
Please do not redistribute these slides
without prior written permission

1

CS 3650
Computer Systems

Dr. Alden Jackson

2

Lecture 10 - xv6

Some slides figures from xv6 text 8

Putting it all together
(One more deep dive)

9

So far, we have knocked out two pictures

10

Here are some of the core topics we have looked at

11

Some core topics

● Assembly
● C
● Memory
● GPU
● General CPU Architecture

Some core topics

Compilers
Linkers

And we have had partial coverage of OS

12

Some core topics

● Assembly
● C
● Memory
● GPU
● General CPU Architecture

Some core topics

Compilers
Linkers

Some core topics

● Context Switching
● System Calls
● Exception Handling
● Virtual Memory

Now we’ll get some experience with a working OS!

13

Some core topics

● Assembly
● C
● Memory
● GPU
● General CPU Architecture

Some core topics

Compilers
Linkers

Some core topics

● Context Switching
● System Calls
● Exception Handling
● Virtual Memory

Operating System Refresher

14

(First day of class--what is an OS? Answer)

15

● Any and all software that sits between a user program and
hardware

● OS is a resource manager and allocator
○ e.g. Handles conflicts between processes for hardware access
○ And it tries to be as efficient and fair as possible

● Overall an OS is a control program or “conductor”
○ Controls the execution of user programs
○ Prevents errors and improper use to maintain uptime.

● Additionally we discussed that there are many different
Operating Systems that exist.

○ We have spent a lot of time in the POSIX environment
■ Our CCIS machines are CentOS
■ POSIX = portable operating system interface (It’s a standard)

https://en.wikipedia.org/wiki/POSIX

Without an operating system

16

● Life would be hard for us as software engineers having to always directly
interface with hardware, and vice versa

● (Typically our computers, would be no better than a box with blinking lights)

The OS and Computer Architecture
● Okay, great, let us say we have an OS like linux

○ How does our architecture know what to do with an Operating
System or where to load it from?

○ So far we have some idea about how our OS work with
devices?

■ (Interfacing with drivers)
○ We also have a pretty good idea how the OS works with

memory at least on a process basis.
■ But we’ll want to think even more about how processes

are scheduled.

17

Operating System History

18

Brief Operating System History [link]
● 1955 and earlier: Very early mainframes have

no operating system
● 1956: GM-NAA I/O used for research by

General Motors -- first real OS
● 1960s: IBM delivers System/360 OS

○ Details recounted in Mythical Man Month Book

● 1970-80s: Digital Equipment Corporation
(DEC) and Data General (DG) lead the
minicomputer market

○ Data General’s initial design detailed in The Soul of a
New Machine

○ There is no reason anyone would want a computer in
their home. --Ken Olsen, Founder and CEO of DEC 19

https://en.wikipedia.org/wiki/History_of_operating_systems
https://en.wikipedia.org/wiki/GM-NAA_I/O
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/The_Soul_of_a_New_Machine
https://en.wikipedia.org/wiki/The_Soul_of_a_New_Machine

Brief Operating System History [link]
● 1981: IBM releases a Personal

Computer (PC) to compete with Apple
○ Basic Input/Output System (BIOS) for low-level

control
○ Three high-level OSes, including MS-DOS
○ Developers were asked to write software for

DOS or BIOS, not bare-metal hardware

● 1982: Compaq and others release
IBM-compatible PCs

○ Different hardware implementations (except
808x CPU)

○ Reverse engineered and reimplemented BIOS
○ Relied on customized version of MS-DOS

20

https://en.wikipedia.org/wiki/History_of_operating_systems

IBM Eventually Loses Control
● 1985: IBM clones dominated computer sales

○ Used the same underlying CPUs and hardware chips
○ Close to 100% BIOS compatibility
○ MS-DOS was ubiquitous
○ Thus, IBM PC hardware became the de-facto standard

● 1986: Compaq introduces 80386-based PC
● 1990’s: Industry is dominated by “WinTel” (Microsoft and Intel)

○ Intel x86 CPU architectures (Pentium 1, 2, and 3)
○ Windows 3.1, NT, 95 software compatibility

21

Let’s build an operating system!

