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Pre-Class Warmup
● Inefficient vs efficient (parallel) buffet
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Course Logistics
● Make sure you are doing the readings on the syllabus 

○ They will help prepare you!
● Masks

○ It’s your decision to wear or not wear a mask in class
○ I’m not going to wear one for lecture

● Lab: don’t forget to check in sbrk.c
●
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C Corner
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Assignment 7 Hint: Ways to find the data
typedef struct block{

    size_t size; // How many bytes beyond this block have been allocated in the heap

    struct block* next; // Where is the next block in your linked list

    int free; // Is this memory free?

    int debug; // (optional) Perhaps you can embed other information--remember, you are the boss!

  } block_t;

mymalloc(9) 

....

ptr = sbrk(size_passed_to_mymalloc + sizeof(struct block));  \\ sizeof(struct block)) => BLOCK_SIZE

data = (struct block *) ptr + 1

\\ or 

struct Slot { struct block header; char data[]; }

Slot* s = sbrk(size_passed_to_mymalloc+sizeof(struct block));

\\ s->header points to beginning of block , s->data points to what is returned to the caller



Lecture 9 - Concurrency 

Some slides figures and slides from Bryant and O’Halloran text 7



Concurrency
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Concurrent thinking

12

● Humans tend to think sequentially
● Thinking about all the potential sequences of events is difficult for humans.

○ https://www.psychologicalscience.org/news/why-humans-are-bad-at-multitasking.html
● Computers on the other hand, can multi-task quite well.

https://www.psychologicalscience.org/news/why-humans-are-bad-at-multitasking.html


Parallelism vs Concurrency (programming context)
1. Concurrency Definition: Multiple things can happen at once, the order 

matters, and sometimes tasks have to wait on shared resources.
2. Parallelism Definition: Everything happens at once, instantaneously
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All Programs
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Parallel



All Programs 
in 10 years?
(i.e. more
concurrency &
parallelism)

PS: this slide is
old

Concurrent

Parallel



Why Parallel?
● Performance (execution speed)
● But how much performance?

s = speedup of task that benefits from improved resources
p = portion of execution time benefiting from improved speedup

https://en.wikipedia.org/wiki/Amdahl%27s_law
Applied example: http://web.cs.iastate.edu/~prabhu/Tutorial/CACHE/CompPerf.pdf

https://en.wikipedia.org/wiki/Amdahl%27s_law
http://web.cs.iastate.edu/~prabhu/Tutorial/CACHE/CompPerf.pdf


Why Concurrency - it’s necessary for good music



Good Concurrency = Good Conversation



Good Concurrency = Good Conversation

Each person 
is sharing a 
resource 



Concurrency
● In general, concurrency (like parallelism) is used because it is necessary for a 

system to function.
○ (For example, our jazz ensemble)

● It is also largely motivated by increased performance
○ The potential for more tasks to happen at once can thus increases performance (especially, if 

we have multiple cores on our machine)
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Concurrency
● In general, concurrency (like parallelism) is used because it is necessary for a 

system to function.
○ (For example, our orchestra)

● It is also largely motivated by increased performance
○ The potential for more tasks to happen at once can thus increases performance (typically if we 

have multiple cores on our machine)
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Concurrency comes with some 
caveats however (next slide!)



Bad Concurrency = Data Race
● When two (or more) processes contending for one shared resource.
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Bad Concurrency = Data Race
● When two (or more) processes contending for one shared resource.
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One parking 
spot 2 cars 

want to 
acquire



Data race is not always as obvious...(1/4)
● Imagine you check your fridge and 

find there is no milk
○ So you run to the store
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Data race is not always as obvious...(2/4)
● Imagine you check your fridge and 

find there is no milk
○ So you run to the store

● Then moments later your 
roommate checks the fridge and 
finds it is empty

○ So they run to the store
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Data race is not always as obvious...(3/4)
● Imagine you check your fridge and 

find there is no milk
○ So you run to the store

● Then moments later your 
roommate checks the fridge and 
finds it is empty

○ So they run to the store
● Roommate # 3 comes and notices 

the same
○ ....
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Data race is not always as obvious...(4/4)
● You get the idea when you then 

find out you have 3 times as much 
milk as your house needs when 
everyone returns.
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Bad Concurrency = Deadlock
● Grid lock in a traffic jam
● Each car prevents others from 

going through a shared 
resource (the intersection).

