
Please do not redistribute these slides
without prior written permission

1

CS 3650
Computer Systems
Alden Jackson / Ferdinand Vesely

2

Pre-Class Warmup
● Inefficient vs efficient (parallel) buffet

3

Course Logistics
● Make sure you are doing the readings on the syllabus

○ They will help prepare you!
● Masks

○ It’s your decision to wear or not wear a mask in class
○ I’m not going to wear one for lecture

● Lab: don’t forget to check in sbrk.c
●

4

C Corner

5

6

Assignment 7 Hint: Ways to find the data
typedef struct block{

 size_t size; // How many bytes beyond this block have been allocated in the heap

 struct block* next; // Where is the next block in your linked list

 int free; // Is this memory free?

 int debug; // (optional) Perhaps you can embed other information--remember, you are the boss!

 } block_t;

mymalloc(9)

....

ptr = sbrk(size_passed_to_mymalloc + sizeof(struct block)); \\ sizeof(struct block)) => BLOCK_SIZE

data = (struct block *) ptr + 1

\\ or

struct Slot { struct block header; char data[]; }

Slot* s = sbrk(size_passed_to_mymalloc+sizeof(struct block));

\\ s->header points to beginning of block , s->data points to what is returned to the caller

Lecture 9 - Concurrency

Some slides figures and slides from Bryant and O’Halloran text 7

Concurrency

11

Concurrent thinking

12

● Humans tend to think sequentially
● Thinking about all the potential sequences of events is difficult for humans.

○ https://www.psychologicalscience.org/news/why-humans-are-bad-at-multitasking.html
● Computers on the other hand, can multi-task quite well.

https://www.psychologicalscience.org/news/why-humans-are-bad-at-multitasking.html

Parallelism vs Concurrency (programming context)
1. Concurrency Definition: Multiple things can happen at once, the order

matters, and sometimes tasks have to wait on shared resources.
2. Parallelism Definition: Everything happens at once, instantaneously

13

Parallelism vs Concurrency (programming context)

● Concurrency Definition: Multiple things can happen at once, the order
matters, and sometimes tasks have to wait on shared resources.

● Parallelism Definition: Everything happens at once, instantaneously

14

Parallelism vs Concurrency (programming context)

● Concurrency Definition: Multiple things can happen at once, the order
matters, and sometimes tasks have to wait on shared resources.

● Parallelism Definition: Everything happens at once, instantaneously

15

Concurrent
Programs

Parallel
Programs

All Programs

Concurrent

Parallel

All Programs
in 10 years?
(i.e. more
concurrency &
parallelism)

PS: this slide is
old

Concurrent

Parallel

Why Parallel?
● Performance (execution speed)
● But how much performance?

s = speedup of task that benefits from improved resources
p = portion of execution time benefiting from improved speedup

https://en.wikipedia.org/wiki/Amdahl%27s_law
Applied example: http://web.cs.iastate.edu/~prabhu/Tutorial/CACHE/CompPerf.pdf

https://en.wikipedia.org/wiki/Amdahl%27s_law
http://web.cs.iastate.edu/~prabhu/Tutorial/CACHE/CompPerf.pdf

Why Concurrency - it’s necessary for good music

Good Concurrency = Good Conversation

Good Concurrency = Good Conversation

Each person
is sharing a
resource

Concurrency
● In general, concurrency (like parallelism) is used because it is necessary for a

system to function.
○ (For example, our jazz ensemble)

● It is also largely motivated by increased performance
○ The potential for more tasks to happen at once can thus increases performance (especially, if

we have multiple cores on our machine)

23

Concurrency
● In general, concurrency (like parallelism) is used because it is necessary for a

system to function.
○ (For example, our orchestra)

● It is also largely motivated by increased performance
○ The potential for more tasks to happen at once can thus increases performance (typically if we

have multiple cores on our machine)

24

Concurrency comes with some
caveats however (next slide!)

Bad Concurrency = Data Race
● When two (or more) processes contending for one shared resource.

25

Bad Concurrency = Data Race
● When two (or more) processes contending for one shared resource.

26

One parking
spot 2 cars

want to
acquire

Data race is not always as obvious...(1/4)
● Imagine you check your fridge and

find there is no milk
○ So you run to the store

27

Data race is not always as obvious...(2/4)
● Imagine you check your fridge and

find there is no milk
○ So you run to the store

● Then moments later your
roommate checks the fridge and
finds it is empty

○ So they run to the store

28

Data race is not always as obvious...(3/4)
● Imagine you check your fridge and

find there is no milk
○ So you run to the store

● Then moments later your
roommate checks the fridge and
finds it is empty

○ So they run to the store
● Roommate # 3 comes and notices

the same
○

29

Data race is not always as obvious...(4/4)
● You get the idea when you then

find out you have 3 times as much
milk as your house needs when
everyone returns.

30

Bad Concurrency = Deadlock
● Grid lock in a traffic jam
● Each car prevents others from

going through a shared
resource (the intersection).

● (One car needs a piece of the
intersection in order to move
forward)

31

Bad Concurrency = Starvation
● Imagine a constant stream of

green cars
● Progress is still being made by the

green cars
● The yellow cars can never make

progress to get across the street.
○ They are resource starved of a shared

resource (again, they cannot cross the
intersection)

32

Concurrent Programming takes some extra care
1. Races: Outcome depends on the arbitrary scheduling decisions elsewhere in

the system
○ e.g. Who gets the last seat on the airplane. (soln’s to this in Distributed Systems course)

2. Deadlock: Improper resource allocation prevents forward progress
○ e.g. traffic gridlock

3. Starvation/Fairness: External events and/or scheduling decisions can prevent
sub-task progress

○ e.g. Someone jumping in front of you in line

● But regardless, concurrent programming is important and necessary to get
the most out of current processor architectures!