28

To build an Operating System, what tools would we need?

30

● Potential tools needed:
○ A high-level programming language

■ C
○ Knowledge of computer architecture
○ Some idea about how to divide up resources like memory, processes, etc.

● Looks like we have some of these foundations!

To build an Operating System, what tools would we need?

32

● Potential tools needed:
○ A high-level programming language

■ C
○ Knowledge of computer architecture
○ Some idea about how to divide up resources like memory, processes, etc.

● Looks like we have some of these foundations!
● Note this is not a hypothetical question, new Operating

Systems are made all of the time
○ e.g. Android, iOS, etc.

First Design Decision: Kernel

33

(Reminder of the Kernel)

34

One Program to rule them all, One
Program to find them,

One Program to bring them all, and in
darkness bind them in the Land of Linux
where programmers code

*Pop Culture reference from Lord of the Rings

Towards a Kernel

35

● “The one program running at all times on the computer” is the kernel
○ Typically the first program loaded up

■ (loaded by the bootloader--we’ll get to this)

● Questions:
○ What are the features that kernels should implement?
○ How should we architect the kernel to support these features?

■ i.e. What features does our kernel support?

https://en.wikipedia.org/wiki/Kernel_(operating_system)

Kernel Features
● Device management

○ Required: CPU and memory
○ Optional: disks, keyboards, mice, video, etc.

● Loading and executing programs
● System calls and APIs
● Protection and fault tolerance

○ E.g. a program crash shouldn’t crash the computer

● Security
○ E.g. only authorized users should be able to login

36

Architecting Kernels: Three basic approaches
1. Monolithic kernels

○ All functionality is compiled together
○ All code runs in privileged kernel-space

2. Microkernels
○ Only essential functionality is compiled into the kernel
○ All other functionality runs in unprivileged user space

3. Hybrid kernels
○ Most functionality is compiled into the kernel
○ Some functions are loaded dynamically
○ Typically, all functionality runs in kernel-space

37

Monolithic Kernel

38

User SpaceKernel Space

Memory
Manager

CPU
Scheduling

Program
Loader

Security
Policies

Error
Handling

System
APIs

Device
Drivers

File
Systems

Monolithic Kernel Code

User Program

Microkernel

39

User SpaceKernel Space

Memory
Manager

CPU
Scheduling

Interprocess
Communication

Kernel Code

Networking
Service

File
System

Disk
Driver

Network
Card Driver

User Program 1

User Program 2

Hybrid Kernel

40

User SpaceKernel Space

Memory
Manager

CPU
Scheduling

Program
Loader

Security
Policies

Error
Handling

System
APIs

File
Systems

Kernel Code

Device
Driver

Third-Party Code

Device
Driver

File
System

User Program

41

Microkernels:
Small code base,

Few features

Monolithic Kernels:
Huge code base,
Many features

Hybrid Kernels:
Pretty large code base,

Some features delegated

Research Kernels:
Mach

L4
GNU Hurd

Kernels for
Embedded System:

QNX

Pros/Cons of Monolithic Kernels

42

● Advantages
○ Single code base eases kernel development
○ Robust APIs for application developers
○ No need to find separate device drivers
○ Fast performance due to tight coupling

● Disadvantages
○ Large code base, hard to check for correctness
○ Bugs crash the entire kernel (and thus, the machine)

Pros/Cons of Microkernels

● Advantages
○ Small code base, easy to check for correctness
○ Excellent for high-security systems
○ Extremely modular and configurable
○ Choose only the pieces you need for embedded systems
○ Easy to add new functionality (e.g. a new file system)
○ Services may crash, but the system will remain stable

● Disadvantages
○ Performance is slower: many context switches
○ No stable APIs, more difficult to write applications