● (One car needs a piece of the 
intersection in order to move 
forward)
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Bad Concurrency = Starvation
● Imagine a constant stream of 

green cars
● Progress is still being made by the 

green cars
● The yellow cars can never make 

progress to get across the street.
○ They are resource starved of a shared 

resource (again, they cannot cross the 
intersection)
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Concurrent Programming takes some extra care
1. Races: Outcome depends on the arbitrary scheduling decisions elsewhere in 

the system
○ e.g. Who gets the last seat on the airplane.  (soln’s to this in Distributed Systems course)

2. Deadlock: Improper resource allocation prevents forward progress
○ e.g. traffic gridlock

3. Starvation/Fairness: External events and/or scheduling decisions can prevent 
sub-task progress

○ e.g. Someone jumping in front of you in line

● But regardless, concurrent programming is important and necessary to get 
the most out of current processor architectures!
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A Few Approaches to Concurrency
● Process-Based

○ Fork() different processes
○ Each process has its own private address space

● Event-Based
○ Programmer manually interleaves multiple logical flows and polls for events
○ All flows share the same address space
○ Uses technique called I/O multiplexing

● Thread-based
○ Kernel automatically interleaves multiple logical flows
○ Each flow shares the same address space
○ Hybrid of process-based and event-based.
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A Few Approaches to Concurrency
● Process-Based

○ Fork() different processes
○ Each process has its own private address space

● Event-Based
○ Programmer manually interleaves multiple logical flows and polls for events
○ All flows share the same address space
○ Uses technique called I/O multiplexing

● Thread-based (Today’s focus)
○ Kernel automatically interleaves multiple logical flows
○ Each flow shares the same address space
○ Hybrid of process-based and event-based.
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Threads
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A Process can have Multiple Threads
● Each thread shares the same code, data, and kernel context
● A thread has its own thread id (TID)
● A thread has its own logical control flow (no need to exec)
● A thread has its own stack for local variables
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View of Threads
● Threads associated with a process form a “pool” of peers

○ Unlike processes (on the right) which form a tree hierarchy (i.e. parent/child relationship)
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Remember this diagram on Concurrent Processes?
● We looked at multiple processes running on a single core (next slide for 

multiple cores)
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Concurrent Thread (or Process) Execution
● Single Core Process

○ Simulate parallelism by time slicing
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● Multi-Core Processor
○ Can have true parallelism
○ Note the longer durations of time spent on 

each thread without being divided up



Threads vs Processes
● Similarities

○ Each has its own logical control flow
○ Each can run concurrently with others (possibly on different cores if available)
○ Each is context switched

● Differences
○ Threads share all code and data (except local stacks)

■ Processes (typically) do not (i.e. fork makes a copy)
○ Threads are usually less expensive than managing processes

■ Process control (creating and reaping) twice as expensive as thread control
● Linux estimates

○ ~20k cycles to create and reap a process
○ ~10k cycles to create and reap a thread
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Posix Threads API (PThreads Interface)
● Known as Pthreads (pronounced as “p-thread”)

○ Standard of functions for manipulating threads from C Programs

● Sample functions
○ Creating and reaping threads

■ pthread_create()
■ pthread_join()

○ Determining thread ID
■ pthread_self()

○ Terminating threads
■ pthread_cancel()
■ pthread_exit()
■ exit() - Terminates all threads
■ return - terminates current thread

○ Synchronizing access to shared variables
■ pthread_mutex_init
■ pthread_mutex_lock and pthread_mutex_unlock 42



PThread examples
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Hello Thread
● (thread1.c)
● The thread that is “launched” is a 

function in the program
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Hello Thread
● (thread1.c)
● The thread that is “launched” is a 

function in the program
○ This is done when the thread is created
○ Different attributes can be sent to 

threads (in this case the first NULL)
○ Arguments can also be passed to the 

function (second NULL)
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Hello Thread
● (thread1.c)
● The thread that is “launched” is a 

function in the program
○ This is done when the thread is created
○ Different attributes can be sent to 

threads (in this case the first NULL)
○ Arguments can also be passed to the 

function (second NULL)
● pthread_join is the equivalent 

to “wait” for threads
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Visual execution of “Hello Thread”
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Launching multiple threads 
● (thread2.c)
● Store 10 thread ids.
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Launching multiple threads
● (thread2.c)
● Launch 10 threads
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Launching multiple threads
● (thread2.c)
● Launch 10 threads
● Print out their thread ids to show 

which thread is executing.
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Launching multiple threads
● (thread2.c)
● Launch 10 threads
● Print out their thread ids to show 

which thread is executing.
● Join all of our threads with the main 

thread
○ (i.e. make the main thread wait until all 

10 threads have executed.)

52



Launching multiple threads
● (thread3.c)
● *New Program*
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Launching multiple threads
● (thread3.c)
● This time launch 10000 threads
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Launching multiple threads
● (thread3.c)
● This time launch 10000 threads
● counter is shared between threads
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Launching multiple threads
● This time launch 10000 threads
● counter is shared between threads
● What is wrong with this program?
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Synchronization of Threads
● Shared variables are thus handy for moving around data
● But if we do not share properly, we can have synchronization errors!

○ There is a solution however!
○ (recap below)
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Example with lock
(thread4.c)

107



Example with lock
● Included a pthread_mutex_lock
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Example with lock

● Included a pthread_mutex_lock
● lock and unlock protect
● Locks in other words enforce, that 

we have exclusive access to a 
region of code.
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Example with lock
● Included a pthread_mutex_lock
● lock and unlock protect
● Locks in other words enforce, that 

we have exclusive access to a 
region of code.
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Example with lock
● Also, don’t forget to join!
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