CS 3650 Computer Systems — Spring 2023

Memory, stack, and recursion

Week 3

Northeastern
University * Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Memory on our machines

* The memory in our machines stores data so we can recall it later

* This occurs at several different levels
* Networked drive (or cloud storage)

* Hard drive
* Dynamic memory

* Cache
* For now, we can think of memory as a giant linear array.

el e il Sl S B :

o A3 SR
@ it g i @

Northeastern
University

Linear array of memory

* Each ‘box’ here we will say is 1 byte of memory
* (1 byte = 8 bits on most systems)

* Depending on the data we store,

we will need 1 byte, 2 bytes, 4 bytes, etc.

of memory

Northeastern
University

Linear array of memory

* Visually I have organized memory !
in a grid, but memory is really
a linear array as depicted below.

* There is one address after the other

Northeastern 4
University

Linear array of memory

. . |
* Visually I have organized memory |

in a grid, but memory is really

a linear array as depicted below.
* There is one address after the other

* Because these addresses grow large, typically we represent them in
hexadecimal (16-base number system: a digit can be 0-9 and A-F)

e (https://www.rapidtables.com/convert/number/hex-to-decimal.html)

J Address: Address: Address: Address: Address:
0x1 0x2 0x3 0x4 0x5

Northeastern
University

https://www.rapidtables.com/convert/number/hex-to-decimal.html

Remember: “Everything is a number”

Data Type Bytes Range (unsigned)
char | b | 1 |0to255(=2%8)
short int | w | 2 |0t065535(=216)

int 4 |0t04,294,967,295 (=2432)
long int | q | 0 to 18,446,744,073,709,551,615 (=2764)

Northeastern
University

Addressing memory

Northeastern
University

Addressing memory

mov $0x41F08, %rax

We move the address 0x41F08 into rax

(%rax) now points to the contents of the
corresponding chunk of memory

Northeastern
University

Addressing memory

Offset addressing:

e \We can point to addresses by
adjusting the pointer register by an
offset

Northeastern
University

Addressing memory

Offset addressing

8(%rax)

Where does 8(%rax) point to?

Northeastern
University

Addressing memory

Offset addressing

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to?

Northeastern
University

Addressing memory

Offset addressing

8(%rax)
16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to? 20(%rax)
Where does 20(%rax) point to?

Northeastern
University

Addressing memory

-8(%rax)

Offset addressing

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to? 20(%rax)
Where does 20(%rax) point to?
Where does -8(%rax) point to?

Northeastern
University

Addressing memory

-8(%rax)

-4(%rax)

Offset addressing

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to? 20(%rax)
Where does 20(%rax) point to?
Where does -8(%rax) point to?
Where does -4(%rax) point to?

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Like this?

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Like this? NO

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?
Like this? NO

- x86 is : the less significant bytes
are stored at lesser addresses

(byte of the number, 0x80, is)

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Like this.

Northeastern
University

Addressing memory

movq (%rax), %rilo (%rax)

Copies the of the address pointed
to by (%rax) to %r10

movq %rax, %rill

Copies the contents of %rax to %rl11. Now
(%rax) and (%r11) point to the same
location.

Northeastern
University

Addressing memory

mov! (%rax), %ebx

What's in %ebx?

How much we move is determined by
operand sizes / suffixes

Northeastern
University

Addressing memory

mov. (%rax), %ebx (%rax)
What's in %ebx?

0x50607080

Northeastern
University

Addressing memory

mov (%rax), %bx

What’'s in %bx?

Northeastern
University

Addressing memory

movw 4(%rax), %bx
What's in %bx?

0x3040

Northeastern
University

Addressing memory

movh 6(%rax), %bl (%rax)

What's in %bl?

Northeastern
University

Addressing memory

movh 6(%rax), %bl (%rax)
What’s in %bl?