43

Pros/Cons of Hybrid
● Some mix of the tradeoffs taken from the Microkernels and Monolithic kernels

44

Alright--let’s spec out something
closer to a hybrid kernel

Pieces of an Operating System
We need to be able to perform some typical OS services

● Memory Management
● Some abstract data types (arrays, strings, etc.)
● Input and Output functions (printf, scanf, etc.)
● File System
● UI Management
● Textual Output
● Graphics
● Maybe more

○ Security, networking, multi-processing

45

Pieces of an Operating System
We need to be able to perform some typical OS services

● Memory Management
● Some abstract data types (arrays, strings, etc.)
● Input and Output functions (printf, scanf, etc.)
● File System
● UI Management
● Textual Output
● Graphics
● Maybe more

○ Security, networking, multi-processing

46

If you take a close look, you’ll notice
some of these are starting to look like
our ‘system calls’

strace | strace cat test.c
● Remember the ‘strace’ tool?
● Something neat we can do too, is peak into all of these system calls that are

being made--again we can see there is no magic

47

strace | strace cat test.c
● Remember the ‘strace’ tool?
● Something neat we can do too, is peak into all of these system calls that are

being made--again we can see there is no magic
● .

48

So at some level, we can think
of an OS on the software side,
as a collection of system
calls--great!

But how do we get here from the
hardware side?

Does anything happen before our
Operating System is running?

49

Pop Interview Question

● “What happens after you push the power button on your machine?”
○ (i.e. what happens in software?)

50

Pop Interview Question

● “What happens after you push the power button on your machine?”
○ (i.e. what happens in software?)

● (True story: Prof Shah had this as an interview question)
○ Understanding operating systems and putting together our hardware knowledge

will answer this question!

51

Boot Process
(Before we get to our Operating System!)

52

Step 1 | A first program is executed: The BIOS

53

● x86 machines start by executing a
program called the BIOS

○ BIOS: Basic Input/Output System

● The BIOS is ‘baked into’ our computers
motherboard

○ This means it is stored in non-volatile memory
(i.e. memory that persists)

○ (A motherboard is the entirety of the printed
circuit you see on the right. It helps organize
all of the components that are attached
together).

https://www.digitaltrends.com/computing/what-is-a-motherboard/

More on BIOS and the ‘boot loader’ (1/2)

● The Basic Input/Output System’s (BIOS)
job is to make sure that all of the
hardware is ready to go

● If all of the components are ready, then
control is transferred into what is called
the ‘boot loader’

54

More on BIOS and the ‘boot loader’ (2/2)
● The BIOS transfers control to the ‘boot loader’

by looking at the ‘boot sector’, which has some
amount of bytes (e.g. 512 bytes) that tell us
where the boot loader is.

○ You may have seen programs like GRUB which allow
you to select which operating system to load.

● Our goal at this stage, is to use this very
primitive ‘boot loader’ program, to launch and
execute a more modern operating system.

■ e.g. Windows, MacOS, Ubuntu, CentOS, etc.

55

Here is the OS loading process [image source]
Here is the high level
abstraction--at the very least
the steps to remember

1. BIOS
2. Boot loader
3. Operating System

56

https://image.slidesharecdn.com/qi-090611024517-phpapp02/95/qi-lightweight-boot-loader-applied-in-mobile-and-embedded-devices-6-728.jpg?cb=1269055727

Here is the OS loading process [image source]
Here is the high level
abstraction--at the very least
the steps to remember

1. BIOS
2. Boot loader
3. Operating System

57

What about all these
other steps?

https://image.slidesharecdn.com/qi-090611024517-phpapp02/95/qi-lightweight-boot-loader-applied-in-mobile-and-embedded-devices-6-728.jpg?cb=1269055727

A few more steps

58

Pushing power

1. Start the BIOS
2. Load settings from CMOS
3. Initialize any attached devices
4. Run POST (Power on self-test)
5. Initiate the bootstrap sequence

