
Please do not redistribute these slides
without prior written permission

1

CS 3650
Computer Systems
Alden Jackson / Ferdinand Vesely

2

Lecture 9 - Concurrency
Part 2

Some slides figures and slides from Bryant and O’Halloran text 7

Bank Transactions

57

A series (i.e. serial) of Bank Transactions

1. If I start with $25 in my checkings account.

2. Then I deposit $50, I have $75.

3. If I then withdraw $50, I now have $25.

4. My final balance is $25.

5. There is a variable checkings that monitors our balance.

58

Concurrent Bank Transaction

1. If I start with $25 in my checkings account.

2. Then I deposit $50 and withdraw $50 at the same time (concurrently)

3. My final balance should still be $25.

4. There is a shared variable checkings in each thread that monitors our
balance.

59

Concurrent Bank Transaction

1. If I start with $25 in my checkings account.

2. Then I deposit $50 and withdraw $50 at the same time (concurrently)

3. My final balance should still be $25.

4. There is a shared variable checkings in each
thread that monitors our balance.

60

Read our initial balance

checkings = 25

Thread Z:
checkings = ??

deposit(50)

checkings = ??

Thread Y:
checkings = ??
withdraw(50)
checkings = ??

checkings = ???

Ti
m

e

61

Thread ZThread Y

Okay, we have $25 – now move on

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)
checkings = ??

checkings = ???

Ti
m

e

62

Thread ZThread Y

withdraw and deposit occur (Thread Y and Z)

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)
checkings = ??

checkings = ???

Ti
m

e

63

Thread ZThread Y

Checkings from Thread Y updates first

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e

64

Thread ZThread Y

(Thread Z) updates its checkings value shortly after

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e

65

Thread ZThread Y

Now we have conflicting information

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e

66

Thread ZThread Y

checkings stores the last value of 75 (Thread Z)

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = 75

Ti
m

e

67

checkings = 75checkings = 75

Thread ZThread Y

checkings = -25

What if these operations had swapped!

checkings = 25

checkings = 25
deposit(50)

checkings = 75

checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e

68

Thread ZThread Y

checkings = 75
checkings = -25

This time our balance is -25! (Thread Y)

checkings = 25

checkings = 25
deposit(50)

checkings = 75

checkings = 25
withdraw(50)

checkings = -25

checkings = -25

Ti
m

e

69

Thread ZThread Y

checkings = -25
checkings = 75

How about if Thread Z lags behind Thread Y?

checkings = 25

checkings = ??
deposit(50)

checkings = ??

checkings = ??
withdraw(50)
checkings = ??

checkings = ??

Ti
m

e

70

Thread ZThread Y

How about if Thread Z lags behind Thread Y?

checkings = 25

checkings = ??
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = -25

Ti
m

e

71

Thread ZThread Y

How about if Thread Z lags behind Thread Y?

checkings = -25

checkings = ??
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = ??

Ti
m

e

72

Thread ZThread Y

How about if Thread Z lags behind Thread Y?

checkings = -25

checkings = -25
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = ??

Ti
m

e

73

Thread ZThread Y

Okay—this time we happen to get 25

checkings = -25

checkings = -25
deposit(50)

checkings = 25

checkings = 25
withdraw(50)

checkings = -25

checkings = 25 ok

Ti
m

e

74

Thread ZThread Y

We have witnessed a data race
(i.e. a common concurrency problem)

75

checkings = -25 checkings = 25 okcheckings = 75

http://pages.cs.wisc.edu/~remzi/OSTEP/threads-bugs.pdf

We need to synchronize – enforce ordering

checkings = 25

Thread Y:
checkings = ??
withdraw(50)

Thread Z:
checkings = ??

deposit(50)

checkings = ??

Ti
m

e

76

Read our checkings

checkings = 25

Thread Y:
checkings = ??
withdraw(50)

Thread Z:
checkings = ??

deposit(50)

checkings = ??

Ti
m

e

77

Thread Y uses checkings=25

checkings = 25

Thread Y:
checkings = 25
withdraw(50)

Thread Z:
checkings = ??

deposit(50)

checkings = ??

