu-client -b -c /etc/sensu/config.json -d /etc/sensu/con
3590 root 20 © 250M 48520 6348 S 0.0 0.1 0:07.48 /usr/bin/ruby /usr/bin/puppet agent --no-daemonize

111415 root 20 O 250M 48520 6348 S 0.0 0.1 0:00.00 L /usr/bin/ruby /usr/bin/puppet agent --no-daemonize
3460 nobody 20 @ 49592 1044 668 S 0.0 0.0 0:00.01 /usr/sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/libe
3461 root 20 @ 49564 360 S 0.0 0.0 0:00.00 L /usr/sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/1
1956 root @ 89544 2132 109% S 0.0 0.0 0:01.33 /usr/libexec/postfix/master -w

F1-FZ-F3-F4-F5-F6-F?-F8-F'f)-Fl

Northeastern 59
University

Viewl NE ProCeSSES (Like we did with top or system monitor)

* proc itself is like a filesystem
* (We’ll talk more about everything in Unix being viewed as a file).

* We can navigate to it with cd /proc then list all of the processes.

[NN) 2. ssh
X bash ® %1 | X ssh ¥2

-bash-4.2% 1s -1 /proc

total @

dr-xr-xr-x. 9 root root @ 0ct 208:121
dr-xr-xr-x. 9 root root @ Oct 2 08:12 10
dr-xr-xr-x. 9 root root @ Oct 2 08:12 100
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1006
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1007
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1008
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1009
dr-xr-xr-x. 9 root root @ Oct 2 08:12 101
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1010
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1011
dr-xr-xr-x. 9 root root @ Oct 2 08:13 10119
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1012
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1013
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1014
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1015
dr-xr-xr-x. 9 root root 0 Oct 2 08:12 103
dr-xr-xr-x. 9 root root @ Oct 4 06:21 103599

Northeastern
University

man ps | Run ps -ef

 wAnother way to view actively running processes is ps
* -ef means view all of the processes

[] @ 2. ssh

X bash ® 81 X ssh 82

PS(1) User Commands
NAME

ps - report a snapshot of the current processes.

SYNOPSIS
ps [options]

DESCRIPTION
ps displays information about a selection of the active processes. If you want a repetitive update of the selection and the
displayed information, use top(l) instead.

This version of ps accepts several kinds of options:

1 UNIX options, which may be grouped and must be preceded by a dash.
2 BSD options, which may be grouped and must not be used with a dash.
3 GNU long options, which are preceded by two dashes.

Manual page ps(1l) line 1 (press h for help or q to quit)

Northeastern
University

PS(1)

61

Gathering more information from proc

* We can run cat stat to output status information from proc

* Try some of the examples below in your VM:
https://www.networkworld.com/article/2693548/unix-viewing-

your-processes-through-the-eyes-of-proc.html

Northeastern
University

62

https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html

Concurrent Processing

e Each process running has its own control flow

* If they overlap in their lifetime, then they are running concurrently
e otherwise they are sequential

* Remember only 1 process at a time can execute
* On asingle core, which processes here are concurrent to each other?

* Which are sequential?
¢ Sequentlal: Process A Process B Process C

ime @ - e

Northeastern
University

Concurrent Processing

e Each process running has its own control flow

* If they overlap in their lifetime, then they are running concurrently
e otherwise they are sequential

* Remember only 1 process at a time can execute
* On asingle core, which processes here are concurrent to each other?
: A&B
* Which are sequential?
‘ Sequential: Process A Process B Process C

SN B E m— e

Northeastern
University

Concurrent Processing

e Each process running has its own control flow

* If they overlap in their lifetime, then they are running concurrently
e otherwise they are sequential

* Remember only 1 process at a time can execute
* On asingle core, which processes here are concurrent to each other?
: A&B, A&C
* Which are sequential?
‘ Sequential: Process A Process B Process C

el T .