59

https://en.wikipedia.org/wiki/Power-on_self-test

Starting the BIOS (1/5)
● Basic Input/Output System (BIOS)

○ A mini-OS burned onto a chip

● Begins executing a soon as a PC powers on
○ Code from the BIOS chip gets copied to RAM at a low address (e.g. 0xFF)
○ jmp 0xFF (16 bits) written to RAM at 0xFFFF0 (220-16)
○ x86 CPUs always start with 0xFFFF0 in the EIP register

● Essential goals of the BIOS
○ Check hardware to make sure its functional
○ Install simple, low-level device drivers
○ Scan storage media for a Master Boot Record (MBR)

■ Load the boot record into RAM
■ Tells the CPU to execute the loaded code

60

Load settings from CMOS (2/5)

● BIOS often has configurable
options
○ Values are stored in a special

battery-backed CMOS memory
○ These values are then read in by

the BIOS, often containing
information about how devices
have been configured.

61

https://en.wikipedia.org/wiki/CMOS

Initialize any attached devices (3/5)

● Scans and initializes hardware
○ CPU and memory
○ Keyboard and mouse
○ Video
○ Bootable storage devices

● Installs interrupt handlers in memory
○ Builds the Interrupt Vector Table

● Runs additional BIOSes on expansion cards
○ Video cards and SCSI cards often have their own BIOS

62

Run Power On Self-Test(POST) test (4/5)

● This is a diagnostic test to make sure all of the devices that are
connected and initialized in the previous steps are working.

● POST Test
○ Check RAM by read/write to each address
○ Check to make sure keyboard is working
○ Check to make sure connected hard drives are working
○ etc.

63

Bootstrap in an operating system (5/5)

64

● Finally we need to find and load a real OS
● BIOS identifies all potentially bootable devices

○ Tries to locate Master Boot Record (MBR) on each device
○ Order in which devices are tried is configurable

● Master Boot Record (MBR) has code that can load the actual OS
○ Code is known as a bootloader

● Example bootable devices:
○ Hard drive, SSD, floppy disk, CD/DVD/Bluray, USB flash drive,

network interface card (NIC)

The Master Boot Record (MBR)

● Special 512 byte file written to sector 1 (address 0) of a storage device
● Contains 446 bytes of executable code
● Entries for 4 partitions
● Too small to hold an entire OS

○ Starts a sequence of chain-loading

65

Address
Description

Size
(Bytes)Hex Dec.

0x000 0 Bootstrap code area 446

0x1BE 446 Partition Entry #1 16

0x1CE 462 Partition Entry #2 16

0x1DE 478 Partition Entry #3 16

0x1EE 494 Partition Entry #4 16

0x1FE 510 Magic Number 2

Total: 512

Visualization of Master Boot Record

66

67

We need to find and load a real OS now
(xv6)

Example Bootloader: GRUB
● Grand Unified Bootloader
● Used with Unix, Linux, Solaris, etc.

68

But now lets really see it in action
● We will actually work with a small operating system so we can see exactly

what the code looks like.

Introducing xv6!

69

Goal: Figure out the boot process from a programmer’s perspective

70

● Our tool is going to be to use the xv6 operating system.
○ xv6 is yet another Unix inspired variant--although much more lightweight (Several thousands

of lines of code versus millions).

We are the best
Operating
Systems!

Our tool xv6 | https://pdos.csail.mit.edu/6.828/2017/xv6.html

● Not something your instructor developed
● But some smart folks at MIT have been working on this for a long while.

○ You can and certainly should browse this link for a deeper dive.
○ There is some handy documentation if you want to browse online from NEU faculty (be

warned, this is 2 revisions old) https://course.ccs.neu.edu/cs3650/unix-xv6/

71

https://pdos.csail.mit.edu/6.828/2017/xv6.html
https://course.ccs.neu.edu/cs3650/unix-xv6/

Boot process in xv6

72

bootasm.S - Where our bootstrapping process begins

73

Start the first CPU: switch to 32-bit protected mode, jump into C.
The BIOS loads this code from the first sector of the hard disk into
memory at physical address 0x7c00 and starts executing in real mode
with %cs=0 %ip=7c00.