0x20

Northeastern
University

Addressing memory

add , %brax

Modifying %rax changes where it points

Northeastern
University

Addressing memory

-8(%rax)

add , %brax

Modifying %rax changes where it points

Northeastern
University

Addressing memory

-8(%rax)

add , %brax
movq $0x42, (%rax)

How does movqg change the memory state?

Northeastern
University

Addressing memory

add , %brax
movq $0x42, (%rax)

Modifying %rax changes where it points

Northeastern
University

Addressing memory: full syntax

(base, ,
ADDRESS = pase + (*) +

Mostly used for addressing arrays:

: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)
base: (register) base pointer (%rax in previous examples)
: (register) index of element
: (immediate) size of an element

Northeastern
University

31

Addressing memory: full syntax

(base, ,

ADDRESS = hase + (*) +

Mostly used for addressing arrays:

: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)

base: (register) base pointer (%rax in previous examples)
: (register) index of element
: (immediate) size of an element

Northeastern
University

Note:
8(%rax) is equivalent to 8(%rax, 0, 0)

32

Addressing memory: full syntax

mov $0x41F00, %rax

mov $0, %rcx
mov $0, %rilo

loop:
cmp $8, %rcx
jge loop_end

add (%rax, %rcx, 8), %rio
1nc %rcx
jmp loop

loop_end:

Northeastern
University

Procedures/Functions

Northeastern
University

Procedure Mechanisms

e Several things happen when calling a procedure
(i.e., function or method)

Pass control

 Start executing from start of procedure
* Return back to where we called from

Pass data
* Procedure arguments and the return value are passed

Memory management
* Memory allocated in the procedure, and then deallocated on return

x86-64 uses the minimum subset required

Northeastern
University

X386-64 Memory Space

Our view of a program is a giant byte array

However, it is segmented into different regions

* This separation is determined by
the Application Binary Interface (ABI)

* This is something typically chosen by the OS.

* We traverse our byte array as a stack

Northeastern
University

https://en.wikipedia.org/wiki/Application_binary_interface

X386-64 Memory Space Addresses grow up

Program Memory

Address
2N-1
Stack *
Our Program Memory Space is divided into several segments. —»
« Some parts of it are for long lived data (the heap) (Unallocated)
» The other is for short-lived data (the stack)
typically used for functions and local variables. Heap
Static Data
Literals
Instructions 0
Northeastern 37

University

x86-64 stack

* There is a stack at the top of the memory

* Yes, the stack that you learned
in data structures course

* You can push and pop data

Northeastern
University

Program Memory
Address

2N-1

“

(Unallocated)

Heap

Static Data

Literals

Instructions 0

38

x86-64 stack

Program Memory

Address
2N-1
Stack grows down X
(But hopefully not into the — | Stack
heap -- otherwise error!
v (Unallocated)
That means the top of our
stack is approaching Heap
address 0
Static Data
Literals
Instructions 0
Northeastern)

University

x86-64 stack

Program Memory

Address
2N-1
Stack grows down A
(But hopefully not into the — | Stack
heap -- otherwise error!
You'll observe things like -8(%rsp)
in your assemble to remind you that
things are growing down in the stack (Unallocated)
That means the top of our
stack is approaching Heap
address 0
Static Data
Literals
Instructions 0
Northeastern 40

University

x86-64 stack

Stack Pointer: %rsp
Always contains lowest address

This is the “top” of the stack

~

T/
/

in your assemble to remind you that
things are growing down in the stack

Northeastern
University

Program Memory

Address
2N-1
_J | Stack +
(Unallocated)
Heap
Static Data
Literals
Instructions 0
41

x86-64 stack

Program Memory

Address
Bottom of
stack 2N-1
. . . Stack 4
With a Stack data structure, we can perform two main operations
1. push data onto the stack (add information)
a. Our stack grows fefp @i Eizials
a. Pushes data to top of the stack
b. Moves the stack pointer downward (Unallocated)
2. pop data off of the stack (remove information) H
: eap
a. Our stack shrinks
a. Pops data from the top of the stack
b. Moves the stack pointer upward Static Data
Literals
Instructions 0
Northeastern 42