33

A Few Approaches to Concurrency
● Process-Based

○ Fork() different processes
○ Each process has its own private address space

● Event-Based
○ Programmer manually interleaves multiple logical flows and polls for events
○ All flows share the same address space
○ Uses technique called I/O multiplexing

● Thread-based
○ Kernel automatically interleaves multiple logical flows
○ Each flow shares the same address space
○ Hybrid of process-based and event-based.

34

A Few Approaches to Concurrency
● Process-Based

○ Fork() different processes
○ Each process has its own private address space

● Event-Based
○ Programmer manually interleaves multiple logical flows and polls for events
○ All flows share the same address space
○ Uses technique called I/O multiplexing

● Thread-based (Today’s focus)
○ Kernel automatically interleaves multiple logical flows
○ Each flow shares the same address space
○ Hybrid of process-based and event-based.

35

Threads

36

A Process can have Multiple Threads
● Each thread shares the same code, data, and kernel context
● A thread has its own thread id (TID)
● A thread has its own logical control flow (no need to exec)
● A thread has its own stack for local variables

37

View of Threads
● Threads associated with a process form a “pool” of peers

○ Unlike processes (on the right) which form a tree hierarchy (i.e. parent/child relationship)

38

Remember this diagram on Concurrent Processes?
● We looked at multiple processes running on a single core (next slide for

multiple cores)

39

Concurrent Thread (or Process) Execution
● Single Core Process

○ Simulate parallelism by time slicing

40

● Multi-Core Processor
○ Can have true parallelism
○ Note the longer durations of time spent on

each thread without being divided up

Threads vs Processes
● Similarities

○ Each has its own logical control flow
○ Each can run concurrently with others (possibly on different cores if available)
○ Each is context switched

● Differences
○ Threads share all code and data (except local stacks)

■ Processes (typically) do not (i.e. fork makes a copy)
○ Threads are usually less expensive than managing processes

■ Process control (creating and reaping) twice as expensive as thread control
● Linux estimates

○ ~20k cycles to create and reap a process
○ ~10k cycles to create and reap a thread

41

Posix Threads API (PThreads Interface)
● Known as Pthreads (pronounced as “p-thread”)

○ Standard of functions for manipulating threads from C Programs

● Sample functions
○ Creating and reaping threads

■ pthread_create()
■ pthread_join()

○ Determining thread ID
■ pthread_self()

○ Terminating threads
■ pthread_cancel()
■ pthread_exit()
■ exit() - Terminates all threads
■ return - terminates current thread

○ Synchronizing access to shared variables
■ pthread_mutex_init
■ pthread_mutex_lock and pthread_mutex_unlock 42

PThread examples

43

Hello Thread
● (thread1.c)
● The thread that is “launched” is a

function in the program

44

Hello Thread
● (thread1.c)
● The thread that is “launched” is a

function in the program
○ This is done when the thread is created
○ Different attributes can be sent to

threads (in this case the first NULL)
○ Arguments can also be passed to the

function (second NULL)

45

Hello Thread
● (thread1.c)
● The thread that is “launched” is a

function in the program
○ This is done when the thread is created
○ Different attributes can be sent to

threads (in this case the first NULL)
○ Arguments can also be passed to the

function (second NULL)

46

Hello Thread
● (thread1.c)
● The thread that is “launched” is a

function in the program
○ This is done when the thread is created
○ Different attributes can be sent to

threads (in this case the first NULL)
○ Arguments can also be passed to the

function (second NULL)
● pthread_join is the equivalent

to “wait” for threads

47

Visual execution of “Hello Thread”

48

Launching multiple threads
● (thread2.c)
● Store 10 thread ids.

49

Launching multiple threads
● (thread2.c)
● Launch 10 threads

50

Launching multiple threads
● (thread2.c)
● Launch 10 threads
● Print out their thread ids to show

which thread is executing.

51

Launching multiple threads
● (thread2.c)
● Launch 10 threads
● Print out their thread ids to show

which thread is executing.
● Join all of our threads with the main

thread
○ (i.e. make the main thread wait until all

10 threads have executed.)

52

Launching multiple threads
● (thread3.c)
● *New Program*

53

Launching multiple threads
● (thread3.c)
● This time launch 10000 threads

54

Launching multiple threads
● (thread3.c)
● This time launch 10000 threads
● counter is shared between threads

55

Launching multiple threads
● This time launch 10000 threads
● counter is shared between threads
● What is wrong with this program?

56

Synchronization of Threads
● Shared variables are thus handy for moving around data
● But if we do not share properly, we can have synchronization errors!

○ There is a solution however!
○ (recap below)

103

=

Example with lock
(thread4.c)

107

Example with lock
● Included a pthread_mutex_lock

108

Example with lock

● Included a pthread_mutex_lock
● lock and unlock protect
● Locks in other words enforce, that

we have exclusive access to a
region of code.

109

Example with lock
● Included a pthread_mutex_lock
● lock and unlock protect
● Locks in other words enforce, that

we have exclusive access to a
region of code.

110

Example with lock
● Also, don’t forget to join!

111