.code16 # Assemble for 16-bit mode

.globl start
start:
 cli # BIOS enabled interrupts; disable

 # Zero data segment registers DS, ES, and SS.
 xorw %ax,%ax # Set %ax to zero
 movw %ax,%ds # -> Data Segment
 movw %ax,%es # -> Extra Segment
 movw %ax,%ss # -> Stack Segment

.

.

.

Bootmain.c: loads ELF kernel from disk

74

// Boot loader.
//
// Part of the boot block, along with bootasm.S, which calls bootmain().
// bootasm.S has put the processor into protected 32-bit mode.
// bootmain() loads an ELF kernel image from the disk starting at
// sector 1 and then jumps to the kernel entry routine.

#include "types.h"
#include "elf.h"
#include "x86.h"
#include "memlayout.h"

#define SECTSIZE 512

void readseg(uchar*, uint, uint);

void
bootmain(void)

.

.

.

main.c
● After we have successfully

bootstrapped, we can begin
executing main

● We can actually see various
parts of the OS that get setup!
○ Handling files, working with

disk, setting up processes, etc.

75

// Bootstrap processor starts running C code here.
// Allocate a real stack and switch to it, first
// doing some setup required for memory allocator to work.
int
main(void)
{
 kinit1(end, P2V(4*1024*1024)); // phys page allocator
 kvmalloc(); // kernel page table
 mpinit(); // detect other processors
 lapicinit(); // interrupt controller
 seginit(); // segment descriptors
 picinit(); // disable pic
 ioapicinit(); // another interrupt controller
 consoleinit(); // console hardware
 uartinit(); // serial port
 pinit(); // process table
 tvinit(); // trap vectors
 binit(); // buffer cache
 fileinit(); // file table
 ideinit(); // disk
 startothers(); // start other processors
 kinit2(P2V(4*1024*1024), P2V(PHYSTOP)); // must come after startothers()
 userinit(); // first user process
 mpmain(); // finish this processor's setup
}

proc.c
● Once our OS is running, proc

schedules different processes
from a table to run
○ See ‘scheduler’

76

// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:
// - choose a process to run
// - swtch to start running that process
// - eventually that process transfers control
// via swtch back to the scheduler.
void
scheduler(void)
{
 struct proc *p;
 struct cpu *c = mycpu();
 c->proc = 0;

 for(;;){
 // Enable interrupts on this processor.
 sti();
 // Loop over process table looking for process to run.
 acquire(&ptable.lock);
 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
 if(p->state != RUNNABLE)
 continue;
 // Switch to chosen process. It is the process's job
 // to release ptable.lock and then reacquire it
 // before jumping back to us.
 …

(Reminder) Operating System Scheduler

77

● The scheduler in an Operating system is responsible for picking which
process runs.

● The OS gives each process a ‘time slice’ to execute.
● The OS tries to be fair in making sure every process can make some

progress
● However, there are some trade-offs

○ Should a long running process using lots of resources get more time?
○ Or would we rather have short running processes just finish and be done?
○ How does the Operating System even know or estimate time spent?

Walkthrough of xv6 Scheduler
● Thinking about some of these trade-offs, it will be beneficial to look at things

from an xv6 perspective.
○ Investigating ‘scheduler’ within xv6 will show how scheduling is done.
○ (We may jump deeper into this in lab!)

78

A handy reference card of the OS
● https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
● Just reading the source file names, some topics should feel familiar

○ proc, trap, file, spinlock, string, syscall, etc.

79

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

So far...

● We know what an operating system is
● We know when we press the power button
● An OS needs to be bootstrapped from the BIOS
● We have seen a quick example of this in xv6
● (As well as identified a few important files in xv6)
● Now let's figure out how to get xv6 running
● Friday’s lab will address this…

83

