
Please do not redistribute these slides
without prior written permission

1

CS 3650
Computer Systems

Drs. Alden Jackson / Ferdinand Vesely

2

Lecture 12 - File Systems
Persistence

Some slides figures from xv6 text 4

Introduction to File Systems
● Persistent storage devices allow storing data across reboots

○ non-volatile memory keeps data intact when the power goes away
● Data stored as a sequence of bits using some physical representation, e.g.,

○ magnetic (HDDs, floppy disks, tape drives)
○ optic (CDs)
○ electronic (SSDs)

● From a (low-level) software perspective:
○ data stored as a sequence of bytes
○ usually organized in blocks

● Long-term storage in a linear array would be a pain
○ Where to put a new file
○ External fragmentation: defrag/compaction is expensive

● How do we organize data? 5

Directory
● Directory - a file that has a specific

structure
○ Like all files, it has an inode number

● The contents is a list of
(user-readable name, inode number)

○ Each entry refers to a file or another
directory, e.g.,

○ File “foo” with inode=10, (“foo”, “10”)
○ Directory tmp with inode=234,

(“tmp”, “234”)
● Placing directories in other

directories creates a tree
6

Organizing Data: Two Key Abstractions
● We recall a disk has some standardized contents, e.g., the MBR,

the File System is another
● Modern file systems have two abstractions:

a. File - a linear array of bytes, each of which can be read and written
b. Directory - a file that has a specific structure

7

File
● File - a linear array of bytes, each of which can be read and written

○ Addressed using a low-level name, usually a number, called an inode
○ The text name is a helper for humans

● Most OSes don’t know much about the structure of a file or its contents
○ Bytes are bytes
○ The job is store data persistently to give it back to the user when requested

8

UNIX directory conventions
● ‘.’ = cwd, i.e., itself
● ‘..’ = parent directory
● ‘/’ = root directory, inode=2 (special case)

9

File System API: Files
● The OS provides several system

calls to interact with a file system
● We’ve worked with some file I/O

operations:
○ open / close - open (or

create) / close a file
○ read / write - read / write

bytes from/to file
● There’s more…

● lseek - move within a file
● fsync - flush a buffer to a file -

force data to be written
● rename - rename a file
● stat - get information

(metadata) about a file
● link - associate another name

with file data
● unlink - remove (a reference to)

a file / delete a file
● Where is the file metadata?

10

File System API: Directories

● mkdir - make directories
● rmdir - remove a directory (only if empty)
● opendir - open a directory stream
● readdir - read a directory entry from a directory stream
● closedir - close a directory stream

11

File System Implementation
● File systems are implemented as “drivers”

○ but they do not abstract the hardware directly
● They provide a software abstraction over the lower-level storage APIs

● All they really do:
○ Translate a name + offset to the appropriate disk position
○ Keep track of where to store data (free space management)

12

File System Implementation
● To design a FS, we really need to understand and decide on two things:

○ Data structures
○ Access methods

● Data structs - how is data and metadata organized
○ arrays, linked lists, trees, …

● Access methods - how does the file API map to usage of these data structures
● We will look at a simple file system - related to the first Unix FS by Ken

Thompson

13

14

From File size distribution on UNIX systems: then and now
A. Tanenbaum, J. Herder, H. Bos, ACM SIGOPS Oper. Syst. Rev., 2006
https://api.semanticscholar.org/CorpusID:4457775

https://api.semanticscholar.org/CorpusID:4457775

15

File system characteristics
● Most files are small

○ ~2K is the most common size
● The average file size is growing

○ ~200K
● Most bytes are in the large files

○ A few big file use up most of the space
● File systems contain lots of files

○ ~100K on average
● File systems are roughly half full

○ Even as disks grow the number of files is ~50%
● Directories are small

○ Many have few entries, most have 20 or less

16

17

Switch to other File System slides
The remaining slides for today’s lecture were prepared by Prof Thomas Ropars at
the University of Grenoble for his Operating Systems class.

They can be found on our website under Week 12.

They can be also be found on his course website at:
https://m1-mosig-os.gitlab.io/lectures/lecture_16--File_systems.pdf

https://course.ccs.neu.edu/cs3650sp22/l12.html
https://m1-mosig-os.gitlab.io/lectures/lecture_16--File_systems.pdf

Switch to other slides

18