University

x86-64 stack | PUSHQ Example

Program Memory

Address
Base Pointer: %rbp N
Always contains address of 28-1
top of current stack frame
e PUSHQ Src *
o Fetch operand at src
o decrement %rsp by 8 (Q bytes)
o Write operand at address given by %rsp
(Unallocated)
Heap
Stack Pointer: %rsp
Always contains lowest address Static Data
in current stack frame .
Literals
Instructions 0
Northeastern 43

University

x86-64 stack | PUSHQ Example

Program Memory

Address
Base Pointer': %rbp — . oA
Always contains address of)
top of current stack frame
e PUSHQ Src Stack 4
o Fetch operand at src
o decrement %rsp by 8 (Q bytes) src (-8)
o Write operand at address given by %rsp
o %rbp is unchanged
(Unallocated)
Heap
Stack Pointer: %rsp
Always contains lowest address Static Data
in current stack frame .
Literals
Instructions 0
Northeastern 44

University

x86-64 stack | POPQ Example

e POPQ Dest

@)

Base Pointer: %rbp
Always contains address of
top of current stack frame

Read value at address given by %rsp

o Increment %rsp by 8 (Q bytes)
o Store value at Dest
o %rbp unchanged
Stack Pointer: %rsp
Always contains lowest
address
Northeastern

University

Program Memory

(Unallocated)

Heap

Static Data

Literals

Instructions

Address
2N-1

45

The Process Stack

* Each process has a stack in memory that stores:
* Local variables
* Arguments to functions
e Return addresses from functions

* On x86:
* The stack grows downwards

* RSP (Stack Pointer) points to the bottom of the stack
(= newest data)

* RBP (Base Pointer) points to the base of the current frame

* Instructions like push, pop, call, ret, int, and iret all modify the stack

Northeastern
University

Creating and deleting stack frames for a function

void main(void) {

;‘.c.)o(x);
baz(y); void foo(int a) {

bar(z), void bar(int b) {

baz(n); void baz(int c) {

}

code, static
data, etc.

Northeastern
University

47

Creating and deleting stack frames for a function

void main(void) {

;‘;o(x);

baz(y);

code, static
data, etc.

Northeastern
University

48

Creating and deleting stack frames for a function

void main(void) {

;‘.c.)o(x);

baz(y); void foo(int a) {

bar(z), void bar(int b) {

baz(n) void baz(int c) {

}

Allocation and deallocation of stack frames
require changing %rbp and %rsp

Northeastern
University

code, static
data, etc.

49

Creating a new stack frame for a function and exiting

Create (enter) the new stack frame

push %rbp # push location of base poilnter to stack

mov %rsp, %rbp # coples the value of the stack poilnter
%rsp to the base pointer %rbp->%rsb and %rsp
now both point to the top of the stack

Do function here... RBP

RBP

RSP

When function is done, remove (leave) stack frame

mov %rbp, %rsp # sets %rsp to %rbp

pop %rbp # pops the top of the stack into %rbp,
where we stored the previous value
from the push

Northeastern 50
University

enter and leave

H enter creates a stack frame
enter $0, $0 # is equivalent to
push %rbp
mov %rsp, %rbp
RBP

RBP

RSP

and can allocate space in the stack
enter $24, $0 # is equivalent to g
push %rbp
mov %rsp, %rbp
#t sub $24, %rsp

the second arg indicates nesting level

Northeastern
University

51

enter and leave

leave exits a stack frame: does the inverse of enter S

leave # 1s equivalent to
mov %rbp, %rsp RSP
pop %rbp
RSP
Recall,
mov %rbp, %rsp # sets %rsp to %rbp

pop %rbp # pops the top of the stack to %rbp,
where we stored the previous
value from enter

Northeastern 52
University

int bar(int a, int b) {
int r=rand();

returna+b-r; stack _exam.c example
}
int foo(int a) { Note that generated assembly code can vary
intx, y; depending on the compiler

Xx=a*; . . .