Northeastern
University

Concurrent Processing

e Each process running has its own control flow

* If they overlap in their lifetime, then they are running concurrently
e otherwise they are sequential

* Remember only 1 process at a time can execute
* On asingle core, which processes here are concurrent to each other?
: A&B, A&C
* Which are sequential?
‘ Sequential: B &C Process A Process B Process C

Time

Northeastern 66
University

Context Switching Illustration

* Processes are managed by a shared chunk of memory-resident OS
code called the kernel
* The kernel is not a separate process itself, but runs as part of other
existing processes

e Context Switches pass the control flow from one process to another
* Note how going from A to B (and B to A) requires some kernel code to
be executed

Process A Process B

user code
kernel code } context switch
Time user code

kernel code } context switch

user code

Northeastern
University

Process Control

68

Creating a Process

* When we want to create a new process, we can do so from our
parent process using the fork() command.
* This creates a new child process that runs.
* Conceptually, this new child is a clone of itself

* int fork(void)

e Returns 0 to the child process,
Returns child’s PID to the parent process
* PID = process ID
* Child is almost identical to parent
» Child gets a copy (that is separate) to the parent’s virtual address space
* Child gets a copy of open file descriptors
* Child has a different PID than parent.

* Note: Fork actually returns twice (once to the parent, and once to the
child), even though it is called once.

Northeastern 69
University

man fork

@ ® @ mike:@mike-Lenovo-ideapad-Y700-141SK/proc

FORK(2)

NAME

Linux Programmer's Manual

fork - create a child process

SYNOPSIS

#include <unistd.h>

pid_t fork(void);

DESCRIPTION

fork() creates a new process by duplicating the calling process. The new
process is referred to as the child process. The calling process is referred to

as the parent process.

The child process and the parent process run in separate memory spaces. At the
time of fork() both memory spaces have the same content. Memory writes, file
mappings (mmap(2)), and unmappings (munmap(2)) performed by one of the processes
do not affect the other.

Manual page fork(2) line 1 (press h for help or g to quit)

Northeastern
University

Memory

Stack
Heap
Data
Code

Saved

Conceptual View of fork() | The before and after

registers

Northeastern

University

CPU

Registers

Memory

parent child
Stack Stack
Heap Heap
Data Data
Code Code
Saved Saved

registers registers
CPU

Registers

oooooooooooooooo

71

Additional Process commands

int exec(const char *pathname, char *argv(], ...)
* System call to change the program being run by the current process

wait() — system call to wait for a process to finish

signal() — system call to send a notification to another process

pid_t getpid(void)
e Return PID of the current process

pid_t getppid(void)
e Returns PID of parent process

Note that when we create a process with fork
* The parent child relationship, makes a tree.

(Note pid tis a signed integer)

Northeastern
University

https://www.gnu.org/software/libc/manual/html_node/Process-Identification.html

UNIX Process Management

Inherits most attributes Child Process
from the parent.

Differences: pid = fork();
Register values including | pid = 0 A if (pid == 0)
PC, address space, etc. exec(...);
and return value from

pid = fork();

if (pid ==0) if (pid ==0)
exec(...); pid = 9418 exec(...);

else

else

Original Process

Northeastern 73
University

Question: What does this code print?

int child_pid = fork();
if (child_pid == 0) {

printf(, getpid());
return O;
} else {
printf(, child_pid);
return O;

Northeastern
University

Process State

* When our process is running, it may be in one of the states below
* Running
* Ready
* Blocked

 Terminated
* Process is stopped permanently

Northeastern
University

Process Termination

* Process may be terminated for 3 reasons
* Receives a signal to terminate

e Returns from main routine
(what we have normally been doing in the class)

e Calling the exit function
* Terminates with a given status
* Returning O means no error

* When exit is called, this only happens once, and it does not return

* Note that if we have an error in our system, sometimes we do not want to
exit right away (e.g. safety critical system)

Northeastern
University

Process Termination

* Typically, a process will wait(pid) until its child process(es) complete
* You will learn about zombie and orphaned processes in the lab

* abort(pid) can be used to immediately end a child process

Northeastern 77
University