Ti
m

e

78

Thread Y withdraws(50)

checkings = 25

Thread Y:
checkings = 25
withdraw(50)

Thread Z:
checkings = ??

deposit(50)

checkings = ??

Ti
m

e

79

Thread Z reads in checkings

checkings = 25

Thread Y:
checkings = 25
withdraw(50)

Thread Z:
checkings = -25

deposit(50)

checkings = ??

Ti
m

e

80

Thread Z deposits(50)

checkings = 25

Thread Y:
checkings = 25
withdraw(50)

Thread Z:
checkings = -25

deposit(50)

checkings = ??

Ti
m

e

81

We need to synchronize – enforce ordering

checkings = 25

Thread Y:
checkings = 25
withdraw(50)

Thread Z:
checkings = -25

deposit(50)

checkings = 25 always correct

Ti
m

e

82

(The Bug!)
● This time launch 10000 threads
● counter is shared between threads
● What is wrong with this program?

○ The problem is we have a global
“counter” that is shared

○ There is an interleaving of instructions
here.

○ Any possible interleaving can occur!

84

What Data is Shared in Threaded C Programs?
● Global variables are shared

○ We just saw an example with counter.
○ (Note: the compilers can be smart)

■ (“counter” is only shared if it is referenced within the thread, otherwise do not copy it.)

85

Threads Memory Model: Conceptual
● Multiple threads run within the context of a single process
● Each thread has its own separate thread context

○ Thread ID, stack, stack pointer, PC, condition codes, and General Purpose Registers
● All threads share the remaining process context

○ Code, data, heap, and shared library segments for virtual address space
○ Open files

86

Threads Memory Model: Actual
● Separation of data is not strictly enforced:

○ Register values are truly separate and protected
○ Any thread however, can read and write the stack of any other thread

87

Mapping Variable Instances to Memory
● Global Variables

○ Definition: Variable declared outside of a function
○ Virtual Memory contains exactly one instance of any global variable

● Local Variables
○ Definition: Variable declared inside function without static attribute
○ Each thread stack contains one instance of each local variable

● Local static variables
○ Definition: Variables declared inside function with the static attribute
○ Virtual memory contains exactly one instance of any local static variable.

88

Mapping Variable Instances to Memory

89

Shared Variable Analysis

90

Shared Variable Analysis

91

ptr?

Shared Variable Analysis

92

Global

Shared Variable Analysis

93

cnt?

Shared Variable Analysis

94

All threads share
this ‘static’ value

Shared Variable Analysis

95

i.m?

Shared Variable Analysis

96

Local to
main

Shared Variable Analysis

97

msgs?
(careful)

Shared Variable Analysis

98

We have a ‘ptr’ to msg,
so effectively shared

Shared Variable Analysis

99

myid.p0?

Shared Variable Analysis

100

Local to peer
thread 0 only

Shared Variable Analysis

101

So for
myid.p1?

Shared Variable Analysis

102

Local to peer
thread 1 only

Synchronization of Threads
● Shared variables are thus handy for moving around data
● But if we do not share properly, we can have synchronization errors!

○ There is a solution however!
○ (recap below)

103

=

We need a tool to protect shared resources

void deposit (float amount)

{

checkings += amount;

}

104

Correctness (can be) Easy
Performance Hard

105

withdraw(…) {…}

deposit(…) {…}

addInterest(…) {…}

checkMinBalance(…) {…}

chargeFee(…) {…}

printBalance(…) {…}

Correctness (can be) Easy
Performance Hard

withdraw(…) {…}

deposit(…) {…}

addInterest(…) {…}

checkMinBalance(…) {…}

chargeFee(…) {…}

printBalance(…) {…}

Simply add locks!

lock
lock
lock
lock
lock
lock

106

Example with lock
(thread4.c)

107

Example with lock
● Included a pthread_mutex_lock

108

Example with lock

● Included a pthread_mutex_lock
● lock and unlock protect
● Locks in other words enforce, that

we have exclusive access to a
region of code.

109

Example with lock
● Included a pthread_mutex_lock
● lock and unlock protect
● Locks in other words enforce, that

we have exclusive access to a
region of code.

110

Example with lock
● Also, don’t forget to join!