The example in the following slides

y=a-7/ * are based on 32-bit architecture,

return bar(x, y); e use push and mov to create a stack frame,
} (One can use “enter” instead)

* pass function arguments only through the stack
,) , (One may use %rdi, %rsi, %rdx, %rcx, ... instead)
int main(void) {
The stack is usually used to pass the function
foo(1”); arguments when you run out of registers or write
recursive functions

Northeastern
University

53

S gec -g -fno-stack-protector -m32 -o stack_exam
stack_exam.c

S objdump --disassemble ./stack_exam
:804842a: e8 cO ff ff ff call 80483ef<ﬁoo>l
804842f: b8 00000000 mov 0x0, eax
080483ef <foo>:

mov esp, ebp
sub 0x28, esp

80483f8: eax, eax

80483fa: eax, [ebp-0xc]
oU4651d:
8048400:
8048403:

80484109:

Note that this is a different assembly
syntax from what we use

main()’s
Frame

12

Memory

main()’s local variables

Argument to foo()

Memor
4\ Y

4 .
) foo()’s local variables
080483d4 <bar>: foo()’s
80483d4: 55 push ebp Frame 5 2"d arg for bar()
80483d5: 89 e5 b
€ MoV €sp, €bp 24 15t arg for bar()

80483d7: 83 ec18 sub 0x18, esp

1 0x8048418 Return addr to foo()

80483da: e831ffffff call 8048310 <rand@plt>
80483df: 8945 f4 mov eax, [ebp-0xc]
80483e2: 8b450c mov [ebp+0xc], eax,

80483e5: 8b 5508 mov [ebp+0x8], edx
80483e8: 01dO add edx, eax
80483ea: 2b45f4 sub [ebp-0xc], eax

80483ed: 9 leave
80483ee: 3 ret

bar()’s
Frame™|

Note that this is a different assembly
syntax from what we use

* |eave = mov ebp, esp; pop ebp;
* Return value is placed in EAX

Northeastern
University

A “Design Recipe for Assembly”

1.Signature (C-ish)

2.Pseudocode (ditto)

3.Variable mappings (registers, stack offsets)
4.Skeleton

5.Fill in the blanks

| strongly recommend you to read
Nat Tuck’s Assembly Design Recipe in the reading list

Northeastern
University

56

1. Signature

* What are our arguments?

e What will we return?

factorial:

Northeastern
University

2. Pseudocode

 How do we compute the function?
* Thinking in directly in assembly is hard
* Translating pseudocode, on the other hand, is quite straightforward

e C works pretty well

factorial:

Northeastern
University

3. Variable Mappings

Need to decide where we store temporary values

Arguments are given: %rdi, %rsi, %rdx, %rcx, %r8, %r9, then
the stack
Callee must

Do we keep variables in registers? restore the

* Callee-save? %112, %r13, %rl4, %rl5, %rbx original value
e Caller-save? %r10, %r11 + argument registers before exiting

Do we use the stack?

Callee can freely
modify the register

factorial:

Northeastern
University

59

4. Function Skeleton

Prologue: Epilogue:
® push callee-saves ® Lleave -deallocate stack space
® enter - allocate stack space e Restore (pop) any pushed registers
o stack alignment! ® ret-returnto callsite

Northeastern
University

4. Function Skeleton

push %ri12
push %ri3
enter $24, $0

leave
pop %ri3
pop %ri2
ret

Northeastern
University

5. Complete the Body

* Translate your pseudocode into assembly - line by line

e Apply variable mappings

Northeastern
University

Variables, Temporaries, Assignment

e Each Cvariable maps to a register or a stack location
(by using enter)