111

Lock functions with shared variables

synchronized

1.) checkings = 25

2.) deposit(50)

3.) withdraw(50)

4.) checkings = 25

not synchronized
1.) checkings = 25
2.) withdraw(50)
3.) deposit(50)
4.) checkings = 75? -25? 25?

113

State is
mutated
in a
deposit
and
withdraw

Correctness (can be) Easy
Performance Hard Good

job—no data
races here!

114

withdraw(…) {…}

deposit(…) {…}

addInterest(…) {…}

checkMinBalance(…) {…}

chargeFee(…) {…}

printBalance(…) {…}

lock
lock
lock
lock
lock
lock

By Max Roser, Hannah Ritchie - https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=98219918

Correctness (can be) Easy
Performance Hard

Your program runs
sequentially– did you
forget about Amdahl’s

law?

115

Enforcing Mutual Exclusion
● Question: How can we guarantee we will not execute shared regions of code

unsafely.
● Answer: We synchronize the execution of the threads

○ That is, we make sure regions of code have mutually exclusive access to each critical section
■ A critical section is a section of code that is shared and should only have one thread

access it at a time.
● Classic solution:

○ Semaphores from the late Edsger Dijkstra
○ http://www.cs.toronto.edu/~demke/2227/S.14/Papers/p341-dijkstra.pdf

116

http://www.cs.toronto.edu/~demke/2227/S.14/Papers/p341-dijkstra.pdf

Semaphores

117

Binary Semaphores
● Mutex, which we have previously seen, is a special case of semaphore

○ Value is 0 or 1 (locked or unlocked)
● Recommended to use these over general semaphores when appropriate

○ Simpler abstraction
○ easier to read

118

General Semaphores
● Semaphore: non-negative global integer synchronization variable

○ Manipulated by P and V operations
● P(s) (“wait”, “acquire”, or “lock”)

○ If s is nonzero, then decrement by 1 and return immediately
■ Test and decrement operations occur atomically (indivisibly)

○ If s is zero, then suspend thread until s becomes nonzero and the thread is restarted by a V
operation

○ After restarting, the P operation decrements s and returns control to the caller
● V(s) (“unlock”)

○ Increment s by 1
■ Increment operation occurs atomically

○ If there are any threads blocked in a P operation waiting for s to become non-zero, then restart
exactly one of those threads, which then completes its P operation by decrementing.

● Semaphore invariant: (s >= 0) 119

Semaphores continued
● OS Kernel guarantees code

between brackets [] is guaranteed to
execute indivisibly

○ Only one P(lock) or V(unlock) operation
at a time can modify s

○ When while loop terminates, only P(lock)
can decrement s.

122

C semaphore programming example
● API

○ #include <semaphore>
○ int sem_init(sem_t *s, 0, unsigned int val)
○ int sem_wait(sem_t *s);
○ int sem_post(sem_t *s);

● Programming example
○ http://greenteapress.com/thinkos/html/thinkos012.html

123

http://greenteapress.com/thinkos/html/thinkos012.html

Using semaphores for mutual exclusion
● Basic Idea:

○ Associate a unique semaphore mutex, initially 1, with each shared variable
■ (i.e. 1 spot open for a thread to enter)

○ Surround corresponding critical sections with P(mutex) and V(mutex) operations
● Terminology

○ Binary semaphore: Semaphore whose value is always 0 or 1
○ Mutex: Binary semaphore used for mutual exclusion

■ P operation: “locking” the mutex
■ V operation: “unlocking” or “releasing” the mutex
■ “Holding” a mutex: locked and not yet unlocked

○ Counting semaphore: Used as a counter for set of available resources.

124

Pros and Cons of Thread-Based Designs
● Pros

○ Easy to share data structures between threads
■ e.g. logging information, file cache, etc.

○ Threads are more efficient than processes
● Cons

○ Unintentional sharing can introduce subtle and hard-to-reproduce errors
○ The ease with which data can be shared is both the greatest strength and greatest weakness

of threads
○ Hard to know which data is being shared and what is private
○ Hard to find errors by testing

■ Often data races do not always show up!
● (The probability is not zero!)