 Temporary results go into registers

* Registers can be shared / reused - keep track carefully

long x 5;

long y = x = 2 + 1;

With:
X in %r10 [
y in %rbx
Temporary for x * 2 is %rdx

Northeastern
University

Variables, Temporaries, Assignment

e Each Cvariable maps to a register or a stack location
(by using enter)

 Temporary results go into registers

* Registers can be shared / reused - keep track carefully

long x = 5; mov $5, %rilo
long vy X

Wiffhi mov %rlQ, %rdx
x in %r10 imulg $2, %rdx
y in %rbx add $1, %rdx

Temporary for x * 2 is %rdx mov %rdx, %rbx

Northeastern
University

If statements 1

Variables:

e xis-8(%rbp)
e yis-16(%rbp) or,
temporarily, %r10

Northeastern
University

If statements 1

mov -16(%rbp), %rio
cmp %r10, -8(%rbp)

Variables: jge elsel:
e XIS —8(%I‘bp)

e yis-16(%rbp) or, movg $7, -16(%rbp)
temporarily, %r10

elsel:

Northeastern
University

If statements 2

Variables:

e xis-8(%rbp)
e yis-16(%rbp) or,
temporarily, %r10

Northeastern
University

If statements 2

mov -16(%rbp), %rilo0
cmp %r10, -8(%rbp)
jge elsel:

movg $7, -16(%rbp)

jmp donel

elsel:
Variables:

. xis -8(%rbp) movq $9, -16(%rbp)

e yis-16(%rbp) or,
temporarily, %r10 done1l:

Northeastern
University

Do-while loops

do {
X = X

} while (x

Variables:

e xis-8(%rbp)

Northeastern
University

Do-while loops

do {
X = X

} while (x

Variables:

e xis-8(%rbp)

Northeastern
University

loop:
add $1, -8(%rbp)

cmp $10, -8(%rbp)

Jj1 loop

While loops

Variables:

e xis-8(%rbp)

Northeastern
University

While loops

Variables:

e xis-8(%rbp)

Northeastern
University

loop_test:
cmp $10, -8(%rbp)
jge loop_done

add $1, -8(%rbp)

Jjmp loop_test

loop_done:

Recursive Functions and the Stack

Northeastern
University

73

How to Use Recursion?

* Let’s say we want to write a factorial function.

Northeastern
University

How to program Recursion?

* Let’s say we want to write a recursive factorial function.

* ...something like:

long fact(long n) {
if (n 1) {
return 1;

}

return n * fact(n - 1);

}

Northeastern
University

Factorial

In general: we need to use the stack to hold on to data when doing
recursive calls.

Northeastern
University

Follow Design Recipe: Signature

 What are arguments?

e What is returned?

#long fact(long)
fact:

Northeastern
University

Follow Design Recipe: Pseudocode

* The Clooks good...

long fact(long n) {
if (n 1) {
return 1;

}

return n * fact(n - 1);

}

Northeastern
University

Follow Design Recipe: Variable Mappings

e Storing temp variable on the stack

e Returning result in %rax

#long fact(long n)
fact:
n -> (-8)%rbp

res -> %rax

Northeastern
University

Follow Design Recipe: Function Skeleton

long fact(long n) {
if (n 1) {
return 1;
#long fact(long n) }

fact:
#n -> (-8)%rbp return n * fact(n - 1);

res -> %rax }

enter $16, $0

Northeastern
University

Follow Design Recipe: Complete the Body

#long fact(long n)
fact:

n -> (-8)%rbp
res -> %rax

enter $16, $0

long fact(long n) {
if (n 1) {
return 1;

}

return n = fact(n - 1);

}

Northeastern
University

Follow Design

#long fact(long n)
fact:

n -> (-8)%rsp
res -> %rax

enter $16, $0

Northeastern
University

Recipe: Complete the Body

long fact(long n) {
if (n 1) {
return 1;

}

return n = fact(n - 1);

}