125

Summary of Synchronization
● Programmers need a clear model of how variables are shared by threads
● Variables shared by multiple threads must be protected to ensure mutually

exclusive access
● Semaphores are a fundamental mechanism for enforcing mutual exclusion

○ Use MUTEX when possible

126

Concurrency Continued

128

Critical Section
● Code protected between a lock or semaphore

131

Thread Safety
● Functions called from a thread need to be ‘thread-safe’

● A Function is thread-safe if it:
○ Always produces correct results

○ When called repeatedly from multiple concurrent threads.

132

Lack of Thread Safety

133DeadlockDatarace

Lack of Thread Safety

134Deadlock (Acquired lock, did not
return it)

Datarace (No locking of shared data)

Thread-Safety Classes
● Class 1: Functions that do not protect shared variables

● Class 2: Functions that keep state across multiple invocations

● Class 3: Functions that return a pointer to a static variable

● Class 4: Functions that call thread-unsafe functions

135

Thread-Unsafe Functions Class 1
● Functions that do not protect shared variables

137

Thread-Unsafe Functions Class 1 - Fix
● Functions that do not protect shared variables
● The solution: Ensure locks are around everything

138

Thread-Unsafe Functions Class 2
● Functions that keep state across multiple invocations

139

Thread-Unsafe Functions Class 2
● Functions that keep state across multiple invocations

140

rand() is a classic example. In
fact, why might we not want a
race condition in our random
number generator?

Thread-Unsafe Functions Class 2
● Functions that keep state across multiple invocations

141

Ans: May want repeatability
for testing. So since rand is
deterministic, we don’t want
multiple threads returning the
same value

Thread-Unsafe Functions Class 2 - Fix
● Functions that keep state across multiple invocations
● The solution: Pass state as part of an argument so ‘static’ can be removed

142

Thread-Unsafe Functions Class 2 - Fix
● Functions that keep state across multiple invocations
● The solution: Pass state as part of an argument so ‘static’ can be removed

143

This function is called a
‘reentrant’ function. That
is, the result is based
only on the input. Our
input here is the ‘state’

Thread-Unsafe Functions Class 3
● Functions that return a pointer to a static variable

144

Thread-Unsafe Functions Class 3 - Fix
● Functions that return a pointer to a static variable
● The solution: Use locks, and rewrite function to return address of variable.

○ Extra mutex’s can generally be used to make things thread-safe
○ May cost extra, in terms of performance.

145

Thread-Unsafe Functions Class 4
● Functions that call thread-unsafe functions

● Any function that calls a thread-unsafe function is now unsafe!

● The solution: Do not call thread-unsafe functions
○

● Document your functions if they are thread-unsafe to prevent yourself from
making errors!

146

Reentrant Functions - Recap
● A function is reentrant if it accesses no shared variables when called by

multiple threads
○ Important to note because:

■ These functions require no synchronization
■ (It is the only way to fix Class 2 functions and make them thread-safe)

147

Example thread-safe functions?
● What do you think, are the following thread-safe?

○ e.g. malloc, free, printf, scanf

148

Example thread-safe functions?
● What do you think, are the following thread-safe?

○ e.g. malloc, free, printf, scanf

149

In these 4 alone, we
would certainly have
lots of problems if not
thread-safe! Uh-oh,
should we rewrite our
memory allocators for
a future homework??

Example thread-safe functions
● All of the functions in the Standard C Library are thread-safe

○ e.g. malloc, free, printf, scanf
● Most Unix system calls are thread-safe with the following exceptions

150

Time

Networking

Time
Random

Semaphore Example
● Sometimes you may want to

allow more than one thread
through at once.

○ This is known as barrier
synchronization

○ Here is an example of barrier
synchronization using a
semaphore to allow 3 threads to
run simultaneously

151

Other common concurrency patterns
● Signaling
● Producer-Consumer
● Readers-Writers

152

Signaling

153

Signaling

Thread A

statement A1
sem.post() \\ send signal

154

Thread B

sem.wait() \\ wait until post
statement B1

● Goal: Once something happens in one thread, then another thread may
proceed

Signaling - c example

Thread A

statement A1
sem.signal() // sem_post

155

Thread B

sem.wait() // sem_wait
statement B1

● Goal: Once something happens in one thread,
then another thread may proceed

More Examples or End

157

